Abstract
The development of π-conjugated polymers has provided a gateway to a variety of new functional organic materials reminiscent of inorganic semiconductors. Nanoparticles based on π-conjugated polymers are promising for a broad range of emerging applications. In this Review, we provide an overview of the methods used to synthesize π-conjugated-polymer nanoparticles, with a focus on recently developed self-assembly and microfluidic routes. We also illustrate the use of the resulting nanoparticles in applications such as electronics and optoelectronics, biomedical imaging and therapy, photocatalysis and sensing. Finally, we discuss current challenges and possible directions for future research on this promising class of nanomaterials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977).
Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).
Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).
Shirakawa, H. The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2574–2580 (2001).
MacDiarmid, A. G. “Synthetic metals”: a novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2581–2590 (2001).
Kim, F. S., Ren, G. & Jenekhe, S. A. One-dimensional nanostructures of π-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 23, 682–732 (2011).
Ding, X., Wang, A., Tong, W. & Xu, F. J. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria. Small 15, 1900999 (2019).
Wang, Y., Feng, L. & Wang, S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Adv. Funct. Mater. 29, 1806818 (2019).
Elsabahy, M. & Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012).
Doncom, K. E. B., Blackman, L. D., Wright, D. B., Gibson, M. I. & O’Reilly, R. K. Dispersity effects in polymer self-assemblies: a matter of hierarchical control. Chem. Soc. Rev. 46, 4119–4134 (2017).
Persson, N. E., Chu, P.-H., McBride, M., Grover, M. & Reichmanis, E. Nucleation, growth, and alignment of poly(3-hexylthiophene) nanofibers for high-performance OFETs. Acc. Chem. Res. 50, 932–942 (2017). This study reports a new process for the preparation of highly ordered crystalline conjugated nanofibres using a high-throughput method.
Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).
Geoghegan, M. & Hadziioannou, G. Polymer Electronics (Oxford Univ. Press, 2013).
Mazzio, K. A. & Luscombe, C. K. The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2015).
Geffroy, B., le Roy, P. & Prat, C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006).
Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).
Son, S. Y. et al. High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. J. Am. Chem. Soc. 138, 8096–8103 (2016).
Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).
Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–206 (1997).
Beaujuge, P. M. & Fréchet, J. M. J. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133, 20009–20029 (2011).
Guo, X., Baumgarten, M. & Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38, 1832–1908 (2013).
Roncali, J. Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem. Rev. 92, 711–738 (1992).
Toshima, N. & Hara, S. Direct synthesis of conducting polymers from simple monomers. Prog. Polym. Sci. 20, 155–183 (1995).
Blackstone, V., Lough, A. J., Murray, M. & Manners, I. Probing the mechanism of the PCl5-initiated living cationic polymerization of the phosphoranimine Cl3P=NSiMe3 using model compound chemistry. J. Am. Chem. Soc. 131, 3658–3667 (2009).
Yokozawa, T. & Yokoyama, A. Chain-growth polycondensation: the living polymerization process in polycondensation. Prog. Polym. Sci. 32, 147–172 (2007).
Yokozawa, T. & Ohta, Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem. Rev. 116, 1950–1968 (2016).
Yokozawa, T. et al. Catalyst-transfer condensation polymerization for precision synthesis of π-conjugated polymers. Pure Appl. Chem. 85, 573–587 (2013).
Loewe, R. S., Ewbank, P. C., Liu, J., Zhai, L. & McCullough, R. D. Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the GRIM method: investigation of the reaction and the origin of regioselectivity. Macromolecules 34, 4324–4333 (2001).
Stefan, M. C., Javier, A. E., Osaka, I. & McCullough, R. D. Grignard metathesis method (GRIM): toward a universal method for the synthesis of conjugated polymers. Macromolecules 42, 30–32 (2009).
Jeffries-EL, M., Sauvé, G. & McCullough, R. D. In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the Grignard metathesis polymerization method. Adv. Mater. 16, 1017–1019 (2004).
Zhang, Y., Tajima, K., Hirota, K. & Hashimoto, K. Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation. J. Am. Chem. Soc. 130, 7812–7813 (2008).
Stefan, M. C., Bhatt, M. P., Sista, P. & Magurudeniya, H. D. Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene). Polym. Chem. 3, 1693–1701 (2012).
Gwyther, J. et al. Dimensional control of block copolymer nanofibers with a π-conjugated core: crystallization-driven solution self-assembly of amphiphilic poly(3-hexylthiophene)-b-poly(2-vinylpyridine). Chem. Eur. J. 19, 9186–9197 (2013).
Cosemans, I. et al. Synthesis of PPV-b-PEG block copolymers via CuAAC conjugation. Eur. Polym. J. 55, 114–122 (2014).
Dou, L., Liu, Y., Hong, Z., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015).
Bronstein, H. et al. Thieno[3,2-b]thiophene–diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133, 3272–3275 (2011).
Muenmart, D. et al. Conjugated polymer nanoparticles by Suzuki–Miyaura cross-coupling reactions in an emulsion at room temperature. Macromolecules 47, 6531–6539 (2014).
Kasai, H. et al. A novel preparation method of organic microcrystals. Jpn J. Appl. Phys. 31, 1132–1134 (1992).
Kurokawa, N., Yoshikawa, H., Hirota, N., Hyodo, K. & Masuhara, H. Size-dependent spectroscopic properties and thermochromic behavior in poly(substituted thiophene) nanoparticles. ChemPhysChem 5, 1609–1615 (2004).
Wu, C., Szymanski, C. & McNeill, J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 22, 2956–2960 (2006).
Yu, J., Rong, Y., Kuo, C.-T., Zhou, X.-H. & Chiu, D. T. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal. Chem. 89, 42–56 (2017).
Szymanski, C. et al. Single molecule nanoparticles of the conjugated polymer MEH–PPV, preparation and characterization by near-field scanning optical microscopy. J. Phys. Chem. B 109, 8543–8546 (2005).
Wu, C., Bull, B., Szymanski, C., Christensen, K. & McNeill, J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2, 2415–2423 (2008).
Wu, C., Szymanski, C., Cain, Z. & McNeill, J. Conjugated polymer dots for multiphoton fluorescence imaging. J. Am. Chem. Soc. 129, 12904–12905 (2007).
Wu, C., Peng, H., Jiang, Y. & McNeill, J. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles. J. Phys. Chem. B 110, 14148–14154 (2006).
Chang, Y.-L., Palacios, R. E., Fan, F.-R. F., Bard, A. J. & Barbara, P. F. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 130, 8906–8907 (2008).
Piwoński, H., Michinobu, T. & Habuchi, S. Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing. Nat. Commun. 8, 15256 (2017).
Yan, C., Sun, Z., Guo, H., Wu, C. & Chen, Y. Thiophene-fused 1,10-phenanthroline toward a far-red emitting conjugated polymer and its polymer dots: synthesis, properties and subcellular imaging. Mater. Chem. Front. 1, 2638–2642 (2017).
Zhang, Y. et al. Light-induced crosslinkable semiconducting polymer dots. Chem. Sci. 6, 2102–2109 (2015).
Chen, J. et al. One-pot fabrication of amphiphilic photoswitchable thiophene-based fluorescent polymer dots. Polym. Chem. 4, 773–781 (2013).
Di Maria, F. et al. Poly(3-hexylthiophene) nanoparticles containing thiophene-S,S-dioxide: tuning of dimensions, optical and redox properties, and charge separation under illumination. ACS Nano 11, 1991–1999 (2017).
Kim, H., Jin, Y.-J., Kim, B. S.-I., Aoki, T. & Kwak, G. Optically active conjugated polymer nanoparticles from chiral solvent annealing and nanoprecipitation. Macromolecules 48, 4754–4757 (2015).
Wu, C. et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 132, 15410–15417 (2010).
Wu, C. et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 50, 3430–3434 (2011).
Creamer, A. et al. Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nat. Commun. 9, 3237 (2018).
Landfester, K. The generation of nanoparticles in miniemulsions. Adv. Mater. 13, 765–768 (2001).
Kietzke, T. et al. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2, 408–412 (2003).
Landfester, K. et al. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater. 14, 651–655 (2002).
Pecher, J. & Mecking, S. Nanoparticles of conjugated polymers. Chem. Rev. 110, 6260–6279 (2010).
Hansen, F. K. & Ugelstad, J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. J. Polym. Sci. Polym. Chem. Ed. 16, 1953–1979 (1978).
Landfester, K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. Int. Ed. 48, 4488–4507 (2009).
Crespy, D. & Landfester, K. Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J. Org. Chem. 6, 1132–1148 (2010).
Hittinger, E., Kokil, A. & Weder, C. Synthesis and characterization of cross-linked conjugated polymer milli-, micro-, and nanoparticles. Angew. Chem. Int. Ed. 43, 1808–1811 (2004).
Parrenin, L., Brochon, C., Hadziioannou, G. & Cloutet, E. Low bandgap semiconducting copolymer nanoparticles by Suzuki cross-coupling polymerization in alcoholic dispersed media. Macromol. Rapid Commun. 36, 1816–1821 (2015).
Behrendt, J. M. et al. Scalable synthesis of multicolour conjugated polymer nanoparticles via Suzuki–Miyaura polymerisation in a miniemulsion and application in bioimaging. React. Funct. Polym. 107, 69–77 (2016).
Baier, M. C., Huber, J. & Mecking, S. Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J. Am. Chem. Soc. 131, 14267–14273 (2009).
Kim, S. et al. Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem. Commun. 46, 1617–1619 (2010).
Ruiz Perez, J. D. & Mecking, S. Anisotropic polymer nanoparticles with tunable emission wavelengths by intersegmental chain packing. Angew. Chem. Int. Ed. 56, 6147–6151 (2017).
Li, H., Wu, X., Xu, B., Tong, H. & Wang, L. Solution-processible hyperbranched conjugated polymer nanoparticles with tunable particle sizes by Suzuki polymerization in miniemulsion. RSC Adv. 3, 8645–8648 (2013).
Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).
Tritschler, U., Pearce, S., Gwyther, J., Whittell, G. R. & Manners, I. 50th Anniversary Perspective: functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 50, 3439–3463 (2017).
Vilgis, T. & Halperin, A. Aggregation of coil-crystalline block copolymers: equilibrium crystallization. Macromolecules 24, 2090–2095 (1991).
He, W.-N. & Xu, J.-T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 37, 1350–1400 (2012).
Massey, J. A. et al. Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J. Am. Chem. Soc. 122, 11577–11584 (2000).
Cao, L., Manners, I. & Winnik, M. A. Influence of the interplay of crystallization and chain stretching on micellar morphologies: solution self-assembly of coil–crystalline poly(isoprene-block-ferrocenylsilane). Macromolecules 35, 8258–8260 (2002).
Ganda, S. & Stenzel, M. H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 101, 101195 (2019).
Qian, J. et al. Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J. Am. Chem. Soc. 136, 4121–4124 (2014).
Li, X. et al. Uniform electroactive fibre-like micelle nanowires for organic electronics. Nat. Commun. 8, 15909 (2017). This is a detailed study on the effect of nanofibre length on device performance.
Kynaston, E. L. et al. Uniform polyselenophene block copolymer fiberlike micelles and block co-micelles via living crystallization-driven self-assembly. Macromolecules 51, 1002–1010 (2018).
Lin, C.-H., Tung, Y.-C., Ruokolainen, J., Mezzenga, R. & Chen, W.-C. Poly[2,7-(9,9-dihexylfluorene)]-block-poly(2-vinylpyridine) rod–coil and coil–rod–coil block copolymers: synthesis, morphology and photophysical properties in methanol/THF mixed solvents. Macromolecules 41, 8759–8769 (2008).
Jin, X. H. et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018). This study reports fibres made through CDSA that display exceptional exciton-diffusion lengths.
Han, L. et al. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes. Nat. Commun. 9, 865 (2018).
Schmelz, J., Karg, M., Hellweg, T. & Schmalz, H. General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano 5, 9523–9534 (2011).
Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).
Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).
He, X. et al. Complex and hierarchical 2D assemblies via crystallization-driven self-assembly of poly(l-lactide) homopolymers with charged termini. J. Am. Chem. Soc. 139, 9221–9228 (2017).
Arno, M. C. et al. Precision epitaxy for aqueous 1D and 2D poly(ε-caprolactone) assemblies. J. Am. Chem. Soc. 139, 16980–16985 (2017).
Rizis, G., van de Ven, T. G. M. & Eisenberg, A. Crystallinity-driven morphological ripening processes for poly(ethylene oxide)-block-polycaprolactone micelles in water. Soft Matter 10, 2825–2835 (2014).
Finnegan, J. R. et al. Extending the scope of “living” crystallization-driven self-assembly: well-defined 1D micelles and block comicelles from crystallizable polycarbonate block copolymers. J. Am. Chem. Soc. 140, 17127–17140 (2018).
Chang, M., Su, Z. & Egap, E. Alignment and charge transport of one-dimensional conjugated polymer nanowires in insulating polymer blends. Macromolecules 49, 9449–9456 (2016).
Kim, Y. et al. Modulating regioregularity of poly(3-hexylthiophene)-based amphiphilic block copolymers to control solution assembly from nanowires to micelles. Chem. Mater. 30, 7912–7921 (2018).
Hayward, D. W. et al. Structure of the crystalline core of fiber-like polythiophene block copolymer micelles. Macromolecules 51, 3097–3106 (2018).
Cui, H. et al. Hydrogen-bonding-directed helical nanofibers in a polythiophene-based all-conjugated diblock copolymer. Soft Matter 14, 5906–5912 (2018).
Jin, S.-M., Kim, I., Lim, J. A., Ahn, H. & Lee, E. Interfacial crystallization-driven assembly of conjugated polymers/quantum dots into coaxial hybrid nanowires: elucidation of conjugated polymer arrangements by electron tomography. Adv. Funct. Mater. 26, 3226–3235 (2016).
Kamps, A. C., Cativo, M. H. M., Fryd, M. & Park, S.-J. Self-assembly of amphiphilic conjugated diblock copolymers into one-dimensional nanoribbons. Macromolecules 47, 161–164 (2014).
Lee, E. et al. Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. J. Am. Chem. Soc. 133, 10390–10393 (2011).
Lee, I.-H. et al. Nanostar and nanonetwork crystals fabricated by in situ nanoparticlization of fully conjugated polythiophene diblock copolymers. J. Am. Chem. Soc. 135, 17695–17698 (2013).
Lee, I. H., Amaladass, P. & Choi, T. L. One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene. Chem. Commun. 50, 7945–7948 (2014).
Lee, I.-H. & Choi, T.-L. Importance of choosing the right polymerization method for in situ preparation of semiconducting nanoparticles from the P3HT block copolymer. Polym. Chem. 7, 7135–7141 (2016).
Lee, I.-H. et al. Preparing DNA-mimicking multi-line nanocaterpillars via in situ nanoparticlisation of fully conjugated polymers. Polym. Chem. 7, 1422–1428 (2016).
Yoon, K.-Y. et al. One-pot preparation of 3D nano- and microaggregates via in situ nanoparticlization of polyacetylene diblock copolymers produced by ROMP. Macromol. Rapid Commun. 36, 1069–1074 (2015).
Shin, S., Yoon, K.-Y. & Choi, T.-L. Simple preparation of various nanostructures via in situ nanoparticlization of polyacetylene blocklike copolymers by one-shot polymerization. Macromolecules 48, 1390–1397 (2015).
Yang, S., Shin, S., Choi, I., Lee, J. & Choi, T.-L. Direct formation of large-area 2D nanosheets from fluorescent semiconducting homopolymer with orthorhombic crystalline orientation. J. Am. Chem. Soc. 139, 3082–3088 (2017).
Boott, C. E., Gwyther, J., Harniman, R. L., Hayward, D. W. & Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem. 9, 785–792 (2017).
Oliver, A. M. et al. Scalable fiber-like micelles and block co-micelles by polymerization-induced crystallization-driven self-assembly. J. Am. Chem. Soc. 140, 18104–18114 (2018).
Canning, S. L., Smith, G. N. & Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 49, 1985–2001 (2016).
Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).
Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).
Qian, J. et al. Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano 7, 3754–3766 (2013).
Qiu, H., Hudson, Z. M., Winnik, M. A. & Manners, I. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015).
Li, X., Gao, Y., Boott, C. E., Winnik, M. A. & Manners, I. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nat. Commun. 6, 8127 (2015).
Patra, S. K. et al. Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J. Am. Chem. Soc. 133, 8842–8845 (2011).
Tao, D. et al. Self-seeding of block copolymers with a π-conjugated oligo(p-phenylenevinylene) segment: a versatile route toward monodisperse fiber-like nanostructures. Macromolecules 51, 2065–2075 (2018).
Shin, S. et al. Living light-induced crystallization-driven self-assembly for rapid preparation of semiconducting nanofibers. J. Am. Chem. Soc. 140, 6088–6094 (2018). This paper presents a new method to control living CDSA using light to produce controlled-length fibres and segmented fibres.
Huang, J. & Kaner, R. B. The intrinsic nanofibrillar morphology of polyaniline. Chem. Commun. 4, 367–376 (2006).
McGrath, N. et al. Conductive, monodisperse polyaniline nanofibers of controlled length using well-defined cylindrical block copolymer micelles as templates. Chem. Eur. J. 19, 13030–13039 (2013).
Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).
Amstad, E. et al. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science 349, 956–960 (2015).
Valencia, P. M., Farokhzad, O. C., Karnik, R. & Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7, 623–629 (2012).
Sadat Majedi, F. et al. Microfluidic synthesis of chitosan-based nanoparticles for fuel cell applications. Chem. Commun. 48, 7744–7746 (2012).
Wang, G. et al. Microfluidic crystal engineering of π-conjugated polymers. ACS Nano 9, 8220–8230 (2015).
Chang, M., Lee, J., Kleinhenz, N., Fu, B. & Reichmanis, E. Photoinduced anisotropic supramolecular assembly and enhanced charge transport of poly(3-hexylthiophene) thin films. Adv. Funct. Mater. 24, 4457–4465 (2014).
Abelha, T. F. et al. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device. Nanoscale 9, 2009–2019 (2017).
Wang, Z. et al. Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Appl. Mater. Interfaces 11, 11167–11176 (2019).
Chang, C. C., Pai, C. L., Chen, W. C. & Jenekhe, S. A. Spin coating of conjugated polymers for electronic and optoelectronic applications. Thin Solid Films 479, 254–260 (2005).
Tuncel, D. π-Conjugated nanostructured materials: preparation, properties and photonic applications. Nanoscale Adv. 1, 19–33 (2019).
Pisula, W., Zorn, M., Chang, J. Y., Müllen, K. & Zentel, R. Liquid crystalline ordering and charge transport in semiconducting materials. Macromol. Rapid Commun. 30, 1179–1202 (2009).
Yao, Y., Zhang, L., Orgiu, E. & Samorì, P. Unconventional nanofabrication for supramolecular electronics. Adv. Mater. 31, 1900599 (2019).
Brinkmann, M., Hartmann, L., Biniek, L., Tremel, K. & Kayunkid, N. Orienting semi-conducting π-conjugated polymers. Macromol. Rapid Commun. 35, 9–26 (2014).
Yu, Z. et al. Self-assembly of well-defined poly(3-hexylthiophene) nanostructures toward the structure–property relationship determination of polymer solar cells. J. Phys. Chem. C 116, 23858–23863 (2012).
Zhang, R. et al. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J. Am. Chem. Soc. 128, 3480–3481 (2006).
Kleinhenz, N. et al. Ordering of poly(3-hexylthiophene) in solutions and films: effects of fiber length and grain boundaries on anisotropy and mobility. Chem. Mater. 28, 3905–3913 (2016).
Crossland, E. J. W. et al. Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films. Adv. Mater. 24, 839–844 (2012).
Shin, M. et al. Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv. Mater. 27, 1255–1261 (2015).
Zhao, J. et al. Trade-off of mechanical and electrical properties in stretchable P3HT/PDMS blending films driven by interpenetrating double networks formation. AIP Adv. 10, 035020 (2020).
Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).
Vezie, M. S. et al. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 15, 746–753 (2016).
Cativo, M. H. M. et al. Air–liquid interfacial self-assembly of conjugated block copolymers into ordered nanowire arrays. ACS Nano 8, 12755–12762 (2014).
Di Nuzzo, D. et al. High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. ACS Nano 11, 12713–12722 (2017).
Yi, Z. et al. Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J. Mater. Chem. C 2, 7247–7255 (2014).
Vohra, V. & Anzai, T. Molecular orientation of conjugated polymer chains in nanostructures and thin films: review of processes and application to optoelectronics. J. Nanomater. 2017, 1–18 (2017).
Kim, C., Gwon, Y. J., Kim, J. & Lee, T. S. Synthesis of fluorescent conjugated polymer nanoparticles and their immobilization on a substrate for white light emission. Polym. Chem. 9, 5671–5679 (2018).
Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).
Herrera, M., Abdul-Moqueet, M. & Mahmoud, M. A. Conjugated polymer nanoparticles having modified band gaps assembled into nano- and micropatterned organic light-emitting diodes. ACS Appl. Nano Mater. 2, 577–585 (2019).
Boisselier, E. & Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009).
Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19, 975–983 (2005).
Black, K. C. L. et al. Radioactive 198 Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8, 4385–4394 (2014).
Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006).
Magrez, A. et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006).
Abrahamse, H. & Hamblin, M. R. New photosensitizers for photodynamic therapy. Biochem. J. 473, 347–364 (2016).
Feng, L. et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42, 6620–6633 (2013).
Jiang, Y. & Pu, K. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 51, 1840–1849 (2018).
Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).
Dasgupta, S., Auth, T. & Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 14, 687–693 (2014).
Zhao, J. & Stenzel, M. H. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym. Chem. 9, 259–272 (2018).
Nagaya, T., Nakamura, Y. A., Choyke, P. L. & Kobayashi, H. Fluorescence-guided surgery. Front. Oncol. 7, 314 (2017).
Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).
Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).
Pansare, V. J., Hejazi, S., Faenza, W. J. & Prud’homme, R. K. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater. 24, 812–827 (2012).
Li, K. et al. Generic strategy of preparing fluorescent conjugated-polymer-loaded poly(dl-lactide-co-glycolide) nanoparticles for targeted cell imaging. Adv. Funct. Mater. 19, 3535–3542 (2009).
Moon, J. H., McDaniel, W., MacLean, P. & Hancock, L. F. Live-cell-permeable poly(p-phenylene ethynylene). Angew. Chem. Int. Ed. 46, 8223–8225 (2007).
Liu, J., Feng, G., Ding, D. & Liu, B. Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells. Polym. Chem. 4, 4326–4334 (2013).
Li, K. & Liu, B. Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging. J. Mater. Chem. 22, 1257–1264 (2012).
Wu, C. et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 50, 3430–3434 (2011).
Ye, F. et al. Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc. 133, 8146–8149 (2011).
Wang, S., Liu, J., Feng, G., Ng, L. G. & Liu, B. NIR-II excitable conjugated polymer dots with bright NIR-I emission for deep in vivo two-photon brain imaging through intact skull. Adv. Funct. Mater. 29, 1808365 (2019). This study reports in vivo deep-tissue imaging with high contrast by using NIR.
Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I. & Radomski, M. W. Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol. 150, 552–558 (2009).
Repenko, T. et al. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat. Commun. 8, 470 (2017).
Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).
Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014).
Vines, J. et al. Contemporary polymer-based nanoparticle systems for photothermal therapy. Polymers 10, 1357 (2018).
Cheng, L., Wang, C., Feng, L., Yang, K. & Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014).
Li, J., Rao, J. & Pu, K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155, 217–235 (2018).
Chitgupi, U., Qin, Y. & Lovell, J. F. Targeted nanomaterials for phototherapy. Nanotheranostics 1, 38–58 (2017).
Ge, J. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014).
Chen, P. et al. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nat. Commun. 10, 1192 (2019).
Ong, L.-C., Chung, F. F.-L., Tan, Y.-F. & Leong, C.-O. Toxicity of single-walled carbon nanotubes. Arch. Toxicol. 90, 103–118 (2016).
Feng, G. et al. Multifunctional conjugated polymer nanoparticles for image-guided photodynamic and photothermal therapy. Small 13, 1602807 (2017).
Yuan, Y. et al. Conjugated polymer and drug co-encapsulated nanoparticles for chemo- and photo-thermal combination therapy with two-photon regulated fast drug release. Nanoscale 7, 3067–3076 (2015).
Ximendes, E. C. et al. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 16, 1695–1703 (2016).
Ximendes, E. C. et al. In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv. Funct. Mater. 27, 1702249 (2017).
Zhu, X. et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016).
del Rosal, B. et al. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback. Adv. Funct. Mater. 26, 6060–6068 (2016).
Carrasco, E. et al. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 25, 615–626 (2015).
Zhen, X., Xie, C. & Pu, K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57, 3938–3942 (2018). This study demonstrates optical-imaging-guided photothermal therapy without real-time light excitation.
Zhu, H. et al. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 11, 8998–9009 (2017).
Hou, B. et al. Controlled co-release of doxorubicin and reactive oxygen species for synergistic therapy by NIR remote-triggered nanoimpellers. Mater. Sci. Eng. C 74, 94–102 (2017).
Chen, C.-C. et al. DNA–gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128, 3709–3715 (2006).
Jayakumar, M. K. G., Idris, N. M. & Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA 109, 8483–8488 (2012).
Wang, Y. et al. Photothermal-responsive conjugated polymer nanoparticles for remote control of gene expression in living cells. Adv. Mater. 30, 1705418 (2018).
Li, J. et al. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew. Chem. Int. Ed. 57, 3995–3998 (2018).
Lyu, Y. et al. Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56, 9155–9159 (2017). This work seeds the idea of remotely controlling gene expression.
Vyas, V. S. & Lotsch, B. V. Organic polymers form fuel from water. Nature 521, 41–42 (2015).
Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).
Bi, J. et al. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun. 36, 1799–1805 (2015).
Stegbauer, L., Schwinghammer, K. & Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 5, 2789–2793 (2014).
Vyas, V. S. et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 6, 8508 (2015).
Schwab, M. G. et al. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem. Commun. 46, 8932–8934 (2010).
Park, J. H. et al. Microporous organic nanorods with electronic push–pull skeletons for visible light-induced hydrogen evolution from water. J. Mater. Chem. A 2, 7656–7661 (2014).
Sprick, R. S. et al. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 55, 1792–1796 (2016).
Wang, L. et al. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem. Int. Ed. 55, 12306–12310 (2016).
Pati, P. B. et al. An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ. Sci. 10, 1372–1376 (2017).
Liu, A., Tai, C. W., Holá, K. & Tian, H. Hollow polymer dots: nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction. J. Mater. Chem. A 7, 4797–4803 (2019).
Ohsawa, I. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007).
Zhang, B. et al. Polymer dots compartmentalized in liposomes as a photocatalyst for in situ hydrogen therapy. Angew. Chem. Int. Ed. 58, 2744–2748 (2019). This paper demonstrates a promising and original approach to photothermal therapy.
Wang, Y., Li, S., Liu, L., Lv, F. & Wang, S. Conjugated polymer nanoparticles to augment photosynthesis of chloroplasts. Angew. Chem. Int. Ed. 56, 5308–5311 (2017).
Watanabe, K., Hayasaka, H., Miyashita, T., Ueda, K. & Akagi, K. Dynamic control of full-colored emission and quenching of photoresponsive conjugated polymers by photostimuli. Adv. Funct. Mater. 25, 2794–2806 (2015).
Zuo, M. et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl. Mater. Interfaces 10, 39214–39221 (2018). This work demonstrates the versatility of employing conjugated nanoparticles for anti-counterfeiting applications.
Li, Q. et al. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots. Anal. Chem. 85, 9087–9091 (2013).
Yilmaz, M. D., Hsu, S.-H., Reinhoudt, D. N., Velders, A. H. & Huskens, J. Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew. Chem. Int. Ed. 49, 5938–5941 (2010).
Cable, M. L., Kirby, J. P., Sorasaenee, K., Gray, H. B. & Ponce, A. Bacterial spore detection by [Tb3+(macrocycle)(dipicolinate)] luminescence. J. Am. Chem. Soc. 129, 1474–1475 (2007).
Sun, J., Mei, H., Wang, S. & Gao, F. Two-photon semiconducting polymer dots with dual-emission for ratiometric fluorescent sensing and bioimaging of tyrosinase activity. Anal. Chem. 88, 7372–7377 (2016).
Wang, C.-Z. et al. Supramolecular polymer dot ensemble for ratiometric detection of lectins and targeted delivery of imaging agents. ACS Appl. Mater. Interfaces 9, 3272–3276 (2017).
Childress, E. S., Roberts, C. A., Sherwood, D. Y., LeGuyader, C. L. M. & Harbron, E. J. Ratiometric fluorescence detection of mercury ions in water by conjugated polymer nanoparticles. Anal. Chem. 84, 1235–1239 (2012).
Li, H., Wu, X., Xu, Y., Tong, H. & Wang, L. Dicyanovinyl-functionalized fluorescent hyperbranched conjugated polymer nanoparticles for sensitive naked-eye cyanide ion detection. Polym. Chem. 5, 5949–5956 (2014).
Sun, X., Wang, Y. & Lei, Y. Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev. 44, 8019–8061 (2015).
Malik, A. H., Hussain, S., Kalita, A. & Iyer, P. K. Conjugated polymer nanoparticles for the amplified detection of nitro-explosive picric acid on multiple platforms. ACS Appl. Mater. Interfaces 7, 26968–26976 (2015).
Wang, T., Zhang, N., Bai, R. & Bao, Y. Aggregation-enhanced FRET-active conjugated polymer nanoparticles for picric acid sensing in aqueous solution. J. Mater. Chem. C 6, 266–270 (2018).
Frausto, F. & Thomas, S. W. Ratiometric singlet oxygen detection in water using acene-doped conjugated polymer nanoparticles. ACS Appl. Mater. Interfaces 9, 15768–15775 (2017).
Shin, S. et al. Dimensionally controlled water-dispersible amplifying fluorescent polymer nanoparticles for selective detection of charge-neutral analytes. Polym. Chem. 8, 7507–7514 (2017).
Derry, M. J., Fielding, L. A. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci. 52, 1–18 (2016).
Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).
Cai, J. et al. Tailored multifunctional micellar brushes via crystallization-driven growth from a surface. Science 366, 1095–1098 (2019).
Barpuzary, D., Kim, K. & Park, M. J. Two-dimensional growth of large-area conjugated polymers on ice surfaces: high conductivity and photoelectrochemical applications. ACS Nano 13, 3953–3963 (2019).
Choi, I. Y. et al. High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew. Chem. Int. Ed. 54, 10497–10501 (2015).
Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).
Kim, Y.-J. et al. Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds. J. Am. Chem. Soc. 136, 2767–2774 (2014).
Qiu, H. et al. Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. J. Am. Chem. Soc. 137, 2375–2385 (2015).
Acknowledgements
I.M. thanks the Canadian Government for a C150 Research Chair, the Natural Sciences and Engineering Research Council of Canada for a Discovery Grant and the University of Victoria for start-up funds.
Author information
Authors and Affiliations
Contributions
All authors contributed to the design and writing of this article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
MacFarlane, L.R., Shaikh, H., Garcia-Hernandez, J.D. et al. Functional nanoparticles through π-conjugated polymer self-assembly. Nat Rev Mater 6, 7–26 (2021). https://doi.org/10.1038/s41578-020-00233-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-020-00233-4
This article is cited by
-
Synthesis of hollow platelet polymer particles by spontaneous precision fragmentation
Nature Synthesis (2024)
-
Nanoparticles destabilizing the cell membranes triggered by NIR light for cancer imaging and photo-immunotherapy
Nature Communications (2024)
-
Nanodispersions for drug delivery applications: a special focus toward cancer therapeutics
Journal of Nanoparticle Research (2024)
-
2D conjugated microporous polyacetylenes synthesized via halogen-bond-assisted radical solid-phase polymerization for high-performance metal-ion absorbents
Nature Communications (2023)
-
Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers
Nature Chemistry (2023)