Abstract
Cellulose nanocrystals (CNCs) are bio-based, high aspect ratio nanoparticles that are industrially produced in tonne-per-day quantities across the globe. CNCs can be used to improve the performance of a large range of materials such as emulsions and foams, biomedical devices, electronics and sensors, high-viscosity fluids and polymer composites. Their ability to do so, however, is highly dependent on the way they are produced. In this Review, we assess the properties of CNCs from more than 30 production routes and 40 biomass sources to help CNC users select the right material for their desired application. CNCs produced by various methods are evaluated against three target properties: colloidal stability, size and crystallinity index. Alternative production routes and/or starting materials are suggested to overcome challenges associated with CNC use, including increasing compatibility with hydrophobic materials, resistance to thermal degradation and colloidal stability in high ionic strength environments. Additionally, we discuss industrial production of CNCs, as well as considerations for increasing the yield and reducing the environmental impact of these processes. Overall, this Review guides researchers and CNC users towards a deeper understanding of how production processes can be modified to control CNC properties and subsequently tailor their performance.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Nickerson, R. F. & Habrle, J. A. Cellulose intercrystalline structure. Ind. Eng. Chem. 39, 1507–1512 (1947).
Rånby, B. G., Banderet, A. & Sillén, L. G. Aqueous colloidal solutions of cellulose micelles. Acta Chem. Scand. 3, 649–650 (1949).
Rånby, B. G. The colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158–164 (1951).
Mukherjee, S. M. & Woods, H. J. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim. Biophys. Acta 10, 499–511 (1953).
International Organization for Standardization. Nanotechnologies — standard terms and their definition for cellulose nanomaterial ISO/TS 20477 (IOS, 2017).
Tashiro, K. & Kobayashi, M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32, 1516–1526 (1991).
Viet, D., Beck-Candanedo, S. & Gray, D. G. Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14, 109–113 (2007).
Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. & Gray, D. G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14, 170–172 (1992).
Roman, M. Toxicity of cellulose nanocrystals: a review. Ind. Biotechnol. 11, 25–33 (2015).
Reid, M. S., Villalobos, M. & Cranston, E. D. Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33, 1583–1598 (2017).
Miller, J. Nanocellulose: Producers, Products, and Applications (TAPPI, 2017).
Research and Markets. The global market for nanocellulose. Research and Markets https://www.researchandmarkets.com/reports/4827614/the-global-market-for-nanocellulose?utm_code=bcb85m&utm_medium=BW (2019).
Lu, P. & Hsieh, Y. L. O. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr. Polym. 82, 329–336 (2010).
Kedzior, S. A., Zoppe, J. O., Berry, R. M. & Cranston, E. D. Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Curr. Opin. Solid State Mater. Sci. 23, 74–91 (2019).
Cherhal, F., Cousin, F. & Capron, I. Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Langmuir 31, 5596–5602 (2015).
Vanderfleet, O. M. et al. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26, 507–528 (2019).
Teixeira, E. et al. Sugarcane bagasse whiskers: extraction and characterizations. Ind. Crop. Prod. 33, 63–66 (2011).
Bano, S. & Negi, Y. S. Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr. Polym. 157, 1041–1049 (2017).
Melikog˘lu, A. Y., Bilek, S. E. & Cesur, S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr. Polym. 215, 330–337 (2019).
Kontturi, E. et al. Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew. Chem. Int. Ed. 55, 14455–14458 (2016).
Lu, Q. et al. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain. Chem. Eng. 4, 2165–2172 (2016).
Yu, H. et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1, 3938–3944 (2013).
Novo, L. P., Bras, J., García, A., Belgacem, N. & Curvelo, A. A. S. Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain. Chem. Eng. 3, 2839–2846 (2015).
Chen, L. et al. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green. Chem. 18, 3835–3843 (2016).
Camarero Espinosa, S. et al. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14, 1223–1230 (2013).
Sadeghifar, H., Filpponen, I., Clarke, S. P., Brougham, D. F. & Argyropoulos, D. S. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J. Mater. Sci. 46, 7344–7355 (2011).
Li, D., Henschen, J. & Ek, M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem. 19, 5564–5567 (2017).
Boujemaoui, A., Mongkhontreerat, S., Malmström, E. & Carlmark, A. Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr. Polym. 115, 457–464 (2015).
Yu, H.-Y., Zhang, D.-Z., Lu, F.-F. & Yao, J. New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain. Chem. Eng. 4, 2632–2643 (2016).
Zhou, Y., Saito, T., Bergström, L. & Isogai, A. Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules 19, 633–639 (2018).
Leung, A. C. W. et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7, 302–305 (2011).
Filson, P. B., Dawson-Andoh, B. E. & Schwegler-Berry, D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11, 1808–1814 (2009).
Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D. & Dufresne, A. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17, 1147–1158 (2010).
Sacui, I. A. et al. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces 6, 6127–6138 (2014).
Abushammala, H., Krossing, I. & Laborie, M. P. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 134, 609–616 (2015).
Man, Z. et al. Preparation of cellulose nanocrystals using an ionic liquid. J. Polym. Environ. 19, 726–731 (2011).
Miao, J., Yu, Y., Jiang, Z. & Zhang, L. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23, 1209–1219 (2016).
Sirviö, J. A., Visanko, M. & Liimatainen, H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17, 3025–3032 (2016).
Jiang, J. et al. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. ACS Sustain. Chem. Eng. 8, 7182–7191 (2020).
Trache, D., Hussin, M. H., Haafiz, M. K. M. & Thakur, V. K. Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9, 1763–1786 (2017).
Van De Ven, T. G. M. & Sheikhi, A. Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8, 15101–15114 (2016).
Lin, K.-H. et al. An analysis on the electrophoretic mobility of cellulose nanocrystals as thin cylinders: relaxation and end effect. RSC Adv. 9, 34032–34038 (2019).
Bhattacharjee, S. DLS and zeta potential - what they are and what they are not? J. Control. Rel. 235, 337–351 (2016).
Foster, E. J. et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 47, 2609–2679 (2018).
Eichhorn, S. J. et al. Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1–33 (2010).
Phan-Xuan, T. et al. Aggregation behavior of aqueous cellulose nanocrystals: the effect of inorganic salts. Cellulose 23, 3653–3663 (2016).
Fraschini, C. et al. Critical discussion of light scattering and microscopy techniques for CNC particle sizing. Nord. Pulp Pap. Res. J. 29, 31–40 (2014).
Boluk, Y. & Danumah, C. Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J. Nanopart. Res. 16, 2174 (2014).
Ogawa, Y. & Putaux, J. L. Transmission electron microscopy of cellulose. Part 2: technical and practical aspects. Cellulose 26, 17–34 (2019).
Sèbe, G., Ham-Pichavant, F., Ibarboure, E., Koffi, A. L. C. & Tingaut, P. Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13, 570–578 (2012).
Yue, Y. et al. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173–1187 (2012).
Agarwal, U. P., Ralph, S. A., Reiner, R. S. & Baez, C. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23, 125–144 (2016).
Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. & Johnson, D. K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 1–10 (2010).
Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959).
Xiang, Q., Lee, Y. Y., Pettersson, P. O. & Torget, R. W. in Applied Biochemistry and Biotechnology (eds Davison, B. H., Lee, J. W., Finkelstein, M. & McMillan, J. D.) 505–514 (Humana Press, 2003).
Battista, O. A., Coppick, S., Howsmon, J. A., Morehead, F. F. & Sisson, W. A. Level-off degree of polymerization. Ind. Eng. Chem. 48, 333–335 (1956).
Vanderfleet, O. M., Osorio, D. A. & Cranston, E. D. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Phil. Trans. R. Soc. A 376, 1–7 (2018).
Henschen, J., Li, D. & Ek, M. Preparation of cellulose nanomaterials via cellulose oxalates. Carbohydr. Polym. 213, 208–216 (2019).
Bian, H., Chen, L., Dai, H. & Zhu, J. Y. Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose 24, 4205–4216 (2017).
Du, H. et al. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23, 2389–2407 (2016).
Castro-Guerrero, C. F. & Gray, D. G. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21, 2567–2577 (2014).
Montanari, S., Roumani, M., Heux, L. & Vignon, M. R. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38, 1665–1671 (2005).
Habibi, Y., Chanzy, H. & Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13, 679–687 (2006).
Araki, J., Wada, M. & Kuga, S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17, 21–27 (2001).
Salajková, M., Berglund, L. A. & Zhou, Q. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J. Mater. Chem. 22, 19798–19805 (2012).
Leguy, J. et al. Periodate oxidation followed by NaBH4 reduction converts microfibrillated cellulose into sterically stabilized neutral cellulose nanocrystal suspensions. Langmuir 34, 11066–11075 (2018).
Nelson, K. & Retsina, T. Innovative nanocellulose process breaks the cost barrier. TAPPI J. 13, 19–23 (2014).
Wu, B., Wang, S., Tang, J. & Lin, N. in Advanced Functional Materials from Nanopolysaccharides (eds Lin, N., Tang, J., Dufresne, A. & Tam, M. K. C.) 389–409 (Springer, 2019).
Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43, 1519–1542 (2014).
Tan, X. Y., Abd Hamid, S. B. & Lai, C. W. Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81, 584–591 (2015).
Filson, P. B. & Dawson-Andoh, B. E. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol. 100, 2259–2264 (2009).
Dong, S., Bortner, M. J. & Roman, M. Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind. Crop. Prod. 93, 1–12 (2016).
Bondeson, D., Mathew, A. & Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006).
Dong, X. M., Revol, J.-F. & Gray, D. G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5, 19–32 (1998).
Beck-Candanedo, S., Roman, M. & Gray, D. G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048–1054 (2005).
Hamad, W. Y. & Hu, T. Q. Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can. J. Chem. Eng. 88, 392–402 (2010).
Kargarzadeh, H. et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855–866 (2012).
Wang, Q., Zhao, X. & Zhu, J. Y. Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind. Eng. Chem. Res. 53, 11007–11014 (2014).
Bouchard, J., Méthot, M., Fraschini, C. & Beck, S. Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23, 3555–3567 (2016).
Chen, L. et al. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22, 1753–1762 (2015).
Novo, L. P. et al. A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Ind. Crop. Prod. 93, 88–95 (2016).
Hemmati, F., Jafari, S. M., Kashaninejad, M. & Barani Motlagh, M. Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. Int. J. Biol. Macromol. 120, 1216–1224 (2018).
Prasad Reddy, J. & Rhim, J. W. Isolation and characterization of cellulose nanocrystals from garlic skin. Mater. Lett. 129, 20–23 (2014).
Santos, R. M. dos et al. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Crop. Prod. 50, 707–714 (2013).
Jiang, F. & Hsieh, Y. L. O. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 122, 60–68 (2015).
Johar, N., Ahmad, I. & Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crop. Prod. 37, 93–99 (2012).
Schütz, C. et al. Effect of source on the properties and behavior of cellulose nanocrystal suspensions. ACS Sustain. Chem. Eng. 6, 8317–8324 (2018).
Nishiyama, Y. et al. Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4, 1013–1017 (2003).
Cudjoe, E. et al. Miscanthus giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohydr. Polym. 155, 230–241 (2017).
Cao, X., Ding, B., Yu, J. & Al-Deyab, S. S. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr. Polym. 90, 1075–1080 (2012).
Brito, B. S. L., Pereira, F. V., Putaux, J. L. & Jean, B. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19, 1527–1536 (2012).
Yoshiharu, N., Shigenori, K., Masahisa, W. & Takeshi, O. Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30, 6395–6397 (1997).
El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C. & Barakat, A. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int. J. Biol. Macromol. 106, 681–691 (2018).
Sugiyama, J., Vuong, R. & Chanzy, H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168–4175 (1991).
Chanzy, H. & Henrissat, B. Electron microscopy study of the enzymic hydrolysis of Valonia cellulose. Carbohydr. Polym. 3, 161–173 (1983).
Hirai, A., Inui, O., Horii, F. & Tsuji, M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25, 497–502 (2009).
Pääkkönen, T. et al. Sustainable high yield route to cellulose nanocrystals from bacterial cellulose. ACS Sustainable Chem. Eng. 7, 14384–14388 (2019).
Cranston, E. D. in TAPPI International Conference on Nanotechnology for Renewable Materials (2019).
Ngo, T., Danumah, C. & Ahvazi, B. in Nanocellulose and Sustainability (ed. Lee, K. Y.) 269–287 (CRC, 2018).
The University of Maine. The Process Development Center. UMaine https://umaine.edu/pdc/nanocellulose/ (2020).
Beck, S., Bouchard, J. & Berry, R. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13, 1486–1494 (2012).
Lockhart, J. in TAPPI International Conference on Nanotechnology for Renewable Materials (2019).
Andrews, M. P. & Morse, T. Method for producing functionalized nanocrystalline cellulose and functionalized nanocrystalline cellulose thereby produced. US Patent 20170260298A1 (2017).
McAlpine, S. & Nakoneshny, J. Production of crystalline cellulose. US Patent 20190040158A1 (2019).
Standards Council of Canada. Cellulose nanomaterials — test methods for characterization CAN/CSA-Z5100-17 (CSA Group, 2017).
Standards Council of Canada. Cellulose nanomaterials — blank detail specification, CAN/CSA-Z5200-17 (CSA Group, 2017).
International Organization for Standardization. Nanotechnologies — characterization of cellulose nanocrystals ISO/TR 19716 (ISO, 2016).
International Organization for Standardization. Pulp — determination of cellulose nanocrystal sulfur and sulfate half-ester content ISO 21400 (ISO, 2018).
International Organization for Standardization. Crystallinity of cellulose nanomaterials by powder X-ray diffraction, ISO/TC 229 – PWI 23361 (in the press).
International Organization for Standardization. Nanotechnologies — health and safety practices in occupational settings relevant to nanotechnologies ISO/TR 12885 (ISO, 2018).
Standards Council of Canada. Nanotechnologies — exposure control program for engineered nanomaterials in occupational settings CAN/CSA Z12885-12 (CSA Group, 2017).
Lin, N. & Dufresne, A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6, 5384–5393 (2014).
Heggset, E. B., Chinga-Carrasco, G. & Syverud, K. Temperature stability of nanocellulose dispersions. Carbohydr. Polym. 157, 114–121 (2017).
Molnes, S. N., Paso, K. G., Strand, S. & Syverud, K. The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose 24, 4479–4491 (2017).
Zhong, L., Fu, S., Peng, X., Zhan, H. & Sun, R. Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr. Polym. 90, 644–649 (2012).
Shafiei-Sabet, S., Hamad, W. Y. & Hatzikiriakos, S. G. Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21, 3347–3359 (2014).
De Figueirêdo, M. C. B. et al. Life cycle assessment of cellulose nanowhiskers. J. Clean. Prod. 35, 130–139 (2012).
Leão, R. M., Miléo, P. C., Maia, J. M. L. L. & Luz, S. M. Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse. Carbohydr. Polym. 175, 518–529 (2017).
Bajpai, P. Green Chemistry and Sustainability in Pulp and Paper Industry (Springer, 2015).
Li, Q., McGinnis, S., Sydnor, C., Wong, A. & Renneckar, S. Nanocellulose life cycle assessment. ACS Sustain. Chem. Eng. 1, 919–928 (2013).
Wang, R., Chen, L., Zhu, J. Y. & Yang, R. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3, 328–335 (2017).
Bian, H., Chen, L., Dai, H. & Zhu, J. Y. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr. Polym. 167, 167–176 (2017).
Park, N.-M., Choi, S., Oh, J. E. & Youn Hwang, D. Facile extraction of cellulose nanocrystals. Carbohydr. Polym. 223, 115114 (2019).
Pääkkönen, T. et al. From vapour to gas: optimising cellulose degradation with gaseous HCl. React. Chem. Eng. 3, 312–318 (2018).
Guo, J., Guo, X., Wang, S. & Yin, Y. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydr. Polym. 135, 248–255 (2016).
Jakubek, Z. J. et al. Characterization challenges for a cellulose nanocrystal reference material: dispersion and particle size distributions. J. Nanopart. Res. 20, 98 (2018).
Brinkmann, A. et al. Correlating cellulose nanocrystal particle size and surface area. Langmuir 32, 6105–6114 (2016).
Elazzouzi-Hafraoui, S. et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9, 57–65 (2008).
Garcia de Rodriguez, N. L., Thielemans, W. & Dufresne, A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13, 261–270 (2006).
Beck-Candanedo, S., Roman, M. & Gray, D. Effect of conditions on the properties behavior of wood cellulose nanocrystals suspensions. Biomacromolecules 6, 1048–1054 (2005).
Wu, Q. et al. Rheological behavior of cellulose nanocrystal suspension: Influence of concentration and aspect ratio. J. Appl. Polym. Sci. 131, 40525 (2014).
Frka-Petesic, B., Jean, B. & Heux, L. First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. EPL 107, 28006 (2014).
Sugiyama, J., Chanzy, H. & Maret, G. Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25, 4232–4234 (1992).
Revol, J.-F. et al. Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq. Cryst. 16, 127–134 (1994).
Frka-Petesic, B., Sugiyama, J., Kimura, S., Chanzy, H. & Maret, G. Negative diamagnetic anisotropy and birefringence of cellulose nanocrystals. Macromolecules 48, 8844–8857 (2015).
De France, K. J., Yager, K. G., Hoare, T. & Cranston, E. D. Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field. Langmuir 32, 7564–7571 (2016).
Frka-Petesic, B., Guidetti, G., Kamita, G. & Vignolini, S. Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv. Mater. 29, 1701469 (2017).
Flauzino Neto, W. P. et al. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr. Polym. 153, 143–152 (2016).
Mariano, M., Chirat, C., El Kissi, N. & Dufresne, A. Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate-co-terephthalate). J. Polym. Sci. Part B Polym. Phys. 54, 2284–2297 (2016).
Rusli, R., Shanmuganathan, K., Rowan, S. J., Weder, C. & Eichhorn, S. J. Stress transfer in cellulose nanowhisker composites - Influence of whisker aspect ratio and surface charge. Biomacromolecules 12, 1363–1369 (2011).
Kalashnikova, I., Bizot, H., Bertoncini, P., Cathala, B. & Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9, 952–959 (2013).
Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 13, 267–275 (2012).
Grønli, M., Antal, M. J. & Várhegyi, G. A round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind. Eng. Chem. Res. 38, 2238–2244 (1999).
Roman, M. & Winter, W. T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5, 1671–1677 (2004).
Scheirs, J., Camino, G. & Tumiatti, W. Overview of water evolution during the thermal degradation of cellulose. Eur. Polym. J. 37, 933–942 (2001).
Beck, S. & Bouchard, J. Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord. Pulp Pap. Res. J. 29, 6–14 (2014).
Kaur, B., Gur, I. S. & Bhatnagar, H. L. Thermal degradation studies of cellulose phosphates and cellulose thiophosphates. Angew. Makromol. Chem. 147, 157–183 (1987).
Fiss, B. G., Hatherly, L., Stein, R. S., Frišcˇìc´, T. & Moores, A. Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain. Chem. Eng. 7, 7951–7959 (2019).
Matsuoka, S., Kawamoto, H. & Saka, S. What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J. Anal. Appl. Pyrolysis 106, 138–146 (2014).
Heise, K. et al. Chemical modification of cellulose nanocrystal reducing end-groups. Angew. Chem. Int. Ed. https://doi.org/10.1002/ange.202002433 (2020).
Spinella, S. et al. Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain. Chem. Eng. 4, 1538–1550 (2016).
Niinivaara, E., Faustini, M., Tammelin, T. & Kontturi, E. Water vapor uptake of ultrathin films of biologically derived nanocrystals: quantitative assessment with quartz crystal microbalance and spectroscopic ellipsometry. Langmuir 31, 12170–12176 (2015).
Lindman, B., Karlström, G. & Stigsson, L. On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76–81 (2010).
Medronho, B., Romano, A., Miguel, M. G., Stigsson, L. & Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19, 581–587 (2012).
Lindh, E. L., Terenzi, C., Salmén, L. & Furó, I. Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. Phys. Chem. Chem. Phys. 19, 4360–4369 (2017).
Lemke, C. H., Dong, R. Y., Michal, C. A. & Hamad, W. Y. New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19, 1619–1629 (2012).
Dong, X. M. & Gray, D. G. Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13, 2404–2409 (1997).
Chen, Y. et al. Solution-phase EPR studies of single-walled carbon nanotubes. Chem. Phys. Lett. 299, 532–535 (1999).
Reid, M. S., Villalobos, M. & Cranston, E. D. Cellulose nanocrystal interactions probed by thin film swelling to predict dispersibility. Nanoscale 8, 12247–12257 (2016).
van der Berg, O., Capadona, J. R. & Weder, C. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8, 1353–1357 (2007).
Mazeau, K. On the external morphology of native cellulose microfibrils. Carbohydr. Polym. 84, 524–532 (2011).
Kedzior, S. A. et al. Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting. ACS Macro Lett. 7, 990–996 (2018).
Hatton, F. L., Kedzior, S. A., Cranston, E. D. & Carlmark, A. Grafting-from cellulose nanocrystals via photoinduced Cu-mediated reversible-deactivation radical polymerization. Carbohydr. Polym. 157, 1033–1040 (2017).
Braun, B. & Dorgan, J. R. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10, 334–341 (2009).
Ojala, J., Sirviö, J. A. & Liimatainen, H. Preparation of cellulose nanocrystals from lignin-rich reject material for oil emulsification in an aqueous environment. Cellulose 25, 293–304 (2018).
Wei, L., Agarwal, U. P., Matuana, L., Sabo, R. C. & Stark, N. M. Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer 135, 305–313 (2018).
Yang, X. & Cranston, E. D. Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 6016–6025 (2014).
Osorio, D. A., Seifried, B., Moquin, P., Grandfield, K. & Cranston, E. D. Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J. Mater. Sci. 53, 9842–9860 (2018).
Sun, B., Hou, Q., Liu, Z. & Ni, Y. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22, 1135–1146 (2015).
Eyley, S. S. & Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 6, 7764–7779 (2014).
Zoppe, J. O. et al. Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media. Biomacromolecules 17, 1404–1413 (2016).
Drogat, N. et al. Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J. Nanopart. Res. 13, 1557–1562 (2011).
Kaushik, M. & Moores, A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 18, 622–637 (2016).
Tang, J., Sisler, J., Grishkewich, N. & Tam, K. C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494, 397–409 (2017).
Richardson, J. J. et al. Continuous metal-organic framework biomineralization on cellulose nanocrystals: extrusion of functional composite filaments. ACS Sustain. Chem. Eng. 7, 6287–6294 (2019).
Azzam, F., Heux, L., Jean, B. & Putaux, J.-L. Preparation by grafting onto, characterization and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11, 3652–3659 (2010).
Kloser, E. & Gray, D. G. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26, 13450–13456 (2010).
Yang, H., Chen, D. & van de Ven, T. G. M. Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22, 1743–1752 (2015).
Yang, H., Tejado, A., Alam, N., Antal, M. & Van De Ven, T. G. M. Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28, 7834–7842 (2012).
Yang, H., Alam, M. N. & van de Ven, T. G. M. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20, 1865–1875 (2013).
Campano, C., Lopez-Exposito, P., Blanco, A., Negro, C. & van de Ven, T. G. M. Hairy cationic nanocrystalline cellulose as a novel flocculant of clay. J. Colloid Interface Sci. 545, 153–161 (2019).
Lopez-Exposito, P., Campano, C., van de Ven, T. G. M., Negro, C. & Blanco, A. Microalgae harvesting with the novel flocculant hairy cationic nanocrystalline cellulose. Colloids Surf. B 178, 329–336 (2019).
Jorfi, M. & Foster, E. J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, 41719 (2015).
Osorio, D. A. et al. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater. 87, 152–165 (2019).
De France, K. J. et al. Tissue response and biodistribution of injectable cellulose nanocrystal composite hydrogels. ACS Biomater. Sci. Eng. 5, 2235–2246 (2019).
Yanamala, N. et al. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng. 2, 1691–1698 (2014).
Pelegrini, B. L. et al. Cellulose nanocrystals as a sustainable raw material: Cytotoxicity and applications on healthcare technology. Macromol. Mater. Eng. 304, 1900092 (2019).
Kovacs, T. et al. An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4, 255–270 (2010).
Hanif, Z., Ahmed, F. R., Shin, S. W., Kim, Y. K. & Um, S. H. Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma. Colloids Surf. B 119, 162–165 (2014).
Hosseinidoust, Z., Alam, M. N., Sim, G., Tufenkji, N. & Van De Ven, T. G. M. Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale 7, 16647–16657 (2015).
Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010).
Lagerwall, J. P. F. et al. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6, e80 (2014).
Revol, J.-F., Godbout, D. L. & Gray, D. G. Solidified liquid crystals of cellulose with optically variable properties. US Patent 5629055A (1994).
Beck, S., Bouchard, J. & Berry, R. Iridescent solid nanocrystalline cellulose films incorporating patterns and method for their production. US Patent 20100151159A1 (2009).
Araki, J., Wada, M., Kuga, S. & Okano, T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A 142, 75–82 (1998).
Liu, Y. et al. A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr. Polym. 110, 415–422 (2014).
Vasconcelos, N. F. et al. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydr. Polym. 155, 425–431 (2017).
Cheng, M., Qin, Z., Chen, Y., Liu, J. & Ren, Z. Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose 24, 3243–3254 (2017).
Lalia, B. S., Samad, Y. A. & Hashaikeh, R. Nanocrystalline-cellulose-reinforced poly(vinylidenefluoride-co-hexafluoropropylene) nanocomposite films as a separator for lithium ion batteries. J. Appl. Polym. Sci. 126, E442–E448 (2012).
Li, R. et al. Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr. Polym. 76, 94–99 (2009).
Shaheen, T. I. & Emam, H. E. Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. Int. J. Biol. Macromol. 107, 1599–1606 (2018).
Le Normand, M., Moriana, R. & Ek, M. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydr. Polym. 111, 979–987 (2014).
Morais, J. P. S. et al. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91, 229–235 (2013).
Wang, Z., Yao, Z. J., Zhou, J. & Zhang, Y. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr. Polym. 157, 945–952 (2017).
Edgar, C. D. & Gray, D. G. Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10, 299–306 (2003).
Nascimento, S. A. & Rezende, C. A. Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohydr. Polym. 180, 38–45 (2018).
Cao, X., Dong, H. & Li, C. M. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8, 899–904 (2007).
Cao, X., Chen, Y., Chang, P. R., Stumborg, M. & Huneault, M. A. Green composites reinforced with hemp nanocrystals in plasticized starch. J. Appl. Polym. Sci. 109, 3804–3810 (2008).
Luzi, F. et al. Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Ind. Crop. Prod. 56, 175–186 (2014).
Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym. 88, 772–779 (2012).
Habibi, Y. et al. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18, 5002–5010 (2008).
César, N. R., Pereira-da-Silva, M. A., Botaro, V. R. & de Menezes, A. J. Cellulose nanocrystals from natural fiber of the macrophyte Typha domingensis: extraction and characterization. Cellulose 22, 449–460 (2015).
Fortunati, E. et al. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr. Polym. 149, 357–368 (2016).
Mueller, S., Weder, C. & Foster, E. J. Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv. 4, 907–915 (2014).
Rosa, M. F. et al. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83–92 (2010).
Collazo-Bigliardi, S., Ortega-Toro, R. & Chiralt Boix, A. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr. Polym. 191, 205–215 (2018).
Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O. & Pasquini, D. Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind. Crop. Prod. 44, 427–436 (2013).
Kallel, F. et al. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Crop. Prod. 87, 287–296 (2016).
Henrique, M. A., Silvério, H. A., Flauzino Neto, W. P. & Pasquini, D. Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J. Environ. Manage. 121, 202–209 (2013).
Rhim, J. W., Reddy, J. P. & Luo, X. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22, 407–420 (2015).
Wijaya, C. J. et al. Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydr. Polym. 175, 370–376 (2017).
Chen, Y., Liu, C., Chang, P. R., Cao, X. & Anderson, D. P. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr. Polym. 76, 607–615 (2009).
Dai, H., Ou, S., Huang, Y. & Huang, H. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25, 1743–1756 (2018).
Marett, J., Aning, A. & Foster, E. J. The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis. Ind. Crop. Prod. 109, 869–874 (2017).
Chen, D., Lawton, D., Thompson, M. R. & Liu, Q. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr. Polym. 90, 709–716 (2012).
Lu, P. & Hsieh, Y. L. O. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr. Polym. 87, 564–573 (2012).
Flauzino Neto, W. P., Silvério, H. A., Dantas, N. O. & Pasquini, D. Extraction and characterization of cellulose nanocrystals from agro-industrial residue - soy hulls. Ind. Crop. Prod. 42, 480–488 (2013).
Favier, V., Chanzy, H. & Cavaillé, J. Y. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365–6367 (1995).
Retsina, T. & Pylkkanen, V. Method for the production of fermentable sugars and cellulose from lignocellulosic material. US Patent 8030039B1 (2011).
Retsina, T., Pylkkanen, V. & van Heiningen, A. Method for vapor phase pulping with alcohol, sulfur dioxide and ammonia. US Patent 8038842B2 (2011).
Retsina, T., Pylkkanen, V. & van Heiningen, A. Method for vapor phase pulping with alcohol and sulfur dioxide. US Patent 20120305207A1 (2012).
Retsina, T. & Pylkkanen, V. Separation of lignin from hydrolyzate.US Patent 8864941B2 (2013).
Choi, Y. & Simonsen, J. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J. Nanosci. Nanotechnol. 6, 633–639 (2006).
Heath, L. & Thielemans, W. Cellulose nanowhisker aerogels. Green. Chem. 12, 1448–1453 (2010).
Liew, S. Y., Thielemans, W. & Walsh, D. A. Electrochemical capacitance of nanocomposite polypyrrole/cellulose films. J. Phys. Chem. C. 114, 17926–17933 (2010).
Jackson, J. K. et al. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int. J. Nanomed. 6, 321–330 (2011).
Kalashnikova, I., Bizot, H., Cathala, B. & Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471–7479 (2011).
Cao, Y., Weiss, W. J., Youngblood, J., Moon, R. & Zavattieri, P. in Production and Applications of Cellulose Nanomaterial (eds Postek, M. T., Moon, R. J., Rudie, A. W. & Bilodeau, M. A.) 135–136 (TAPPI, 2013).
Acknowledgements
The authors thank E. Niinivaara and G. Delepierre for drawing chemical structures. E.D.C. is grateful for financial support and recognition through the Early Researcher awards from the Ontario Ministry of Research and Innovation, the Canada Research Chairs programme and the University of British Columbia’s President’s Excellence Chair initiative. McMaster University (Faculty of Engineering), the University of British Columbia (Faculty of Applied Science and Faculty of Forestry) and the BioProducts Institute (http://bpi.ubc.ca) are gratefully acknowledged for support. This work was funded through Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2017-05252 to E.D.C. and an NSERC Alexander Graham Bell Canada Graduate Scholarship to O.M.V.
Author information
Authors and Affiliations
Contributions
O.M.V. and E.D.C developed the outline and wrote the manuscript in collaboration. O.M.V. compiled all data in tables. O.M.V. and E.D.C revised the manuscript on the basis of reviewer and editorial suggestions.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Vanderfleet, O.M., Cranston, E.D. Production routes to tailor the performance of cellulose nanocrystals. Nat Rev Mater 6, 124–144 (2021). https://doi.org/10.1038/s41578-020-00239-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-020-00239-y
This article is cited by
-
Harvesting nature’s treasure from agricultural biomass: Spatholobus parviflorus unveiled as a source of nano-scaled crystalline cellulose
Biomass Conversion and Biorefinery (2024)
-
Transparent maltitol- cellulose nanocrystal film for high performance barrier
Cellulose (2024)
-
Extraction and Characterization of Cellulose Nanocrystals (CNCs) from Jute Fibers and Other By-products Towards a Circular Economy Approach
Materials Circular Economy (2024)
-
Cellulose Nanocrystals and Nanofiber from Sub-Wear out Brazilian Semiarid Source for Biological Applications
Journal of Cluster Science (2024)
-
Engineering nanocellulose percolation network for flexible strain sensor
Cellulose (2024)