Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional nanoparticles through π-conjugated polymer self-assembly

Abstract

The development of π-conjugated polymers has provided a gateway to a variety of new functional organic materials reminiscent of inorganic semiconductors. Nanoparticles based on π-conjugated polymers are promising for a broad range of emerging applications. In this Review, we provide an overview of the methods used to synthesize π-conjugated-polymer nanoparticles, with a focus on recently developed self-assembly and microfluidic routes. We also illustrate the use of the resulting nanoparticles in applications such as electronics and optoelectronics, biomedical imaging and therapy, photocatalysis and sensing. Finally, we discuss current challenges and possible directions for future research on this promising class of nanomaterials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Preparative methods for conjugated-polymer nanoparticles.
Fig. 2: Self-assembled morphologies of amphiphilic π-conjugated block copolymer nanoparticles.
Fig. 3: Living crystallization-driven self-assembly.
Fig. 4: Imaging and phototherapies with conjugated-polymer nanoparticles.
Fig. 5: Examples of conjugated-polymer nanoparticles engineered to respond to or trigger biological events.
Fig. 6: Photocatalytic hydrogen generation using conjugated-polymer nanoparticles.
Fig. 7: Stimuli-responsive systems based on conjugated-polymer nanoparticles.

References

  1. 1.

    Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977).

    Article  Google Scholar 

  2. 2.

    Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    CAS  Article  Google Scholar 

  3. 3.

    Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    Shirakawa, H. The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2574–2580 (2001).

    Article  Google Scholar 

  5. 5.

    MacDiarmid, A. G. “Synthetic metals”: a novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2581–2590 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Kim, F. S., Ren, G. & Jenekhe, S. A. One-dimensional nanostructures of π-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 23, 682–732 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Ding, X., Wang, A., Tong, W. & Xu, F. J. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria. Small 15, 1900999 (2019).

    Article  CAS  Google Scholar 

  8. 8.

    Wang, Y., Feng, L. & Wang, S. Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Adv. Funct. Mater. 29, 1806818 (2019).

    Article  CAS  Google Scholar 

  9. 9.

    Elsabahy, M. & Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Doncom, K. E. B., Blackman, L. D., Wright, D. B., Gibson, M. I. & O’Reilly, R. K. Dispersity effects in polymer self-assemblies: a matter of hierarchical control. Chem. Soc. Rev. 46, 4119–4134 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Persson, N. E., Chu, P.-H., McBride, M., Grover, M. & Reichmanis, E. Nucleation, growth, and alignment of poly(3-hexylthiophene) nanofibers for high-performance OFETs. Acc. Chem. Res. 50, 932–942 (2017). This study reports a new process for the preparation of highly ordered crystalline conjugated nanofibres using a high-throughput method.

    CAS  Article  Google Scholar 

  12. 12.

    Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    Geoghegan, M. & Hadziioannou, G. Polymer Electronics (Oxford Univ. Press, 2013).

  14. 14.

    Mazzio, K. A. & Luscombe, C. K. The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Geffroy, B., le Roy, P. & Prat, C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Son, S. Y. et al. High-field-effect mobility of low-crystallinity conjugated polymers with localized aggregates. J. Am. Chem. Soc. 138, 8096–8103 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–206 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    Beaujuge, P. M. & Fréchet, J. M. J. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133, 20009–20029 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Guo, X., Baumgarten, M. & Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 38, 1832–1908 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Roncali, J. Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem. Rev. 92, 711–738 (1992).

    CAS  Article  Google Scholar 

  23. 23.

    Toshima, N. & Hara, S. Direct synthesis of conducting polymers from simple monomers. Prog. Polym. Sci. 20, 155–183 (1995).

    CAS  Article  Google Scholar 

  24. 24.

    Blackstone, V., Lough, A. J., Murray, M. & Manners, I. Probing the mechanism of the PCl5-initiated living cationic polymerization of the phosphoranimine Cl3P=NSiMe3 using model compound chemistry. J. Am. Chem. Soc. 131, 3658–3667 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Yokozawa, T. & Yokoyama, A. Chain-growth polycondensation: the living polymerization process in polycondensation. Prog. Polym. Sci. 32, 147–172 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Yokozawa, T. & Ohta, Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem. Rev. 116, 1950–1968 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Yokozawa, T. et al. Catalyst-transfer condensation polymerization for precision synthesis of π-conjugated polymers. Pure Appl. Chem. 85, 573–587 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Loewe, R. S., Ewbank, P. C., Liu, J., Zhai, L. & McCullough, R. D. Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the GRIM method: investigation of the reaction and the origin of regioselectivity. Macromolecules 34, 4324–4333 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    Stefan, M. C., Javier, A. E., Osaka, I. & McCullough, R. D. Grignard metathesis method (GRIM): toward a universal method for the synthesis of conjugated polymers. Macromolecules 42, 30–32 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    Jeffries-EL, M., Sauvé, G. & McCullough, R. D. In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the Grignard metathesis polymerization method. Adv. Mater. 16, 1017–1019 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Zhang, Y., Tajima, K., Hirota, K. & Hashimoto, K. Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation. J. Am. Chem. Soc. 130, 7812–7813 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Stefan, M. C., Bhatt, M. P., Sista, P. & Magurudeniya, H. D. Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene). Polym. Chem. 3, 1693–1701 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Gwyther, J. et al. Dimensional control of block copolymer nanofibers with a π-conjugated core: crystallization-driven solution self-assembly of amphiphilic poly(3-hexylthiophene)-b-poly(2-vinylpyridine). Chem. Eur. J. 19, 9186–9197 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Cosemans, I. et al. Synthesis of PPV-b-PEG block copolymers via CuAAC conjugation. Eur. Polym. J. 55, 114–122 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Dou, L., Liu, Y., Hong, Z., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Bronstein, H. et al. Thieno[3,2-b]thiophene–diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133, 3272–3275 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Muenmart, D. et al. Conjugated polymer nanoparticles by Suzuki–Miyaura cross-coupling reactions in an emulsion at room temperature. Macromolecules 47, 6531–6539 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Kasai, H. et al. A novel preparation method of organic microcrystals. Jpn J. Appl. Phys. 31, 1132–1134 (1992).

    Article  Google Scholar 

  39. 39.

    Kurokawa, N., Yoshikawa, H., Hirota, N., Hyodo, K. & Masuhara, H. Size-dependent spectroscopic properties and thermochromic behavior in poly(substituted thiophene) nanoparticles. ChemPhysChem 5, 1609–1615 (2004).

    CAS  Article  Google Scholar 

  40. 40.

    Wu, C., Szymanski, C. & McNeill, J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 22, 2956–2960 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    Yu, J., Rong, Y., Kuo, C.-T., Zhou, X.-H. & Chiu, D. T. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal. Chem. 89, 42–56 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Szymanski, C. et al. Single molecule nanoparticles of the conjugated polymer MEH–PPV, preparation and characterization by near-field scanning optical microscopy. J. Phys. Chem. B 109, 8543–8546 (2005).

    CAS  Article  Google Scholar 

  43. 43.

    Wu, C., Bull, B., Szymanski, C., Christensen, K. & McNeill, J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2, 2415–2423 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    Wu, C., Szymanski, C., Cain, Z. & McNeill, J. Conjugated polymer dots for multiphoton fluorescence imaging. J. Am. Chem. Soc. 129, 12904–12905 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Wu, C., Peng, H., Jiang, Y. & McNeill, J. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles. J. Phys. Chem. B 110, 14148–14154 (2006).

    CAS  Article  Google Scholar 

  46. 46.

    Chang, Y.-L., Palacios, R. E., Fan, F.-R. F., Bard, A. J. & Barbara, P. F. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 130, 8906–8907 (2008).

    CAS  Article  Google Scholar 

  47. 47.

    Piwoński, H., Michinobu, T. & Habuchi, S. Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing. Nat. Commun. 8, 15256 (2017).

    Article  CAS  Google Scholar 

  48. 48.

    Yan, C., Sun, Z., Guo, H., Wu, C. & Chen, Y. Thiophene-fused 1,10-phenanthroline toward a far-red emitting conjugated polymer and its polymer dots: synthesis, properties and subcellular imaging. Mater. Chem. Front. 1, 2638–2642 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Zhang, Y. et al. Light-induced crosslinkable semiconducting polymer dots. Chem. Sci. 6, 2102–2109 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Chen, J. et al. One-pot fabrication of amphiphilic photoswitchable thiophene-based fluorescent polymer dots. Polym. Chem. 4, 773–781 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Di Maria, F. et al. Poly(3-hexylthiophene) nanoparticles containing thiophene-S,S-dioxide: tuning of dimensions, optical and redox properties, and charge separation under illumination. ACS Nano 11, 1991–1999 (2017).

    Article  CAS  Google Scholar 

  52. 52.

    Kim, H., Jin, Y.-J., Kim, B. S.-I., Aoki, T. & Kwak, G. Optically active conjugated polymer nanoparticles from chiral solvent annealing and nanoprecipitation. Macromolecules 48, 4754–4757 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Wu, C. et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 132, 15410–15417 (2010).

    CAS  Article  Google Scholar 

  54. 54.

    Wu, C. et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 50, 3430–3434 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    Creamer, A. et al. Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nat. Commun. 9, 3237 (2018).

    Article  CAS  Google Scholar 

  56. 56.

    Landfester, K. The generation of nanoparticles in miniemulsions. Adv. Mater. 13, 765–768 (2001).

    CAS  Article  Google Scholar 

  57. 57.

    Kietzke, T. et al. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2, 408–412 (2003).

    CAS  Article  Google Scholar 

  58. 58.

    Landfester, K. et al. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater. 14, 651–655 (2002).

    CAS  Article  Google Scholar 

  59. 59.

    Pecher, J. & Mecking, S. Nanoparticles of conjugated polymers. Chem. Rev. 110, 6260–6279 (2010).

    CAS  Article  Google Scholar 

  60. 60.

    Hansen, F. K. & Ugelstad, J. Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. J. Polym. Sci. Polym. Chem. Ed. 16, 1953–1979 (1978).

    CAS  Article  Google Scholar 

  61. 61.

    Landfester, K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. Int. Ed. 48, 4488–4507 (2009).

    CAS  Article  Google Scholar 

  62. 62.

    Crespy, D. & Landfester, K. Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J. Org. Chem. 6, 1132–1148 (2010).

    CAS  Article  Google Scholar 

  63. 63.

    Hittinger, E., Kokil, A. & Weder, C. Synthesis and characterization of cross-linked conjugated polymer milli-, micro-, and nanoparticles. Angew. Chem. Int. Ed. 43, 1808–1811 (2004).

    CAS  Article  Google Scholar 

  64. 64.

    Parrenin, L., Brochon, C., Hadziioannou, G. & Cloutet, E. Low bandgap semiconducting copolymer nanoparticles by Suzuki cross-coupling polymerization in alcoholic dispersed media. Macromol. Rapid Commun. 36, 1816–1821 (2015).

    CAS  Article  Google Scholar 

  65. 65.

    Behrendt, J. M. et al. Scalable synthesis of multicolour conjugated polymer nanoparticles via Suzuki–Miyaura polymerisation in a miniemulsion and application in bioimaging. React. Funct. Polym. 107, 69–77 (2016).

    CAS  Article  Google Scholar 

  66. 66.

    Baier, M. C., Huber, J. & Mecking, S. Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J. Am. Chem. Soc. 131, 14267–14273 (2009).

    CAS  Article  Google Scholar 

  67. 67.

    Kim, S. et al. Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem. Commun. 46, 1617–1619 (2010).

    CAS  Article  Google Scholar 

  68. 68.

    Ruiz Perez, J. D. & Mecking, S. Anisotropic polymer nanoparticles with tunable emission wavelengths by intersegmental chain packing. Angew. Chem. Int. Ed. 56, 6147–6151 (2017).

    CAS  Article  Google Scholar 

  69. 69.

    Li, H., Wu, X., Xu, B., Tong, H. & Wang, L. Solution-processible hyperbranched conjugated polymer nanoparticles with tunable particle sizes by Suzuki polymerization in miniemulsion. RSC Adv. 3, 8645–8648 (2013).

    CAS  Article  Google Scholar 

  70. 70.

    Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 41, 5969–5985 (2012).

    CAS  Article  Google Scholar 

  71. 71.

    Tritschler, U., Pearce, S., Gwyther, J., Whittell, G. R. & Manners, I. 50th Anniversary Perspective: functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 50, 3439–3463 (2017).

    CAS  Article  Google Scholar 

  72. 72.

    Vilgis, T. & Halperin, A. Aggregation of coil-crystalline block copolymers: equilibrium crystallization. Macromolecules 24, 2090–2095 (1991).

    CAS  Article  Google Scholar 

  73. 73.

    He, W.-N. & Xu, J.-T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 37, 1350–1400 (2012).

    CAS  Article  Google Scholar 

  74. 74.

    Massey, J. A. et al. Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J. Am. Chem. Soc. 122, 11577–11584 (2000).

    CAS  Article  Google Scholar 

  75. 75.

    Cao, L., Manners, I. & Winnik, M. A. Influence of the interplay of crystallization and chain stretching on micellar morphologies: solution self-assembly of coil–crystalline poly(isoprene-block-ferrocenylsilane). Macromolecules 35, 8258–8260 (2002).

    CAS  Article  Google Scholar 

  76. 76.

    Ganda, S. & Stenzel, M. H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 101, 101195 (2019).

    Article  CAS  Google Scholar 

  77. 77.

    Qian, J. et al. Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J. Am. Chem. Soc. 136, 4121–4124 (2014).

    CAS  Article  Google Scholar 

  78. 78.

    Li, X. et al. Uniform electroactive fibre-like micelle nanowires for organic electronics. Nat. Commun. 8, 15909 (2017). This is a detailed study on the effect of nanofibre length on device performance.

    CAS  Article  Google Scholar 

  79. 79.

    Kynaston, E. L. et al. Uniform polyselenophene block copolymer fiberlike micelles and block co-micelles via living crystallization-driven self-assembly. Macromolecules 51, 1002–1010 (2018).

    CAS  Article  Google Scholar 

  80. 80.

    Lin, C.-H., Tung, Y.-C., Ruokolainen, J., Mezzenga, R. & Chen, W.-C. Poly[2,7-(9,9-dihexylfluorene)]-block-poly(2-vinylpyridine) rod–coil and coil–rod–coil block copolymers: synthesis, morphology and photophysical properties in methanol/THF mixed solvents. Macromolecules 41, 8759–8769 (2008).

    CAS  Article  Google Scholar 

  81. 81.

    Jin, X. H. et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 360, 897–900 (2018). This study reports fibres made through CDSA that display exceptional exciton-diffusion lengths.

    CAS  Article  Google Scholar 

  82. 82.

    Han, L. et al. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes. Nat. Commun. 9, 865 (2018).

    Article  CAS  Google Scholar 

  83. 83.

    Schmelz, J., Karg, M., Hellweg, T. & Schmalz, H. General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano 5, 9523–9534 (2011).

    CAS  Article  Google Scholar 

  84. 84.

    Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    CAS  Article  Google Scholar 

  85. 85.

    Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

    CAS  Article  Google Scholar 

  86. 86.

    He, X. et al. Complex and hierarchical 2D assemblies via crystallization-driven self-assembly of poly(l-lactide) homopolymers with charged termini. J. Am. Chem. Soc. 139, 9221–9228 (2017).

    CAS  Article  Google Scholar 

  87. 87.

    Arno, M. C. et al. Precision epitaxy for aqueous 1D and 2D poly(ε-caprolactone) assemblies. J. Am. Chem. Soc. 139, 16980–16985 (2017).

    CAS  Article  Google Scholar 

  88. 88.

    Rizis, G., van de Ven, T. G. M. & Eisenberg, A. Crystallinity-driven morphological ripening processes for poly(ethylene oxide)-block-polycaprolactone micelles in water. Soft Matter 10, 2825–2835 (2014).

    CAS  Article  Google Scholar 

  89. 89.

    Finnegan, J. R. et al. Extending the scope of “living” crystallization-driven self-assembly: well-defined 1D micelles and block comicelles from crystallizable polycarbonate block copolymers. J. Am. Chem. Soc. 140, 17127–17140 (2018).

    CAS  Article  Google Scholar 

  90. 90.

    Chang, M., Su, Z. & Egap, E. Alignment and charge transport of one-dimensional conjugated polymer nanowires in insulating polymer blends. Macromolecules 49, 9449–9456 (2016).

    CAS  Article  Google Scholar 

  91. 91.

    Kim, Y. et al. Modulating regioregularity of poly(3-hexylthiophene)-based amphiphilic block copolymers to control solution assembly from nanowires to micelles. Chem. Mater. 30, 7912–7921 (2018).

    CAS  Article  Google Scholar 

  92. 92.

    Hayward, D. W. et al. Structure of the crystalline core of fiber-like polythiophene block copolymer micelles. Macromolecules 51, 3097–3106 (2018).

    CAS  Article  Google Scholar 

  93. 93.

    Cui, H. et al. Hydrogen-bonding-directed helical nanofibers in a polythiophene-based all-conjugated diblock copolymer. Soft Matter 14, 5906–5912 (2018).

    CAS  Article  Google Scholar 

  94. 94.

    Jin, S.-M., Kim, I., Lim, J. A., Ahn, H. & Lee, E. Interfacial crystallization-driven assembly of conjugated polymers/quantum dots into coaxial hybrid nanowires: elucidation of conjugated polymer arrangements by electron tomography. Adv. Funct. Mater. 26, 3226–3235 (2016).

    CAS  Article  Google Scholar 

  95. 95.

    Kamps, A. C., Cativo, M. H. M., Fryd, M. & Park, S.-J. Self-assembly of amphiphilic conjugated diblock copolymers into one-dimensional nanoribbons. Macromolecules 47, 161–164 (2014).

    CAS  Article  Google Scholar 

  96. 96.

    Lee, E. et al. Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. J. Am. Chem. Soc. 133, 10390–10393 (2011).

    CAS  Article  Google Scholar 

  97. 97.

    Lee, I.-H. et al. Nanostar and nanonetwork crystals fabricated by in situ nanoparticlization of fully conjugated polythiophene diblock copolymers. J. Am. Chem. Soc. 135, 17695–17698 (2013).

    CAS  Article  Google Scholar 

  98. 98.

    Lee, I. H., Amaladass, P. & Choi, T. L. One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene. Chem. Commun. 50, 7945–7948 (2014).

    CAS  Article  Google Scholar 

  99. 99.

    Lee, I.-H. & Choi, T.-L. Importance of choosing the right polymerization method for in situ preparation of semiconducting nanoparticles from the P3HT block copolymer. Polym. Chem. 7, 7135–7141 (2016).

    CAS  Article  Google Scholar 

  100. 100.

    Lee, I.-H. et al. Preparing DNA-mimicking multi-line nanocaterpillars via in situ nanoparticlisation of fully conjugated polymers. Polym. Chem. 7, 1422–1428 (2016).

    CAS  Article  Google Scholar 

  101. 101.

    Yoon, K.-Y. et al. One-pot preparation of 3D nano- and microaggregates via in situ nanoparticlization of polyacetylene diblock copolymers produced by ROMP. Macromol. Rapid Commun. 36, 1069–1074 (2015).

    CAS  Article  Google Scholar 

  102. 102.

    Shin, S., Yoon, K.-Y. & Choi, T.-L. Simple preparation of various nanostructures via in situ nanoparticlization of polyacetylene blocklike copolymers by one-shot polymerization. Macromolecules 48, 1390–1397 (2015).

    CAS  Article  Google Scholar 

  103. 103.

    Yang, S., Shin, S., Choi, I., Lee, J. & Choi, T.-L. Direct formation of large-area 2D nanosheets from fluorescent semiconducting homopolymer with orthorhombic crystalline orientation. J. Am. Chem. Soc. 139, 3082–3088 (2017).

    CAS  Article  Google Scholar 

  104. 104.

    Boott, C. E., Gwyther, J., Harniman, R. L., Hayward, D. W. & Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem. 9, 785–792 (2017).

    CAS  Article  Google Scholar 

  105. 105.

    Oliver, A. M. et al. Scalable fiber-like micelles and block co-micelles by polymerization-induced crystallization-driven self-assembly. J. Am. Chem. Soc. 140, 18104–18114 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    Canning, S. L., Smith, G. N. & Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 49, 1985–2001 (2016).

    CAS  Article  Google Scholar 

  107. 107.

    Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).

    CAS  Article  Google Scholar 

  108. 108.

    Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    CAS  Article  Google Scholar 

  109. 109.

    Qian, J. et al. Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano 7, 3754–3766 (2013).

    CAS  Article  Google Scholar 

  110. 110.

    Qiu, H., Hudson, Z. M., Winnik, M. A. & Manners, I. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 347, 1329–1332 (2015).

    CAS  Article  Google Scholar 

  111. 111.

    Li, X., Gao, Y., Boott, C. E., Winnik, M. A. & Manners, I. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nat. Commun. 6, 8127 (2015).

    Article  Google Scholar 

  112. 112.

    Patra, S. K. et al. Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J. Am. Chem. Soc. 133, 8842–8845 (2011).

    CAS  Article  Google Scholar 

  113. 113.

    Tao, D. et al. Self-seeding of block copolymers with a π-conjugated oligo(p-phenylenevinylene) segment: a versatile route toward monodisperse fiber-like nanostructures. Macromolecules 51, 2065–2075 (2018).

    CAS  Article  Google Scholar 

  114. 114.

    Shin, S. et al. Living light-induced crystallization-driven self-assembly for rapid preparation of semiconducting nanofibers. J. Am. Chem. Soc. 140, 6088–6094 (2018). This paper presents a new method to control living CDSA using light to produce controlled-length fibres and segmented fibres.

    CAS  Article  Google Scholar 

  115. 115.

    Huang, J. & Kaner, R. B. The intrinsic nanofibrillar morphology of polyaniline. Chem. Commun. 4, 367–376 (2006).

    Article  Google Scholar 

  116. 116.

    McGrath, N. et al. Conductive, monodisperse polyaniline nanofibers of controlled length using well-defined cylindrical block copolymer micelles as templates. Chem. Eur. J. 19, 13030–13039 (2013).

    CAS  Article  Google Scholar 

  117. 117.

    Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    CAS  Article  Google Scholar 

  118. 118.

    Amstad, E. et al. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science 349, 956–960 (2015).

    CAS  Article  Google Scholar 

  119. 119.

    Valencia, P. M., Farokhzad, O. C., Karnik, R. & Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7, 623–629 (2012).

    CAS  Article  Google Scholar 

  120. 120.

    Sadat Majedi, F. et al. Microfluidic synthesis of chitosan-based nanoparticles for fuel cell applications. Chem. Commun. 48, 7744–7746 (2012).

    Article  CAS  Google Scholar 

  121. 121.

    Wang, G. et al. Microfluidic crystal engineering of π-conjugated polymers. ACS Nano 9, 8220–8230 (2015).

    CAS  Article  Google Scholar 

  122. 122.

    Chang, M., Lee, J., Kleinhenz, N., Fu, B. & Reichmanis, E. Photoinduced anisotropic supramolecular assembly and enhanced charge transport of poly(3-hexylthiophene) thin films. Adv. Funct. Mater. 24, 4457–4465 (2014).

    CAS  Article  Google Scholar 

  123. 123.

    Abelha, T. F. et al. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device. Nanoscale 9, 2009–2019 (2017).

    CAS  Article  Google Scholar 

  124. 124.

    Wang, Z. et al. Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Appl. Mater. Interfaces 11, 11167–11176 (2019).

    CAS  Article  Google Scholar 

  125. 125.

    Chang, C. C., Pai, C. L., Chen, W. C. & Jenekhe, S. A. Spin coating of conjugated polymers for electronic and optoelectronic applications. Thin Solid Films 479, 254–260 (2005).

    CAS  Article  Google Scholar 

  126. 126.

    Tuncel, D. π-Conjugated nanostructured materials: preparation, properties and photonic applications. Nanoscale Adv. 1, 19–33 (2019).

    CAS  Article  Google Scholar 

  127. 127.

    Pisula, W., Zorn, M., Chang, J. Y., Müllen, K. & Zentel, R. Liquid crystalline ordering and charge transport in semiconducting materials. Macromol. Rapid Commun. 30, 1179–1202 (2009).

    CAS  Article  Google Scholar 

  128. 128.

    Yao, Y., Zhang, L., Orgiu, E. & Samorì, P. Unconventional nanofabrication for supramolecular electronics. Adv. Mater. 31, 1900599 (2019).

    Article  CAS  Google Scholar 

  129. 129.

    Brinkmann, M., Hartmann, L., Biniek, L., Tremel, K. & Kayunkid, N. Orienting semi-conducting π-conjugated polymers. Macromol. Rapid Commun. 35, 9–26 (2014).

    CAS  Article  Google Scholar 

  130. 130.

    Yu, Z. et al. Self-assembly of well-defined poly(3-hexylthiophene) nanostructures toward the structure–property relationship determination of polymer solar cells. J. Phys. Chem. C 116, 23858–23863 (2012).

    CAS  Article  Google Scholar 

  131. 131.

    Zhang, R. et al. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J. Am. Chem. Soc. 128, 3480–3481 (2006).

    CAS  Article  Google Scholar 

  132. 132.

    Kleinhenz, N. et al. Ordering of poly(3-hexylthiophene) in solutions and films: effects of fiber length and grain boundaries on anisotropy and mobility. Chem. Mater. 28, 3905–3913 (2016).

    CAS  Article  Google Scholar 

  133. 133.

    Crossland, E. J. W. et al. Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films. Adv. Mater. 24, 839–844 (2012).

    CAS  Article  Google Scholar 

  134. 134.

    Shin, M. et al. Polythiophene nanofibril bundles surface-embedded in elastomer: a route to a highly stretchable active channel layer. Adv. Mater. 27, 1255–1261 (2015).

    CAS  Article  Google Scholar 

  135. 135.

    Zhao, J. et al. Trade-off of mechanical and electrical properties in stretchable P3HT/PDMS blending films driven by interpenetrating double networks formation. AIP Adv. 10, 035020 (2020).

    CAS  Article  Google Scholar 

  136. 136.

    Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    CAS  Article  Google Scholar 

  137. 137.

    Vezie, M. S. et al. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 15, 746–753 (2016).

    CAS  Article  Google Scholar 

  138. 138.

    Cativo, M. H. M. et al. Air–liquid interfacial self-assembly of conjugated block copolymers into ordered nanowire arrays. ACS Nano 8, 12755–12762 (2014).

    CAS  Article  Google Scholar 

  139. 139.

    Di Nuzzo, D. et al. High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. ACS Nano 11, 12713–12722 (2017).

    Article  CAS  Google Scholar 

  140. 140.

    Yi, Z. et al. Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J. Mater. Chem. C 2, 7247–7255 (2014).

    CAS  Article  Google Scholar 

  141. 141.

    Vohra, V. & Anzai, T. Molecular orientation of conjugated polymer chains in nanostructures and thin films: review of processes and application to optoelectronics. J. Nanomater. 2017, 1–18 (2017).

    Article  CAS  Google Scholar 

  142. 142.

    Kim, C., Gwon, Y. J., Kim, J. & Lee, T. S. Synthesis of fluorescent conjugated polymer nanoparticles and their immobilization on a substrate for white light emission. Polym. Chem. 9, 5671–5679 (2018).

    CAS  Article  Google Scholar 

  143. 143.

    Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).

    CAS  Article  Google Scholar 

  144. 144.

    Herrera, M., Abdul-Moqueet, M. & Mahmoud, M. A. Conjugated polymer nanoparticles having modified band gaps assembled into nano- and micropatterned organic light-emitting diodes. ACS Appl. Nano Mater. 2, 577–585 (2019).

    CAS  Article  Google Scholar 

  145. 145.

    Boisselier, E. & Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009).

    CAS  Article  Google Scholar 

  146. 146.

    Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19, 975–983 (2005).

    CAS  Article  Google Scholar 

  147. 147.

    Black, K. C. L. et al. Radioactive 198 Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8, 4385–4394 (2014).

    CAS  Article  Google Scholar 

  148. 148.

    Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006).

    Article  Google Scholar 

  149. 149.

    Magrez, A. et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006).

    CAS  Article  Google Scholar 

  150. 150.

    Abrahamse, H. & Hamblin, M. R. New photosensitizers for photodynamic therapy. Biochem. J. 473, 347–364 (2016).

    CAS  Article  Google Scholar 

  151. 151.

    Feng, L. et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42, 6620–6633 (2013).

    CAS  Article  Google Scholar 

  152. 152.

    Jiang, Y. & Pu, K. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 51, 1840–1849 (2018).

    CAS  Article  Google Scholar 

  153. 153.

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  Article  Google Scholar 

  154. 154.

    Dasgupta, S., Auth, T. & Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett. 14, 687–693 (2014).

    CAS  Article  Google Scholar 

  155. 155.

    Zhao, J. & Stenzel, M. H. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym. Chem. 9, 259–272 (2018).

    CAS  Article  Google Scholar 

  156. 156.

    Nagaya, T., Nakamura, Y. A., Choyke, P. L. & Kobayashi, H. Fluorescence-guided surgery. Front. Oncol. 7, 314 (2017).

    Article  Google Scholar 

  157. 157.

    Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    CAS  Article  Google Scholar 

  158. 158.

    Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    CAS  Article  Google Scholar 

  159. 159.

    Pansare, V. J., Hejazi, S., Faenza, W. J. & Prud’homme, R. K. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater. 24, 812–827 (2012).

    CAS  Article  Google Scholar 

  160. 160.

    Li, K. et al. Generic strategy of preparing fluorescent conjugated-polymer-loaded poly(dl-lactide-co-glycolide) nanoparticles for targeted cell imaging. Adv. Funct. Mater. 19, 3535–3542 (2009).

    CAS  Article  Google Scholar 

  161. 161.

    Moon, J. H., McDaniel, W., MacLean, P. & Hancock, L. F. Live-cell-permeable poly(p-phenylene ethynylene). Angew. Chem. Int. Ed. 46, 8223–8225 (2007).

    CAS  Article  Google Scholar 

  162. 162.

    Liu, J., Feng, G., Ding, D. & Liu, B. Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells. Polym. Chem. 4, 4326–4334 (2013).

    CAS  Article  Google Scholar 

  163. 163.

    Li, K. & Liu, B. Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging. J. Mater. Chem. 22, 1257–1264 (2012).

    CAS  Article  Google Scholar 

  164. 164.

    Wu, C. et al. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 50, 3430–3434 (2011).

    CAS  Article  Google Scholar 

  165. 165.

    Ye, F. et al. Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc. 133, 8146–8149 (2011).

    CAS  Article  Google Scholar 

  166. 166.

    Wang, S., Liu, J., Feng, G., Ng, L. G. & Liu, B. NIR-II excitable conjugated polymer dots with bright NIR-I emission for deep in vivo two-photon brain imaging through intact skull. Adv. Funct. Mater. 29, 1808365 (2019). This study reports in vivo deep-tissue imaging with high contrast by using NIR.

    Article  CAS  Google Scholar 

  167. 167.

    Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I. & Radomski, M. W. Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol. 150, 552–558 (2009).

    Article  CAS  Google Scholar 

  168. 168.

    Repenko, T. et al. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat. Commun. 8, 470 (2017).

    Article  CAS  Google Scholar 

  169. 169.

    Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    CAS  Article  Google Scholar 

  170. 170.

    Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014).

    CAS  Article  Google Scholar 

  171. 171.

    Vines, J. et al. Contemporary polymer-based nanoparticle systems for photothermal therapy. Polymers 10, 1357 (2018).

    Article  CAS  Google Scholar 

  172. 172.

    Cheng, L., Wang, C., Feng, L., Yang, K. & Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014).

    CAS  Article  Google Scholar 

  173. 173.

    Li, J., Rao, J. & Pu, K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155, 217–235 (2018).

    CAS  Article  Google Scholar 

  174. 174.

    Chitgupi, U., Qin, Y. & Lovell, J. F. Targeted nanomaterials for phototherapy. Nanotheranostics 1, 38–58 (2017).

    Article  Google Scholar 

  175. 175.

    Ge, J. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014).

    CAS  Article  Google Scholar 

  176. 176.

    Chen, P. et al. Facile syntheses of conjugated polymers for photothermal tumour therapy. Nat. Commun. 10, 1192 (2019).

    Article  CAS  Google Scholar 

  177. 177.

    Ong, L.-C., Chung, F. F.-L., Tan, Y.-F. & Leong, C.-O. Toxicity of single-walled carbon nanotubes. Arch. Toxicol. 90, 103–118 (2016).

    CAS  Article  Google Scholar 

  178. 178.

    Feng, G. et al. Multifunctional conjugated polymer nanoparticles for image-guided photodynamic and photothermal therapy. Small 13, 1602807 (2017).

    Article  CAS  Google Scholar 

  179. 179.

    Yuan, Y. et al. Conjugated polymer and drug co-encapsulated nanoparticles for chemo- and photo-thermal combination therapy with two-photon regulated fast drug release. Nanoscale 7, 3067–3076 (2015).

    CAS  Article  Google Scholar 

  180. 180.

    Ximendes, E. C. et al. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 16, 1695–1703 (2016).

    CAS  Article  Google Scholar 

  181. 181.

    Ximendes, E. C. et al. In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv. Funct. Mater. 27, 1702249 (2017).

    Article  CAS  Google Scholar 

  182. 182.

    Zhu, X. et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016).

    CAS  Article  Google Scholar 

  183. 183.

    del Rosal, B. et al. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback. Adv. Funct. Mater. 26, 6060–6068 (2016).

    Article  CAS  Google Scholar 

  184. 184.

    Carrasco, E. et al. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 25, 615–626 (2015).

    CAS  Article  Google Scholar 

  185. 185.

    Zhen, X., Xie, C. & Pu, K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57, 3938–3942 (2018). This study demonstrates optical-imaging-guided photothermal therapy without real-time light excitation.

    CAS  Article  Google Scholar 

  186. 186.

    Zhu, H. et al. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 11, 8998–9009 (2017).

    CAS  Article  Google Scholar 

  187. 187.

    Hou, B. et al. Controlled co-release of doxorubicin and reactive oxygen species for synergistic therapy by NIR remote-triggered nanoimpellers. Mater. Sci. Eng. C 74, 94–102 (2017).

    CAS  Article  Google Scholar 

  188. 188.

    Chen, C.-C. et al. DNA–gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128, 3709–3715 (2006).

    CAS  Article  Google Scholar 

  189. 189.

    Jayakumar, M. K. G., Idris, N. M. & Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA 109, 8483–8488 (2012).

    CAS  Article  Google Scholar 

  190. 190.

    Wang, Y. et al. Photothermal-responsive conjugated polymer nanoparticles for remote control of gene expression in living cells. Adv. Mater. 30, 1705418 (2018).

    Article  CAS  Google Scholar 

  191. 191.

    Li, J. et al. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew. Chem. Int. Ed. 57, 3995–3998 (2018).

    CAS  Article  Google Scholar 

  192. 192.

    Lyu, Y. et al. Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56, 9155–9159 (2017). This work seeds the idea of remotely controlling gene expression.

    CAS  Article  Google Scholar 

  193. 193.

    Vyas, V. S. & Lotsch, B. V. Organic polymers form fuel from water. Nature 521, 41–42 (2015).

    CAS  Article  Google Scholar 

  194. 194.

    Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    CAS  Article  Google Scholar 

  195. 195.

    Bi, J. et al. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol. Rapid Commun. 36, 1799–1805 (2015).

    CAS  Article  Google Scholar 

  196. 196.

    Stegbauer, L., Schwinghammer, K. & Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 5, 2789–2793 (2014).

    CAS  Article  Google Scholar 

  197. 197.

    Vyas, V. S. et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat. Commun. 6, 8508 (2015).

    CAS  Article  Google Scholar 

  198. 198.

    Schwab, M. G. et al. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem. Commun. 46, 8932–8934 (2010).

    CAS  Article  Google Scholar 

  199. 199.

    Park, J. H. et al. Microporous organic nanorods with electronic push–pull skeletons for visible light-induced hydrogen evolution from water. J. Mater. Chem. A 2, 7656–7661 (2014).

    CAS  Article  Google Scholar 

  200. 200.

    Sprick, R. S. et al. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed. 55, 1792–1796 (2016).

    CAS  Article  Google Scholar 

  201. 201.

    Wang, L. et al. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem. Int. Ed. 55, 12306–12310 (2016).

    CAS  Article  Google Scholar 

  202. 202.

    Pati, P. B. et al. An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ. Sci. 10, 1372–1376 (2017).

    CAS  Article  Google Scholar 

  203. 203.

    Liu, A., Tai, C. W., Holá, K. & Tian, H. Hollow polymer dots: nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction. J. Mater. Chem. A 7, 4797–4803 (2019).

    CAS  Article  Google Scholar 

  204. 204.

    Ohsawa, I. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688–694 (2007).

    CAS  Article  Google Scholar 

  205. 205.

    Zhang, B. et al. Polymer dots compartmentalized in liposomes as a photocatalyst for in situ hydrogen therapy. Angew. Chem. Int. Ed. 58, 2744–2748 (2019). This paper demonstrates a promising and original approach to photothermal therapy.

    CAS  Article  Google Scholar 

  206. 206.

    Wang, Y., Li, S., Liu, L., Lv, F. & Wang, S. Conjugated polymer nanoparticles to augment photosynthesis of chloroplasts. Angew. Chem. Int. Ed. 56, 5308–5311 (2017).

    CAS  Article  Google Scholar 

  207. 207.

    Watanabe, K., Hayasaka, H., Miyashita, T., Ueda, K. & Akagi, K. Dynamic control of full-colored emission and quenching of photoresponsive conjugated polymers by photostimuli. Adv. Funct. Mater. 25, 2794–2806 (2015).

    CAS  Article  Google Scholar 

  208. 208.

    Zuo, M. et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl. Mater. Interfaces 10, 39214–39221 (2018). This work demonstrates the versatility of employing conjugated nanoparticles for anti-counterfeiting applications.

    CAS  Article  Google Scholar 

  209. 209.

    Li, Q. et al. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots. Anal. Chem. 85, 9087–9091 (2013).

    CAS  Article  Google Scholar 

  210. 210.

    Yilmaz, M. D., Hsu, S.-H., Reinhoudt, D. N., Velders, A. H. & Huskens, J. Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew. Chem. Int. Ed. 49, 5938–5941 (2010).

    CAS  Article  Google Scholar 

  211. 211.

    Cable, M. L., Kirby, J. P., Sorasaenee, K., Gray, H. B. & Ponce, A. Bacterial spore detection by [Tb3+(macrocycle)(dipicolinate)] luminescence. J. Am. Chem. Soc. 129, 1474–1475 (2007).

    CAS  Article  Google Scholar 

  212. 212.

    Sun, J., Mei, H., Wang, S. & Gao, F. Two-photon semiconducting polymer dots with dual-emission for ratiometric fluorescent sensing and bioimaging of tyrosinase activity. Anal. Chem. 88, 7372–7377 (2016).

    CAS  Article  Google Scholar 

  213. 213.

    Wang, C.-Z. et al. Supramolecular polymer dot ensemble for ratiometric detection of lectins and targeted delivery of imaging agents. ACS Appl. Mater. Interfaces 9, 3272–3276 (2017).

    CAS  Article  Google Scholar 

  214. 214.

    Childress, E. S., Roberts, C. A., Sherwood, D. Y., LeGuyader, C. L. M. & Harbron, E. J. Ratiometric fluorescence detection of mercury ions in water by conjugated polymer nanoparticles. Anal. Chem. 84, 1235–1239 (2012).

    CAS  Article  Google Scholar 

  215. 215.

    Li, H., Wu, X., Xu, Y., Tong, H. & Wang, L. Dicyanovinyl-functionalized fluorescent hyperbranched conjugated polymer nanoparticles for sensitive naked-eye cyanide ion detection. Polym. Chem. 5, 5949–5956 (2014).

    CAS  Article  Google Scholar 

  216. 216.

    Sun, X., Wang, Y. & Lei, Y. Fluorescence based explosive detection: from mechanisms to sensory materials. Chem. Soc. Rev. 44, 8019–8061 (2015).

    CAS  Article  Google Scholar 

  217. 217.

    Malik, A. H., Hussain, S., Kalita, A. & Iyer, P. K. Conjugated polymer nanoparticles for the amplified detection of nitro-explosive picric acid on multiple platforms. ACS Appl. Mater. Interfaces 7, 26968–26976 (2015).

    CAS  Article  Google Scholar 

  218. 218.

    Wang, T., Zhang, N., Bai, R. & Bao, Y. Aggregation-enhanced FRET-active conjugated polymer nanoparticles for picric acid sensing in aqueous solution. J. Mater. Chem. C 6, 266–270 (2018).

    Google Scholar 

  219. 219.

    Frausto, F. & Thomas, S. W. Ratiometric singlet oxygen detection in water using acene-doped conjugated polymer nanoparticles. ACS Appl. Mater. Interfaces 9, 15768–15775 (2017).

    CAS  Article  Google Scholar 

  220. 220.

    Shin, S. et al. Dimensionally controlled water-dispersible amplifying fluorescent polymer nanoparticles for selective detection of charge-neutral analytes. Polym. Chem. 8, 7507–7514 (2017).

    CAS  Article  Google Scholar 

  221. 221.

    Derry, M. J., Fielding, L. A. & Armes, S. P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci. 52, 1–18 (2016).

    CAS  Article  Google Scholar 

  222. 222.

    Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    CAS  Article  Google Scholar 

  223. 223.

    Cai, J. et al. Tailored multifunctional micellar brushes via crystallization-driven growth from a surface. Science 366, 1095–1098 (2019).

    CAS  Article  Google Scholar 

  224. 224.

    Barpuzary, D., Kim, K. & Park, M. J. Two-dimensional growth of large-area conjugated polymers on ice surfaces: high conductivity and photoelectrochemical applications. ACS Nano 13, 3953–3963 (2019).

    CAS  Article  Google Scholar 

  225. 225.

    Choi, I. Y. et al. High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew. Chem. Int. Ed. 54, 10497–10501 (2015).

    CAS  Article  Google Scholar 

  226. 226.

    Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    CAS  Article  Google Scholar 

  227. 227.

    Kim, Y.-J. et al. Precise control of quantum dot location within the P3HT-b-P2VP/QD nanowires formed by crystallization-driven 1D growth of hybrid dimeric seeds. J. Am. Chem. Soc. 136, 2767–2774 (2014).

    CAS  Article  Google Scholar 

  228. 228.

    Qiu, H. et al. Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. J. Am. Chem. Soc. 137, 2375–2385 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I.M. thanks the Canadian Government for a C150 Research Chair, the Natural Sciences and Engineering Research Council of Canada for a Discovery Grant and the University of Victoria for start-up funds.

Author information

Affiliations

Authors

Contributions

All authors contributed to the design and writing of this article.

Corresponding author

Correspondence to Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

MacFarlane, L.R., Shaikh, H., Garcia-Hernandez, J.D. et al. Functional nanoparticles through π-conjugated polymer self-assembly. Nat Rev Mater 6, 7–26 (2021). https://doi.org/10.1038/s41578-020-00233-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing