Non-metallic charge carriers for aqueous batteries

Abstract

Charge carriers are fundamental components of batteries that determine battery chemistry and performance. Non-metallic charge carriers provide an alternative to metallic charge carriers in aqueous batteries, enabling fast kinetics, long cyclic lifetime and low manufacturing costs. Non-metallic charge carriers not only can be inserted into the electrode framework, where they establish covalent–ionic bonds, but can also serve as reversible redox centres for charge transfer, resulting in superior performance compared with metallic charge carrier-based devices. In this Review, we discuss cationic and anionic non-metallic charge carriers, their physicochemical properties, charge storage mechanisms and electrode interactions. We examine battery configurations of non-metallic charge carrier-based devices and analyse battery performance based on costs, capacity, working potential, rate capability and cycling stability. Finally, we highlight design strategies for aqueous batteries based on non-metallic charge carriers and future applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Physicochemical properties, charge storage mechanisms and battery configurations of non-metallic charge carriers.
Fig. 2: Interaction of charge carriers and electrode materials.
Fig. 3: Interaction of cationic non-metallic charger carriers and electrodes.
Fig. 4: Interaction of anionic non-metallic charge carriers and electrodes.
Fig. 5: Performance of non-metallic charge carrier batteries.

References

  1. 1.

    Ji, X. A paradigm of storage batteries. Energy Environ. Sci. 12, 3203–3224 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279 (2018).

    Article  Google Scholar 

  3. 3.

    Li, H. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Li, H. et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019).

    Article  CAS  Google Scholar 

  5. 5.

    Ding, J., Hu, W., Paek, E. & Mitlin, D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Liu, Z. et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Liu, Z. et al. Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164–173 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Gao, H. & Goodenough, J. B. An aqueous symmetric sodium-on battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55, 12768–12772 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Suo, L. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Yang, Q. et al. Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Su, D., McDonagh, A., Qiao, S. Z. & Wang, G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    Jiang, L. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Ma, L. et al. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9, 1902446 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Yang, Q. et al. Activating C-oordinated iron of iron hexacyanoferrate for Zn hybrid-on batteries with 10 000-cycle lifespan and superior rate capability. Adv. Mater. 31, 1901521 (2019).

    Article  CAS  Google Scholar 

  17. 17.

    Liang, G. et al. A universal principle to design reversible aqueous batteries based on deposition–dissolution mechanism. Adv. Energy Mater. 9, 1901838 (2019).

    Article  CAS  Google Scholar 

  18. 18.

    Leonard, D. P., Wei, Z., Chen, G., Du, F. & Ji, X. Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Chen, L. et al. Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2, 1115–1121 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Xu, J. et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Zhao, Z. et al. Challenges in zinc electrodes for alkaline zinc–air batteries: obstacles to commercialization. ACS Energy Lett. 4, 2259–2270 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Pan, H., Hu, Y.-S. & Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Xu, K. Diffusionless charge transfer. Nat. Energy 4, 93 (2019).

    Article  Google Scholar 

  25. 25.

    Chao, D. & Fan, H. J. Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5, 1359–1361 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Volkov, A. G., Paula, S. & Deamer, D. W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenerg. 42, 153–160 (1997).

    CAS  Article  Google Scholar 

  27. 27.

    Tansel, B. et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51, 40–47 (2006).

    CAS  Article  Google Scholar 

  28. 28.

    Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123 (2019). This paper reports the fastest rate capability of redox reactions with H+ storage based on diffusion-free Grotthuss topochemistry thus far.

    CAS  Article  Google Scholar 

  29. 29.

    Jiang, H. et al. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140, 11556–11559 (2018). This paper reports the insertion and interaction of protons in a WO3 electrode, with stable H+ storage.

    CAS  Article  Google Scholar 

  30. 30.

    Jian, Z., Luo, W. & Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Li, X. et al. Phase transition induced unusual electrochemical performance of V2CTX MXene for aqueous zinc hybrid-ion battery. ACS Nano 14, 541–551 (2020).

    CAS  Article  Google Scholar 

  32. 32.

    Jiang, L. et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, 1904427 (2020).

    CAS  Article  Google Scholar 

  33. 33.

    Zhao, Y., Zhu, Y. & Zhang, X. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat 2, 237–260 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Yadav, G. G., Turney, D., Huang, J., Wei, X. & Banerjee, S. Breaking the 2 V barrier in aqueous zinc chemistry: creating 2.45 and 2.8 V MnO2–Zn aqueous batteries. ACS Energy Lett. 4, 2144–2146 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Ueno, K. et al. Li+ solvation and ionic transport in lithium solvate ionic liquids diluted by molecular solvents. J. Phys. Chem. C. 120, 15792–15802 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Zhang, X.-Q. et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 4, 411–416 (2019).

    CAS  Article  Google Scholar 

  38. 38.

    Xu, K. & von Wald Cresce, A. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. J. Mater. Res. 27, 2327–2341 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Jiang, H. et al. A high-rate aqueous proton battery delivering power below −78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10, 2000968 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Donald, W. A. et al. Directly relating reduction energies of gaseous Eu(H2O)n3+, n = 55–140, to aqueous solution: the absolute SHE potential and real proton solvation energy. J. Am. Chem. Soc. 131, 13328–13337 (2009).

    CAS  Article  Google Scholar 

  41. 41.

    Yan, L. et al. Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5, 685–691 (2020).

    CAS  Article  Google Scholar 

  42. 42.

    Kundu, D. et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Wessells, C. D., Peddada, S. V., McDowell, M. T., Huggins, R. A. & Cui, Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 159, A98–A103 (2011).

    Article  CAS  Google Scholar 

  44. 44.

    Wang, X. et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. 129, 2955–2959 (2017). This report is the first on the storage of H3O+ ions in an organic electrode.

    Article  Google Scholar 

  45. 45.

    Wei, Z. et al. Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries. Nat. Commun. 10, 3227 (2019).

    Article  CAS  Google Scholar 

  46. 46.

    Ji, X. et al. Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 18, 6441–6448 (2018).

    CAS  Article  Google Scholar 

  47. 47.

    Wang, F. et al. How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978–11981 (2018).

    CAS  Article  Google Scholar 

  48. 48.

    Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    Article  Google Scholar 

  50. 50.

    Liang, G. et al. Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Mater. 25, 86–92 (2020).

    Article  Google Scholar 

  51. 51.

    Wang, X., Xie, Y., Tang, K., Wang, C. & Yan, C. Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 57, 11569–11573 (2018).

    CAS  Article  Google Scholar 

  52. 52.

    Rodríguez-Pérez, I. A., Zhang, L., Leonard, D. P. & Ji, X. Aqueous anion insertion into a hydrocarbon cathode via a water-in-salt electrolyte. Electrochem. Commun. 109, 106599 (2019).

    Article  CAS  Google Scholar 

  53. 53.

    Chen, W. et al. A manganese–hydrogen battery with potential for grid-scale energy storage. Nat. Energy 3, 428–435 (2018). This paper reports large-scale storage based on catalytic conversion reactions between gaseous and liquid phases.

    CAS  Article  Google Scholar 

  54. 54.

    Chen, W., Jin, Y., Zhao, J., Liu, N. & Cui, Y. Nickel–hydrogen batteries for large-scale energy storage. Proc. Natl Acad. Sci. USA 115, 11694–11699 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Hong, J. J. et al. A dual plating battery with the iodine/[ZnIx(OH2)4 − x]2 − x cathode. Angew. Chem. 131, 16057–16062 (2019). This paper reports large-scale storage based on anionic and cationic deposition processes.

    Article  Google Scholar 

  56. 56.

    Dong, S. et al. Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5, 1537–1551 (2019). This paper reports fast NH4+ storage with superior performance compared with K+ storage in V2O5 electrodes.

    CAS  Article  Google Scholar 

  57. 57.

    Gogotsi, Y. & Penner, R. M. Energy storage in nanomaterials — capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Liu, C., Neale, Z. G. & Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016).

    CAS  Article  Google Scholar 

  59. 59.

    Yang, X. & Rogach, A. L. Electrochemical techniques in battery research: a tutorial for nonelectrochemists. Adv. Energy Mater. 9, 1900747 (2019).

    Article  CAS  Google Scholar 

  60. 60.

    Chen, Z. et al. Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 19, 3420–3426 (2009).

    CAS  Article  Google Scholar 

  61. 61.

    Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C. 111, 14925–14931 (2007).

    CAS  Article  Google Scholar 

  62. 62.

    Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3 − x. Nat. Mater. 16, 454–460 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P. & Stevenson, K. J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726–732 (2014). This paper introduces Ov at an atomic level into perovskite electrodes to enhance electrochemical performance by oxygen intercalation.

    CAS  Article  Google Scholar 

  64. 64.

    Li, Y. et al. Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett. 5, 1156–1158 (2020).

    CAS  Article  Google Scholar 

  65. 65.

    Li, M. et al. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020).

    CAS  Article  Google Scholar 

  66. 66.

    Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    CAS  Article  Google Scholar 

  67. 67.

    Clément, R. J., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 13, 345–373 (2020).

    Article  Google Scholar 

  68. 68.

    Zu, C.-X. & Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011).

    CAS  Article  Google Scholar 

  69. 69.

    Liang, G. et al. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 32, 1907802 (2020). This paper shows that stable NH4+ storage based on hydrogen bonds is achieved by rationally selecting electrode materials.

    CAS  Article  Google Scholar 

  70. 70.

    Sanderson, R. T. Electronegativity and bond energy. J. Am. Chem. Soc. 105, 2259–2261 (1983).

    CAS  Article  Google Scholar 

  71. 71.

    Li, K. & Xue, D. Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110, 11332–11337 (2006).

    CAS  Article  Google Scholar 

  72. 72.

    Chen, F. et al. Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10, 2081–2089 (2017).

    CAS  Article  Google Scholar 

  73. 73.

    Dong, X. et al. All-organic rechargeable battery with reversibility supported by “water-in-salt” electrolyte. Chem. A Eur. J. 23, 2560–2565 (2017).

    CAS  Article  Google Scholar 

  74. 74.

    Kondo, Y., Miyahara, Y., Fukutsuka, T., Miyazaki, K. & Abe, T. Electrochemical intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions. Electrochem. Commun. 100, 26–29 (2019).

    CAS  Article  Google Scholar 

  75. 75.

    Wu, X. et al. Hydrous nickel–iron Turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Interface 12, 9201–9208 (2020).

    CAS  Article  Google Scholar 

  76. 76.

    Yang, Q. et al. Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31, 1903778 (2019).

    CAS  Article  Google Scholar 

  77. 77.

    Liang, G. et al. Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31, 1905873 (2019).

    CAS  Article  Google Scholar 

  78. 78.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    Jiang, H. et al. An aqueous dual-ion battery cathode of Mn3O4 via reversible insertion of nitrate. Angew. Chem. Int. Ed. 58, 5286–5291 (2019).

    CAS  Article  Google Scholar 

  80. 80.

    Jin, Y. et al. Joint charge storage for high-rate aqueous zinc–manganese dioxide batteries. Adv. Mater. 31, 1900567 (2019).

    Article  CAS  Google Scholar 

  81. 81.

    Zhu, Y. H., Yang, X. & Zhang, X. B. Hydronium ion batteries: a sustainable energy storage solution. Angew. Chem. Int. Ed. 56, 6378–6380 (2017).

    CAS  Article  Google Scholar 

  82. 82.

    Kim, Y.-S. et al. Evidencing fast, massive, and reversible H+ insertion in nanostructured TiO2 electrodes at neutral pH. Where do protons come from? J. Phys. Chem. C. 121, 10325–10335 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Kim, Y.-S., Harris, K. D., Limoges, B. & Balland, V. On the unsuspected role of multivalent metal ions on the charge storage of a metal oxide electrode in mild aqueous electrolytes. Chem. Sci. 10, 8752–8763 (2019).

    CAS  Article  Google Scholar 

  84. 84.

    Fleischmann, S. et al. Interlayer separation in hydrogen titanates enables electrochemical proton intercalation. J. Mater. Chem. A 8, 412–421 (2020).

    CAS  Article  Google Scholar 

  85. 85.

    Schon, T. B., McAllister, B. T., Li, P.-F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    Zhao, Q., Lu, Y. & Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 7, 1601792 (2017).

    Article  CAS  Google Scholar 

  87. 87.

    Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

    CAS  Article  Google Scholar 

  88. 88.

    Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841 (2017).

    CAS  Article  Google Scholar 

  89. 89.

    Guo, Z. et al. An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 11, 959 (2020).

    CAS  Article  Google Scholar 

  90. 90.

    Poizot, P., Dolhem, F. & Gaubicher, J. Progress in all-organic rechargeable batteries using cationic and anionic configurations: toward low-cost and greener storage solutions? Curr. Opin. Electrochem. 9, 70–80 (2018).

    CAS  Article  Google Scholar 

  91. 91.

    Emanuelsson, R., Sterby, M., Strømme, M. & Sjödin, M. An all-organic proton battery. J. Am. Chem. Soc. 139, 4828–4834 (2017).

    CAS  Article  Google Scholar 

  92. 92.

    Chen, Z. et al. Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic–electronic conductivity for electrochemical energy storage. Nano Lett. 15, 6802–6808 (2015).

    CAS  Article  Google Scholar 

  93. 93.

    Mendoza-Sánchez, B., Brousse, T., Ramirez-Castro, C., Nicolosi, V. & S. Grant, P. An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim. Acta 91, 253–260 (2013).

    Article  CAS  Google Scholar 

  94. 94.

    Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    CAS  Article  Google Scholar 

  95. 95.

    Mu, X. et al. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 29, 1902953 (2019).

    Article  CAS  Google Scholar 

  96. 96.

    Wang, S. et al. Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. 131, 211–216 (2019).

    Article  Google Scholar 

  97. 97.

    Hu, M. et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016).

    CAS  Article  Google Scholar 

  98. 98.

    Lukatskaya, M. R. et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015).

    Article  CAS  Google Scholar 

  99. 99.

    Sun, W. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017).

    CAS  Article  Google Scholar 

  100. 100.

    Mo, F. et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat 1, e12008 (2019).

    CAS  Article  Google Scholar 

  101. 101.

    Kazazi, M., Zafar, Z. A., Delshad, M., Cervenka, J. & Chen, C. TiO2/CNT nanocomposite as an improved anode material for aqueous rechargeable aluminum batteries. Solid State Ion. 320, 64–69 (2018).

    CAS  Article  Google Scholar 

  102. 102.

    Luo, J.-Y., Cui, W.-J., He, P. & Xia, Y.-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  CAS  Google Scholar 

  103. 103.

    Xu, C., Li, B., Du, H. & Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012).

    CAS  Article  Google Scholar 

  104. 104.

    Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Zhao, Q. et al. Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells. Angew. Chem. Int. Ed. 132, 3072–3076 (2020).

    Article  Google Scholar 

  106. 106.

    Fang, G., Zhou, J., Pan, A. & Liang, S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018).

    CAS  Article  Google Scholar 

  107. 107.

    Wan, F. et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018).

    Article  CAS  Google Scholar 

  108. 108.

    Zhang, L. et al. ZnCl2 ‘water-in-salt’ electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019).

    Article  CAS  Google Scholar 

  109. 109.

    Ding, J. et al. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30, 1800762 (2018).

    Article  CAS  Google Scholar 

  110. 110.

    Oberholzer, P., Tervoort, E., Bouzid, A., Pasquarello, A. & Kundu, D. Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS Appl. Mater. Interface 11, 674–682 (2019).

    CAS  Article  Google Scholar 

  111. 111.

    Li, Z. et al. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 9, 1900237 (2019).

    Article  CAS  Google Scholar 

  112. 112.

    Wang, C., Wei, S., Chen, S., Cao, D. & Song, L. Delaminating vanadium carbides for zinc-ion storage: hydrate precipitation and H+/Zn2+ co-action mechanism. Small Methods 3, 1900495 (2019).

    CAS  Article  Google Scholar 

  113. 113.

    Wu, X. et al. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026–13030 (2017).

    CAS  Article  Google Scholar 

  114. 114.

    Li, C. et al. A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery. ChemSusChem 12, 3732–3736 (2019).

    Article  CAS  Google Scholar 

  115. 115.

    Li, C. et al. Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horiz. 4, 991–998 (2019).

    CAS  Article  Google Scholar 

  116. 116.

    Holoubek, J. J. et al. Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 54, 9805–9808 (2018).

    CAS  Article  Google Scholar 

  117. 117.

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    CAS  Article  Google Scholar 

  118. 118.

    Zhang, Y. et al. A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7, 11314–11320 (2019).

    CAS  Article  Google Scholar 

  119. 119.

    Li, H., Yang, J., Cheng, J., He, T. & Wang, B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 68, 104369 (2020).

    CAS  Article  Google Scholar 

  120. 120.

    Li, G. et al. Membrane-free Zn/MnO2 flow battery for large-scale energy storage. Adv. Energy Mater. 10, 1902085 (2020).

    CAS  Article  Google Scholar 

  121. 121.

    Zhang, M., Song, X., Ou, X. & Tang, Y. Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Mater. 16, 65–84 (2019).

    CAS  Article  Google Scholar 

  122. 122.

    Wang, M. & Tang, Y. A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8, 1703320 (2018).

    Article  CAS  Google Scholar 

  123. 123.

    Wang, G. et al. A high-voltage, dendrite-free, and durable Zn–graphite battery. Adv. Mater. 32, 1905681 (2020).

    CAS  Article  Google Scholar 

  124. 124.

    Zhou, X. et al. Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 59, 3802–3832 (2020).

    CAS  Article  Google Scholar 

  125. 125.

    Rodríguez-Pérez, I. A. & Ji, X. Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2, 1762–1770 (2017).

    Article  CAS  Google Scholar 

  126. 126.

    Aubrey, M. L. & Long, J. R. A dual-ion battery cathode via oxidative insertion of anions in a metal–organic framework. J. Am. Chem. Soc. 137, 13594–13602 (2015).

    CAS  Article  Google Scholar 

  127. 127.

    Huang, M., Li, M., Niu, C., Li, Q. & Mai, L. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 29, 1807847 (2019).

    Article  CAS  Google Scholar 

  128. 128.

    Jiang, Y., Zhao, D., Ba, D., Li, Y. & Liu, J. “Carbon-glue” enabled highly stable and high-rate Fe3O4 nanorod anode for flexible quasi-solid-state nickel–copper//iron alkaline battery. Adv. Mater. Interfaces 5, 1801043 (2018).

    Article  CAS  Google Scholar 

  129. 129.

    Parker, J. F. et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    CAS  Article  Google Scholar 

  130. 130.

    Muralidharan, N. et al. From the junkyard to the power grid: ambient processing of scrap metals into nanostructured electrodes for ultrafast rechargeable batteries. ACS Energy Lett. 1, 1034–1041 (2016).

    CAS  Article  Google Scholar 

  131. 131.

    Liu, S., Pan, G., Yan, N. & Gao, X. Aqueous TiO2/Ni(OH)2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions. Energy Environ. Sci. 3, 1732–1735 (2010).

    CAS  Article  Google Scholar 

  132. 132.

    Zhang, H., Yu, X. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277–281 (2011).

    CAS  Article  Google Scholar 

  133. 133.

    Barnard, R., Randell, C. F. & Tye, F. L. Studies concerning charged nickel hydroxide electrodes I. Measurement of reversible potentials. J. Appl. Electrochem. 10, 109–125 (1980).

    CAS  Article  Google Scholar 

  134. 134.

    Mao, Z. Theoretical analysis of the discharge performance of a NiOOH∕H2 cell. J. Electrochem. Soc. 141, 54 (1994).

    CAS  Article  Google Scholar 

  135. 135.

    Dotan, H. et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4, 786–795 (2019).

    CAS  Article  Google Scholar 

  136. 136.

    Guiader, O. & Bernard, P. Understanding of Ni(OH)2/NiOOH irreversible phase transformations: Ni2O3H impact on alkaline batteries. J. Electrochem. Soc. 165, A396–A406 (2018).

    CAS  Article  Google Scholar 

  137. 137.

    Hertzberg, B. J. et al. Effect of multiple cation electrolyte mixtures on rechargeable Zn–MnO2 alkaline battery. Chem. Mater. 28, 4536–4545 (2016).

    CAS  Article  Google Scholar 

  138. 138.

    Gallaway, J. W. et al. Operando identification of the point of [Mn2]O4 spinel formation during γ-MnO2 discharge within batteries. J. Power Sources 321, 135–142 (2016).

    CAS  Article  Google Scholar 

  139. 139.

    Wang, D. et al. A zinc battery with ultra-flat discharge plateau through phase transition mechanism. Nano Energy 71, 104583 (2020).

    CAS  Article  Google Scholar 

  140. 140.

    Jiao, C. et al. Triple-shelled manganese–cobalt oxide hollow dodecahedra with highly enhanced performance for rechargeable alkaline batteries. Angew. Chem. Int. Ed. 58, 996–1001 (2019).

    CAS  Article  Google Scholar 

  141. 141.

    Yadav, G. G. et al. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017).

    Article  Google Scholar 

  142. 142.

    Yadav, G. G. et al. A conversion-based highly energy dense Cu2+ intercalated Bi-birnessite/Zn alkaline battery. J. Mater. Chem. A 5, 15845–15854 (2017).

    CAS  Article  Google Scholar 

  143. 143.

    Binder, L. Improvements of the rechargeable alkaline MnO2–Zn cell. J. Electrochem. Soc. 143, 13 (1996).

    CAS  Article  Google Scholar 

  144. 144.

    Cabral, M., Pedrosa, F., Margarido, F. & Nogueira, C. End-of-life Zn–MnO2 batteries: electrode materials characterization. Environ. Technol. 34, 1283–1295 (2013).

    CAS  Article  Google Scholar 

  145. 145.

    Nan, H.-s., Hu, X.-y. & Tian, H.-W. Recent advances in perovskite oxides for anion-intercalation supercapacitor: a review. Mater. Sci. Semicond. Process. 94, 35–50 (2019).

    CAS  Article  Google Scholar 

  146. 146.

    Zhu, L. et al. Perovskite SrCo0. 9Nb0. 1O3 − δ as an anion-intercalated electrode material for supercapacitors with ultrahigh volumetric energy density. Angew. Chem. Int. Ed. 128, 9728–9731 (2016).

    Article  Google Scholar 

  147. 147.

    Ling, T. et al. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 4, eaau6261 (2018).

    CAS  Article  Google Scholar 

  148. 148.

    Huang, Z. et al. Ni3S2/Ni nanosheet arrays for high-performance flexible zinc hybrid batteries with evident two-stage charge and discharge processes. J. Mater. Chem. A 7, 18915–18924 (2019).

    CAS  Article  Google Scholar 

  149. 149.

    Liu, J. et al. Aqueous rechargeable alkaline CoxNi2 – xS2/TiO2 battery. ACS Nano 10, 1007–1016 (2016).

    CAS  Article  Google Scholar 

  150. 150.

    Zhao, X., Ren, S., Bruns, M. & Fichtner, M. Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014).

    CAS  Article  Google Scholar 

  151. 151.

    Zhao, X., Zhao-Karger, Z., Wang, D. & Fichtner, M. Metal oxychlorides as cathode materials for chloride ion batteries. Angew. Chem. Int. Ed. 52, 13621–13624 (2013).

    CAS  Article  Google Scholar 

  152. 152.

    March, N. H. & Tosi, M. P. Structure of transition metal chlorides in aqueous solution. Phys. Lett. A 50, 224–226 (1974).

    Article  Google Scholar 

  153. 153.

    Cummings, S. et al. Chloride ions in aqueous solutions. Nature 287, 714–716 (1980).

    CAS  Article  Google Scholar 

  154. 154.

    Hu, X. et al. Electrochemical performance of Sb4O5Cl2 as a new anode material in aqueous chloride-ion battery. ACS Appl. Mater. Interface 11, 9144–9148 (2019).

    CAS  Article  Google Scholar 

  155. 155.

    Chen, F., Leong, Z. Y. & Yang, H. Y. An aqueous rechargeable chloride ion battery. Energy Storage Mater. 7, 189–194 (2017).

    Article  Google Scholar 

  156. 156.

    Pasta, M., Wessells, C. D., Cui, Y. & La Mantia, F. A desalination battery. Nano Lett. 12, 839–843 (2012).

    CAS  Article  Google Scholar 

  157. 157.

    Li, D. & Zhou, H. Two-phase transition of Li-intercalation compounds in Li-ion batteries. Mater. Today 17, 451–463 (2014).

    CAS  Article  Google Scholar 

  158. 158.

    Zhang, Z. et al. Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry. J. Mater. Chem. A 6, 8244–8250 (2018).

    CAS  Article  Google Scholar 

  159. 159.

    Singh, P., Parent, K. L. & Buttry, D. A. Electrochemical solid-state phase transformations of silver nanoparticles. J. Am. Chem. Soc. 134, 5610–5617 (2012).

    CAS  Article  Google Scholar 

  160. 160.

    Koshika, K., Sano, N., Oyaizu, K. & Nishide, H. An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. Chem. Commun. 7, 836–838 (2009).

    Article  Google Scholar 

  161. 161.

    Jiang, H. & Ji, X. Counter-ion insertion of chloride in Mn3O4 as cathode for dual-ion batteries: a new mechanism of electrosynthesis for reversible anion storage. Carbon Energy 2, 437–442 (2020).

    CAS  Article  Google Scholar 

  162. 162.

    Suss, M. E. & Presser, V. Water desalination with energy storage electrode materials. Joule 2, 10–15 (2018).

    Article  Google Scholar 

  163. 163.

    Srimuk, P. et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016).

    CAS  Article  Google Scholar 

  164. 164.

    Srimuk, P. et al. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. J. Mater. Chem. A 5, 15640–15649 (2017).

    CAS  Article  Google Scholar 

  165. 165.

    Xu, K. & Wang, C. Batteries: widening voltage windows. Nat. Energy 1, 16161 (2016).

    CAS  Article  Google Scholar 

  166. 166.

    Wu, X. et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019).

    CAS  Article  Google Scholar 

  167. 167.

    Wan, F. et al. An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018).

    Article  CAS  Google Scholar 

  168. 168.

    Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).

    CAS  Article  Google Scholar 

  169. 169.

    Braff, W. A., Bazant, M. Z. & Buie, C. R. Membrane-less hydrogen bromine flow battery. Nat. Commun. 4, 2346 (2013).

    Article  Google Scholar 

  170. 170.

    Wang, W. et al. Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970–986 (2013).

    CAS  Article  Google Scholar 

  171. 171.

    Chun, S.-E. et al. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat. Commun. 6, 7818 (2015).

    CAS  Article  Google Scholar 

  172. 172.

    Yoo, S. J. et al. Fundamentally addressing bromine storage through reversible solid-state confinement in porous carbon electrodes: design of a high-performance dual-redox electrochemical capacitor. J. Am. Chem. Soc. 139, 9985–9993 (2017).

    CAS  Article  Google Scholar 

  173. 173.

    Evanko, B. et al. Stackable bipolar pouch cells with corrosion-resistant current collectors enable high-power aqueous electrochemical energy storage. Energy Environ. Sci. 11, 2865–2875 (2018).

    CAS  Article  Google Scholar 

  174. 174.

    Biswas, S. et al. Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10, 114–120 (2017).

    CAS  Article  Google Scholar 

  175. 175.

    Peramunage, D. & Licht, S. A solid sulfur cathode for aqueous batteries. Science 261, 1029–1032 (1993).

    CAS  Article  Google Scholar 

  176. 176.

    Tsao, Y. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries. Joule 3, 872–884 (2019).

    CAS  Article  Google Scholar 

  177. 177.

    Zhu, Z. et al. A high-rate lithium manganese oxide-hydrogen battery. Nano Lett. 20, 3278–3283 (2020).

    CAS  Article  Google Scholar 

  178. 178.

    Yao, B. et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019).

    CAS  Article  Google Scholar 

  179. 179.

    Yao, B. et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 32, 1906652 (2020).

    CAS  Article  Google Scholar 

  180. 180.

    Chao, D. et al. An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019).

    CAS  Article  Google Scholar 

  181. 181.

    Chao, D. et al. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32, 2001894 (2020).

    CAS  Article  Google Scholar 

  182. 182.

    Ma, L. et al. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32, 1908121 (2020).

    CAS  Article  Google Scholar 

  183. 183.

    Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162, 1379–1394 (2006).

    CAS  Article  Google Scholar 

  184. 184.

    Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    CAS  Article  Google Scholar 

  185. 185.

    Wang, Y. et al. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv. Mater. 32, 2000338 (2020).

    CAS  Article  Google Scholar 

  186. 186.

    Roduner, E. Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions — a tutorial. Catal. Today 309, 263–268 (2018).

    CAS  Article  Google Scholar 

  187. 187.

    Zou, X. & Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015).

    CAS  Article  Google Scholar 

  188. 188.

    Lukatskaya, M. R. et al. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11, 2876–2883 (2018).

    CAS  Article  Google Scholar 

  189. 189.

    Wu, X. et al. A four-electron sulfur electrode hosting a Cu2+/Cu+ redox charge carrier. Angew. Chem. Int. Ed. 131, 12770–12775 (2019).

    Article  Google Scholar 

  190. 190.

    Wang, X., Chandrabose, R. S., Jian, Z., Xing, Z. & Ji, X. A 1.8 V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163, A1853–A1858 (2016).

    CAS  Article  Google Scholar 

  191. 191.

    Palacín, M. R. & de Guibert, A. Why do batteries fail? Science 351, 1253292 (2016).

    Article  CAS  Google Scholar 

  192. 192.

    Han, X. et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 1, 100005 (2019).

    Article  Google Scholar 

  193. 193.

    Dong, X. et al. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2, e1501038 (2016).

    Article  Google Scholar 

  194. 194.

    Mo, F. et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 12, 706–715 (2019).

    CAS  Article  Google Scholar 

  195. 195.

    Tang, Y. et al. Synthesis of peanut-like hierarchical manganese carbonate microcrystals via magnetically driven self-assembly for high performance asymmetric supercapacitors. J. Mater. Chem. A 5, 3923–3931 (2017).

    CAS  Article  Google Scholar 

  196. 196.

    Shan, X. et al. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019).

    Article  CAS  Google Scholar 

  197. 197.

    Zhang, X. et al. Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4, 856–860 (2016).

    CAS  Article  Google Scholar 

  198. 198.

    Charles, D. S. et al. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage. Nat. Commun. 8, 15520 (2017).

    CAS  Article  Google Scholar 

  199. 199.

    Zhang, L., Chen, L., Zhou, X. & Liu, Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015).

    Article  CAS  Google Scholar 

  200. 200.

    Ma, L. et al. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 29, 1906142 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China under Project 2019YFA0705104 and a grant from City University of Hong Kong (9667165).

Author information

Affiliations

Authors

Contributions

All authors equally contributed to the manuscript.

Corresponding authors

Correspondence to Xiulei Ji or Chunyi Zhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Mo, F., Ji, X. et al. Non-metallic charge carriers for aqueous batteries. Nat Rev Mater (2020). https://doi.org/10.1038/s41578-020-00241-4

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing