Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Insight into the structures and dynamics of organic semiconductors through solid-state NMR spectroscopy

Abstract

Organic semiconductors (OSCs) are of fundamental and technological interest, owing to their properties and functions in a range of optoelectronic devices, including organic light-emitting diodes, organic photovoltaics and organic field-effect transistors, as well as emerging technologies, such as bioelectronic devices. The solid-state organization of the subunits in OSC materials, whether molecular or polymeric, determines the properties relevant to device performance. Nevertheless, the systematic relationships between composition, structure and processing conditions are rarely fully understood, owing to the complexity of the organic architectures and the resulting solid-state structures. Characterization over different length scales and timescales is essential, especially for semi-ordered or amorphous regions, for which solid-state NMR (ssNMR) spectroscopy yields nanoscale insight that can be correlated with scattering measurements and macroscopic property analyses. In this Review, we assess recent results, challenges and opportunities in the application of ssNMR to OSCs, highlighting its role in state-of-the-art materials design and characterization. We illustrate how insight is obtained on local order and composition, interfacial structures, dynamics, interactions and how this information can be used to establish structure–property relationships. Finally, we provide our perspective on applying ssNMR to the next generation of OSCs and the development of new ssNMR methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Order within organic semiconductor materials.
Fig. 2: Molecules used to fabricate high-performance organic semiconductor materials.
Fig. 3: Length scales and timescales of characterization techniques.
Fig. 4: Quantifying order.
Fig. 5: Integrated analysis of organic semiconductors and determination of 3D structures.
Fig. 6: Characterizing packing interactions, local structures and bulk heterojunctions.
Fig. 7: Structure determination of an organic semiconductor–fullerene blend.
Fig. 8: Characterizing molecularly doped organic semiconductor materials.
Fig. 9: Characterizing phase transitions and molecular motions.

Similar content being viewed by others

References

  1. Brédas, J.-L. & Marder, S. R. (eds) The WSPC Reference on Organic Electronics: Organic Semiconductors. Volume 1: Basic Concepts (World Scientific, 2016).

  2. Klauk, H. (ed) Organic Electronics: Materials, Manufacturing, and Applications (Wiley-VCH, 2008).

  3. Klauk, H. (ed) Organic Electronics II: More Materials and Applications (Wiley-VCH, 2012).

  4. Oh, C.-H. et al. 21.1: Invited paper: technological progress and commercialization of OLED TV. SID Symp. Dig. Tech. Pap. 44, 239–242 (2013).

    Google Scholar 

  5. Adachi, C. Third-generation organic electroluminescence materials. Jpn J. Appl. Phys. 53, 060101 (2014).

    Google Scholar 

  6. Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).

    CAS  Google Scholar 

  7. Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).

    CAS  Google Scholar 

  8. Hamze, R. et al. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science 363, 601–606 (2019).

    CAS  Google Scholar 

  9. Krebs, F. C., Espinosa, N., Hösel, M., Søndergaard, R. R. & Jørgensen, M. 25th Anniversary article: rise to power — OPV-based solar parks. Adv. Mater 26, 29–39 (2014).

    CAS  Google Scholar 

  10. Min, J. et al. Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit. Adv. Energy Mater. 7, 1700465 (2017).

    Google Scholar 

  11. Guo, X. et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans. Electron Devices 64, 1906–1921 (2017).

    CAS  Google Scholar 

  12. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    CAS  Google Scholar 

  13. Berggren, M. et al. Ion electron-coupled functionality in materials and devices based on conjugated polymers. Adv. Mater. 31, 1805813 (2019).

    Google Scholar 

  14. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2019).

    Google Scholar 

  15. Simon, D. T., Gabrielsson, E. O., Tybrandt, K. & Berggren, M. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem. Rev. 116, 13009–13041 (2016).

    CAS  Google Scholar 

  16. Zeglio, E., Rutz, A. L., Winkler, T. E., Malliaras, G. G. & Herland, A. Conjugated polymers for assessing and controlling biological functions. Adv. Mater. 31, 1806712 (2019).

    Google Scholar 

  17. Zeglio, E. & Inganäs, O. Active materials for organic electrochemical transistors. Adv. Mater. 30, 1800941 (2018).

    Google Scholar 

  18. Moser, M., Ponder, J. F., Wadsworth, A., Giovannitti, A. & McCulloch, I. Materials in organic electrochemical transistors for bioelectronic applications: past, present, and future. Adv. Funct. Mater. 29, 1807033 (2019).

    Google Scholar 

  19. Inal, S., Rivnay, J., Suiu, A. O., Malliaras, G. G. & McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51, 1368–1376 (2018).

    CAS  Google Scholar 

  20. Larsson, K. C., Kjäll, P. & Richter-Dahlfors, A. Organic bioelectronics for electronic-to-chemical translation in modulation of neuronal signaling and machine-to-brain interfacing. Biochim. Biophys. Acta 1830, 4334–4344 (2013).

    CAS  Google Scholar 

  21. Malliaras, G. G. Organic bioelectronics: a new era for organic electronics. Biochim. Biophys. Acta 1830, 4286–4287 (2013).

    CAS  Google Scholar 

  22. Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).

    CAS  Google Scholar 

  23. van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Google Scholar 

  24. Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    CAS  Google Scholar 

  25. Brédas, J. L., Calbert, J. P., da Silva Filho, D. A. & Cornil, J. Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl Acad. Sci. USA 99, 5804–5809 (2002).

    Google Scholar 

  26. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    CAS  Google Scholar 

  27. Mas-Torrent, M. & Rovira, C. Role of molecular order and solid-state structure in organic field-effect transistors. Chem. Rev. 111, 4833–4856 (2011).

    CAS  Google Scholar 

  28. Martinez, C. R. & Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 3, 2191–2201 (2012).

    CAS  Google Scholar 

  29. Wang, C., Dong, H., Jiang, L. & Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 47, 422–500 (2018).

    CAS  Google Scholar 

  30. Podzorov, V. Organic single crystals: addressing the fundamentals of organic electronics. MRS Bull. 38, 15–24 (2013).

    Google Scholar 

  31. Stingelin, N. On the phase behaviour of organic semiconductors. Polym. Int. 61, 866–873 (2012).

    CAS  Google Scholar 

  32. Diao, Y., Shaw, L., Bao, Z. & Mannsfeld, S. C. B. Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014).

    CAS  Google Scholar 

  33. Osaka, I. & McCullough, R. D. Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 41, 1202–1214 (2008).

    CAS  Google Scholar 

  34. Beaujuge, P. M. & Fréchet, J. M. J. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133, 20009–20029 (2011).

    CAS  Google Scholar 

  35. Henson, Z. B., Müllen, K. & Bazan, G. C. Design strategies for organic semiconductors beyond the molecular formula. Nat. Chem. 4, 699–704 (2012).

    CAS  Google Scholar 

  36. Mei, J., Diao, Y., Appleton, A. L., Fang, L. & Bao, Z. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724–6746 (2013).

    CAS  Google Scholar 

  37. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    CAS  Google Scholar 

  38. Rivnay, J., Noriega, R., Kline, R. J., Salleo, A. & Toney, M. F. Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84, 045203 (2011).

    Google Scholar 

  39. DeLongchamp, D. M., Kline, R. J., Fischer, D. A., Richter, L. J. & Toney, M. F. Molecular characterization of organic electronic films. Adv. Mater. 23, 319–337 (2011).

    CAS  Google Scholar 

  40. Rivnay, J., Mannsfeld, S. C. B., Miller, C. E., Salleo, A. & Toney, M. F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012).

    CAS  Google Scholar 

  41. Newbloom, G. M., Kanekal, K., Richards, J. J. & Pozzo, L. D. in Semiconducting Polymers: Controlled Synthesis and Microstructure Ch. 5 (ed. Luscombe, C.) 163–186 (Royal Society of Chemistry, 2016).

  42. Cavaye, H. Neutron spectroscopy: an under-utilised tool for organic electronics research? Angew. Chem. Int. Ed. 58, 9338–9346 (2019).

    CAS  Google Scholar 

  43. Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008).

    CAS  Google Scholar 

  44. Panova, O. et al. Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nat. Mater. 18, 860–865 (2019).

    CAS  Google Scholar 

  45. Takacs, C. J., Brady, M. A., Treat, N. D., Kramer, E. J. & Chabinyc, M. L. Quadrites and crossed-chain crystal structures in polymer semiconductors. Nano Lett. 14, 3096–3101 (2014).

    CAS  Google Scholar 

  46. Ewbank, P. C., Stefan, M. C., Sauvé, G. & McCullough, R. D. in Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics Ch. 2 (eds Perepichka, I. F. & Perepichka, D. F.) 157–217 (Wiley, 2009).

  47. Warr, D. A. et al. Sequencing conjugated polymers by eye. Sci. Adv. 4, eaas9543 (2018).

    Google Scholar 

  48. Brown, S. P. & Spiess, H. W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 101, 4125–4156 (2001).

    CAS  Google Scholar 

  49. Hansen, M. R., Graf, R. & Spiess, H. W. Solid-state NMR in macromolecular systems: insights on how molecular entities move. Acc. Chem. Res. 46, 1996–2007 (2013).

    CAS  Google Scholar 

  50. Hansen, M. R., Graf, R. & Spiess, H. W. Interplay of structure and dynamics in functional macromolecular and supramolecular systems as revealed by magnetic resonance spectroscopy. Chem. Rev. 116, 1272–1308 (2016).

    CAS  Google Scholar 

  51. Snyder, C. R., DeLongchamp, D. M., Nieuwendaal, R. C. & Herzing, A. A. in Semiconducting Polymers: Controlled Synthesis and Microstructure Ch. 7 (ed. Luscombe, C.) 219–274 (Royal Society of Chemistry, 2016).

  52. Spiess, H. W. 50th anniversary perspective: the importance of NMR spectroscopy to macromolecular science. Macromolecules 50, 1761–1777 (2017).

    CAS  Google Scholar 

  53. Nieuwendaal, R. in NMR Methods for Characterization of Synthetic and Natural Polymers Ch. 15 (eds. Zhang, R., Miyoshi, T. & Sun, P.) 325–362 (Royal Society of Chemistry, 2019).

  54. Selter, P. & Hansen, M. R. in NMR Methods for Characterization of Synthetic and Natural Polymers Ch. 16 (eds. Zhang, R., Miyoshi, T. & Sun, P.) 363–386 (Royal Society of Chemistry, 2019).

  55. Mehring, M. High Resolution NMR Spectroscopy in Solids (Springer-Verlag, 1976).

  56. Street, G. B. & Clarke, T. C. Conducting polymers: a review of recent work. IBM J. Res. Dev. 25, 51–57 (1981).

    CAS  Google Scholar 

  57. Kolbert, A. C. et al. NMR evidence for the metallic nature of highly conducting polyaniline. Phys. Rev. B 51, 1541–1545 (1995).

    CAS  Google Scholar 

  58. Schmidt-Rohr, K. & Spiess, H. Multidimensional Solid-State NMR and Polymers (Academic, 1994).

  59. Duer, M. J. (ed.) Introduction to Solid-State NMR Spectroscopy (Wiley-Blackwell, 2005).

  60. Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2008).

  61. Hodgkinson, P. (ed.) Modern Methods in Solid-State NMR: A Practitioner’s Guide (Royal Society of Chemistry, 2018).

  62. Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4, 331–348 (2019).

    Google Scholar 

  63. Brouwer, D. H. et al. A general protocol for determining the structures of molecularly ordered but noncrystalline silicate frameworks. J. Am. Chem. Soc. 135, 5641–5655 (2013).

    CAS  Google Scholar 

  64. Dudenko, D. et al. A strategy for revealing the packing in semicrystalline π-conjugated polymers: crystal structure of bulk poly-3-hexyl-thiophene (P3HT). Angew. Chem. Int. Ed. 51, 11068–11072 (2012).

    CAS  Google Scholar 

  65. Pickard, C. J., Salager, E., Pintacuda, G., Elena, B. & Emsley, L. Resolving structures from powders by NMR crystallography using combined proton spin diffusion and plane wave DFT calculations. J. Am. Chem. Soc. 129, 8932–8933 (2007).

    CAS  Google Scholar 

  66. Bryce, D. L. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ 4, 350–359 (2017).

    CAS  Google Scholar 

  67. Suzuki, F., Fukushima, T., Fukuchi, M. & Kaji, H. Refined structure determination of blue-emitting tris(8-hydroxyquinoline) aluminum(III) (Alq3) by the combined use of cross-polarization/magic-angle spinning 13C solid-state NMR and first-principles calculation. J. Phys. Chem. C 117, 18809–18817 (2013).

    CAS  Google Scholar 

  68. Olivier, Y. et al. 25th Anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 2119–2136 (2014).

    CAS  Google Scholar 

  69. Chaudhari, S. R. et al. Donor–acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy. Chem. Sci. 8, 3126–3136 (2017).

    CAS  Google Scholar 

  70. Brus, J. et al. Efficient strategy for determining the atomic-resolution structure of micro- and nanocrystalline solids within polymeric microbeads: domain-edited NMR crystallography. Macromolecules 51, 5364–5374 (2018).

    CAS  Google Scholar 

  71. Gélinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    Google Scholar 

  72. Bredas, J.-L. When electrons leave holes in organic solar cells. Science 343, 492–493 (2014).

    CAS  Google Scholar 

  73. Hinderberger, D. in EPR Spectroscopy: Applications in Chemistry and Biology (eds. Drescher, M. & Jeschke, G.) 67–89 (Springer, 2012).

  74. Niklas, J. & Poluektov, O. G. Charge transfer processes in OPV materials as revealed by EPR spectroscopy. Adv. Energy Mater. 7, 1602226 (2017).

    Google Scholar 

  75. Biskup, T. Structure–function relationship of organic semiconductors: detailed insights from time-resolved EPR spectroscopy. Front. Chem. 7, 10 (2019).

    CAS  Google Scholar 

  76. Liu, Y. et al. Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat. Protoc. 14, 217–247 (2019).

    CAS  Google Scholar 

  77. Tonelli, A. E. & Schilling, F. C. Carbon-13 NMR chemical shifts and the microstructure of polymers. Acc. Chem. Res. 14, 233–238 (1981).

    CAS  Google Scholar 

  78. Born, R. & Spiess, H. W. Conformational effects and configurational splitting in 13C NMR spectra of synthetic polymers as investigated by ab initio individual gauges for localized molecular orbitals (IGLO) calculations. Macromolecules 28, 7785–7795 (1995).

    CAS  Google Scholar 

  79. Melnyk, A. et al. Macroscopic structural compositions of π-conjugated polymers: combined insights from solid-state NMR and molecular dynamics simulations. J. Phys. Chem. Lett. 8, 4155–4160 (2017).

    CAS  Google Scholar 

  80. Snyder, C. R. et al. Quantifying crystallinity in high molar mass poly(3-hexylthiophene). Macromolecules 47, 3942–3950 (2014).

    CAS  Google Scholar 

  81. Yuan, Y. et al. Multiple chain packing and phase composition in regioregular poly(3-butylthiophene) films. Macromolecules 49, 9493–9506 (2016).

    CAS  Google Scholar 

  82. Nieuwendaal, R. C., Snyder, C. R. & DeLongchamp, D. M. Measuring order in regioregular poly(3-hexylthiophene) with solid-state 13C CPMAS NMR. ACS Macro Lett. 3, 130–135 (2014).

    CAS  Google Scholar 

  83. Shen, X., Hu, W. & Russell, T. P. Measuring the degree of crystallinity in semicrystalline regioregular poly(3-hexylthiophene). Macromolecules 49, 4501–4509 (2016). This paper presents a combined X-ray diffraction, mass density and 13C ssNMR approach for the quantification of the absolute degree of crystallinity in regioregular P3HT.

    CAS  Google Scholar 

  84. Karki, A. et al. Unifying energetic disorder from charge transport and band bending in organic semiconductors. Adv. Funct. Mater. 29, 1901109 (2019).

    Google Scholar 

  85. Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    CAS  Google Scholar 

  86. Parmer, J. E. et al. Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene). Appl. Phys. Lett. 92, 113309 (2008).

    Google Scholar 

  87. Hoefler, S. F. et al. The effect of polymer molecular weight on the performance of PTB7-Th:O-IDTBR non-fullerene organic solar cells. J. Mater. Chem. A 6, 9506–9516 (2018).

    CAS  Google Scholar 

  88. Hamadani, B. H., Gundlach, D. J., McCulloch, I. & Heeney, M. Undoped polythiophene field-effect transistors with mobility of 1 cm2 V−1 s−1. Appl. Phys. Lett. 91, 243512 (2007).

    Google Scholar 

  89. Kolodziejski, W. & Klinowski, J. Kinetics of cross-polarization in solid-state NMR:  a guide for chemists. Chem. Rev. 102, 613–628 (2002).

    CAS  Google Scholar 

  90. Wu, C. H., Ramamoorthy, A. & Opella, S. J. High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J. Magn. Reson. A 109, 270–272 (1994).

    Google Scholar 

  91. De Paëpe, G. et al. Transverse dephasing optimized solid-state NMR spectroscopy. J. Am. Chem. Soc. 125, 13938–13939 (2003).

    Google Scholar 

  92. Andrew, E. R. Magic angle spinning in solid state n.m.r. spectroscopy. Philos. Trans. R. Soc. A 299, 505–520 (1981).

    CAS  Google Scholar 

  93. Nishiyama, Y. et al. Characterization of local structures in amorphous and crystalline tris(8-hydroxyquinoline) aluminum(III) (Alq3) by solid-state 27Al MQMAS NMR spectroscopy. Chem. Phys. Lett. 471, 80–84 (2009).

    CAS  Google Scholar 

  94. Beaujuge, P. M. et al. Synthetic principles directing charge transport in low-band-gap dithienosilole–benzothiadiazole copolymers. J. Am. Chem. Soc. 134, 8944–8957 (2012).

    CAS  Google Scholar 

  95. Lemaur, V. et al. On the supramolecular packing of high electron mobility naphthalene diimide copolymers: the perfect registry of asymmetric branched alkyl side chains. Macromolecules 46, 8171–8178 (2013).

    CAS  Google Scholar 

  96. Niedzialek, D. et al. Probing the relation between charge transport and supramolecular organization down to ångström resolution in a benzothiadiazole-cyclopentadithiophene copolymer. Adv. Mater. 25, 1939–1947 (2013). In this report, a combination of molecular modelling, X-ray scattering and ssNMR is used to show that the longitudinal displacement of conjugated polymer backbones by a few ångströms has a profound effect on the electronic coupling mediating charge transport.

    CAS  Google Scholar 

  97. Pisula, W. et al. Solid-state organization and ambipolar field-effect transistors of benzothiadiazole-cyclopentadithiophene copolymer with long branched alkyl side chains. Polymers 5, 833–846 (2013).

    Google Scholar 

  98. Do, K. et al. Impact of fluorine substituents on π-conjugated polymer main-chain conformations, packing, and electronic couplings. Adv. Mater. 28, 8197–8205 (2016).

    CAS  Google Scholar 

  99. Bohle, A. et al. A generalized packing model for bulk crystalline regioregular poly(3-alkylthiophenes) with extended side chains. Macromol. Chem. Phys. 219, 1700266 (2018).

    Google Scholar 

  100. Lo, C. K. et al. Every atom counts: elucidating the fundamental impact of structural change in conjugated polymers for organic photovoltaics. Chem. Mater. 30, 2995–3009 (2018).

    CAS  Google Scholar 

  101. Brinkmann, M. et al. Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III). J. Am. Chem. Soc. 122, 5147–5157 (2000).

    CAS  Google Scholar 

  102. Amati, M. & Lelj, F. Luminescent compounds fac- and mer-aluminum tris(quinolin-8-olate). A pure and hybrid density functional theory and time-dependent density functional theory investigation of their electronic and spectroscopic properties. J. Phys. Chem. A 107, 2560–2569 (2003).

    CAS  Google Scholar 

  103. Kaji, H., Kusaka, Y., Onoyama, G. & Horii, F. CP/MAS 13C NMR characterization of the isomeric states and intermolecular packing in tris(8-hydroxyquinoline) aluminum(III) (Alq3). J. Am. Chem. Soc. 128, 4292–4297 (2006).

    CAS  Google Scholar 

  104. Baldacchini, G., Chiacchiaretta, P., Reisfeld, R. & Zigansky, E. The origin of luminescence blueshifts in Alq3 composites. J. Lumin. 129, 1849–1852 (2009).

    CAS  Google Scholar 

  105. Tsuboi, T. & Torii, Y. Photoluminescence characteristics of green and blue emitting Alq3 organic molecules in crystals and thin films. J. Non-Cryst. Solids 356, 2066–2069 (2010).

    CAS  Google Scholar 

  106. Bi, H. et al. fac-Alq3 and mer-Alq3 nano/microcrystals with different emission and charge-transporting properties. Adv. Mater. 22, 1631–1634 (2010).

    CAS  Google Scholar 

  107. Bi, H. et al. A green emissive amorphous fac-Alq3 solid generated by grinding crystalline blue fac-Alq3 powder. Chem. Commun. 47, 4135–4137 (2011).

    CAS  Google Scholar 

  108. Muccini, M. et al. Blue luminescence of facial tris(quinolin-8-olato)aluminum(III) in solution, crystals, and thin films. Adv. Mater. 16, 861–864 (2004).

    CAS  Google Scholar 

  109. Cölle, M., Dinnebier, R. E. & Brütting, W. The structure of the blue luminescent δ-phase of tris(8-hydroxyquinoline)aluminium(iii) (Alq3). Chem. Commun. (23), 2908–2909 (2002).

    Google Scholar 

  110. Kaji, H., Kusaka, Y., Onoyama, G. & Horii, F. Relationships between light-emitting properties and different isomers in polymorphs of tris(8-hydroxyquinoline) aluminum(III) (Alq3) analyzed by solid-state 27Al NMR and density functional theory (DFT) calculations. Jpn J. Appl. Phys. 44, 3706 (2005).

    CAS  Google Scholar 

  111. Nandagopal, M., Mathai, M., Papadimitrakopoulos, F. & Utz, M. in Modern Magnetic Resonance (ed. Webb, G. A.) 1539–1545 (Springer, 2006).

  112. Goswami, M., Nayak, P. K., Periasamy, N. & Madhu, P. K. Characterisation of different polymorphs of tris(8-hydroxyquinolinato)aluminium(III) using solid-state NMR and DFT calculations. Chem. Cent. J. 3, 15 (2009).

    Google Scholar 

  113. Luzio, A. et al. Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors. Nat. Commun. 10, 3365 (2019).

    Google Scholar 

  114. Stalder, R. et al. Ambipolar charge transport in isoindigo-based donor–acceptor polymers. Chem. Mater. 28, 1286–1297 (2016).

    CAS  Google Scholar 

  115. Rankin, A. G. M., Trébosc, J., Pourpoint, F., Amoureux, J.-P. & Lafon, O. Recent developments in MAS DNP-NMR of materials. Solid State Nucl. Magn. Reson. 101, 116–143 (2019).

    CAS  Google Scholar 

  116. Lilly Thankamony, A. S., Wittmann, J. J., Kaushik, M. & Corzilius, B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 102–103, 120–195 (2017).

    Google Scholar 

  117. Rossini, A. J. et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46, 1942–1951 (2013).

    CAS  Google Scholar 

  118. Barnes, A. B. et al. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl. Magn. Reson. 34, 237–263 (2008).

    CAS  Google Scholar 

  119. Miller, N. C. et al. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. Adv. Mater. 24, 6071–6079 (2012).

    CAS  Google Scholar 

  120. Clauss, J., Schmidt-Rohr, K. & Spiess, H. W. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym. 44, 1–17 (1993).

    CAS  Google Scholar 

  121. Schlagnitweit, J. et al. A solid-state NMR method to determine domain sizes in multi-component polymer formulations. J. Magn. Reson. 261, 43–48 (2015).

    CAS  Google Scholar 

  122. Nieuwendaal, R. C. et al. Measuring domain sizes and compositional heterogeneities in P3HT-PCBM bulk heterojunction thin films with 1H spin diffusion NMR spectroscopy. Adv. Funct. Mater. 22, 1255–1266 (2012). ssNMR 1H spin-diffusion measurements and analyses show that the presence of a significant population of domains of tens of nanometres in size is a common feature of high-performance OPV BHJ photoactive layers.

    CAS  Google Scholar 

  123. Heeger, A. J. 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26, 10–28 (2014).

    CAS  Google Scholar 

  124. Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 4, 229–242 (2019).

    Google Scholar 

  125. Zalar, P., Henson, Z. B., Welch, G. C., Bazan, G. C. & Nguyen, T.-Q. Color tuning in polymer light-emitting diodes with Lewis acids. Angew. Chem. Int. Ed. 51, 7495–7498 (2012).

    CAS  Google Scholar 

  126. Wang, Z. et al. The role of weak molecular dopants in enhancing the performance of solution-processed organic field-effect transistors. Adv. Electron. Mater. 5, 1800547 (2019).

    Google Scholar 

  127. Lüssem, B. et al. Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016).

    Google Scholar 

  128. Zhang, G. et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 118, 3447–3507 (2018).

    CAS  Google Scholar 

  129. Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

    CAS  Google Scholar 

  130. Lüssem, B., Riede, M. & Leo, K. Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013).

    Google Scholar 

  131. Reineke, S. & Baldo, M. A. Recent progress in the understanding of exciton dynamics within phosphorescent OLEDs. Phys. Status Solidi A 209, 2341–2353 (2012).

    CAS  Google Scholar 

  132. Salzmann, I., Heimel, G., Oehzelt, M., Winkler, S. & Koch, N. Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res. 49, 370–378 (2016).

    CAS  Google Scholar 

  133. Street, R. A. Electronic structure and properties of organic bulk-heterojunction interfaces. Adv. Mater. 28, 3814–3830 (2016).

    CAS  Google Scholar 

  134. Burke, T. M., Sweetnam, S., Vandewal, K. & McGehee, M. D. Beyond Langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv. Energy Mater. 5, 1500123 (2015).

    Google Scholar 

  135. Vandewal, K. Interfacial charge transfer states in condensed phase systems. Annu. Rev. Phys. Chem. 67, 113–133 (2016).

    CAS  Google Scholar 

  136. Lin, Y. L., Fusella, M. A. & Rand, B. P. The impact of local morphology on organic donor/acceptor charge transfer states. Adv. Energy Mater. 8, 1702816 (2018).

    Google Scholar 

  137. Coropceanu, V., Chen, X.-K., Wang, T., Zheng, Z. & Brédas, J.-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 4, 689–707 (2019).

    Google Scholar 

  138. Karki, A. et al. Understanding the high performance of over 15% efficiency in single-junction bulk heterojunction organic solar cells. Adv. Mater. 31, 1903868 (2019). This study demonstrates how multiple techniques, including ssNMR spectroscopic characterization of donor–acceptor interfaces and device physics, are used to establish structure–property relationships of a high-performance BHJ blend.

    CAS  Google Scholar 

  139. Ryno, S. M., Ravva, M. K., Chen, X., Li, H. & Brédas, J.-L. Molecular understanding of fullerene–electron donor interactions in organic solar cells. Adv. Energy Mater. 7, 1601370 (2017).

    Google Scholar 

  140. Graham, K. R. et al. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J. Am. Chem. Soc. 136, 9608–9618 (2014). Two-dimensional heteronuclear ssNMR spectroscopy is used to study the effect of steric interactions on the intermolecular contacts of fullerene with the electron-rich or electron-deficient subunits of a conjugated polymer, and on the power-conversion efficiencies of OPV devices.

    CAS  Google Scholar 

  141. Nieuwendaal, R. C. et al. Characterization of interfacial structure in polymer-fullerene bulk heterojunctions via 13C{2H} rotational echo double resonance NMR. Phys. Rev. Lett. 121, 026101 (2018).

    CAS  Google Scholar 

  142. Zhang, T. et al. Impact of side-chain length on the phase structures of P3ATs and P3AT:PCBM films as revealed by SSNMR and FTIR. J. Polym. Sci. B Polym. Phys. 56, 751–761 (2018).

    CAS  Google Scholar 

  143. Wang, C. et al. Intermolecular arrangement of fullerene acceptors proximal to semiconducting polymers in mixed bulk heterojunctions. Angew. Chem. Int. Ed. 57, 7034–7039 (2018).

    CAS  Google Scholar 

  144. Etzold, F. et al. Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC70BM and PCPDTBT:PC60BM organic solar cells. Energy Environ. Sci. 8, 1511–1522 (2015).

    CAS  Google Scholar 

  145. Etzold, F. et al. The effect of solvent additives on morphology and excited-state dynamics in PCPDTBT:PCBM photovoltaic blends. J. Am. Chem. Soc. 134, 10569–10583 (2012).

    CAS  Google Scholar 

  146. Lee, J. K. et al. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619–3623 (2008).

    CAS  Google Scholar 

  147. Liao, H.-C. et al. Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16, 326–336 (2013).

    CAS  Google Scholar 

  148. McDowell, C., Abdelsamie, M., Toney, M. F. & Bazan, G. C. Solvent additives: key morphology-directing agents for solution-processed organic solar cells. Adv. Mater. 30, 1707114 (2018).

    Google Scholar 

  149. Perez, L. et al. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25, 6380–6384 (2013).

    CAS  Google Scholar 

  150. Sharenko, A., Gehrig, D., Laquai, F. & Nguyen, T.-Q. The effect of solvent additive on the charge generation and photovoltaic performance of a solution-processed small molecule:perylene diimide bulk heterojunction solar cell. Chem. Mater. 26, 4109–4118 (2014).

    CAS  Google Scholar 

  151. Abate, A. et al. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013).

    CAS  Google Scholar 

  152. Cochran, J. E. et al. Molecular interactions and ordering in electrically doped polymers: blends of PBTTT and F4TCNQ. Macromolecules 47, 6836–6846 (2014).

    CAS  Google Scholar 

  153. Yurash, B. et al. Atomic-level insight into the postsynthesis band gap engineering of a Lewis base polymer using Lewis acid tris(pentafluorophenyl)borane. Chem. Mater. 31, 6715–6725 (2019). In this study, 2D ssNMR spectroscopy is used to resolve the local structure of a doped conjugated polymer–Lewis acid complex, the formation of which is correlated to the different thin-film optoelectronic properties before and after doping.

    CAS  Google Scholar 

  154. Hynynen, J. et al. Enhanced electrical conductivity of molecularly p-doped poly(3-hexylthiophene) through understanding the correlation with solid-state order. Macromolecules 50, 8140–8148 (2017).

    CAS  Google Scholar 

  155. Hamidi-Sakr, A. et al. A versatile method to fabricate highly in-plane aligned conducting polymer films with anisotropic charge transport and thermoelectric properties: the key role of alkyl side chain layers on the doping mechanism. Adv. Funct. Mater. 27, 1700173 (2017).

    Google Scholar 

  156. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    CAS  Google Scholar 

  157. Schuettfort, T. et al. Microstructure of polycrystalline PBTTT films: domain mapping and structure formation. ACS Nano 6, 1849–1864 (2012).

    CAS  Google Scholar 

  158. Chabinyc, M. L., Toney, M. F., Kline, R. J., McCulloch, I. & Heeney, M. X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). J. Am. Chem. Soc. 129, 3226–3237 (2007).

    CAS  Google Scholar 

  159. Cho, E. et al. Three-dimensional packing structure and electronic properties of biaxially oriented poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) films. J. Am. Chem. Soc. 134, 6177–6190 (2012).

    CAS  Google Scholar 

  160. Brocorens, P. et al. Solid-state supramolecular organization of polythiophene chains containing thienothiophene units. Adv. Mater. 21, 1193–1198 (2009).

    CAS  Google Scholar 

  161. Vakhshouri, K. & Gomez, E. D. Effect of crystallization kinetics on microstructure and charge transport of polythiophenes. Macromol. Rapid Commun. 33, 2133–2137 (2012).

    CAS  Google Scholar 

  162. Yazawa, K., Inoue, Y., Yamamoto, T. & Asakawa, N. Twist glass transition in regioregulated poly(3-alkylthiophene). Phys. Rev. B 74, 094204 (2006).

    Google Scholar 

  163. Yazawa, K., Inoue, Y., Shimizu, T., Tansho, M. & Asakawa, N. Molecular dynamics of regioregular poly(3-hexylthiophene) investigated by NMR relaxation and an interpretation of temperature dependent optical absorption. J. Phys. Chem. B 114, 1241–1248 (2010). In this paper, the phase transitions induced by the molecular motion of the aliphatic side chains in P3HT are probed by in situ 13C ssNMR spectroscopy and nuclear spin relaxometry.

    CAS  Google Scholar 

  164. Martini, F. et al. P3HT/PCBM photoactive materials for solar cells: morphology and dynamics by means of solid-state NMR. J. Phys. Chem. C 117, 131–139 (2013).

    CAS  Google Scholar 

  165. Zhan, P. et al. Side chain length affects backbone dynamics in poly(3-alkylthiophene)s. J. Polym. Sci. B Polym. Phys. 56, 1193–1202 (2018).

    CAS  Google Scholar 

  166. Chung, H. et al. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 9, 278 (2018).

    Google Scholar 

  167. Kolbert, A. C., Sariciftci, N. S., Gaudl, K. U., Baeuerle, P. & Mehring, M. Motional dynamics in polythiophenes: a solid-state proton NMR study. J. Am. Chem. Soc. 113, 8243–8246 (1991).

    CAS  Google Scholar 

  168. Reddy, G. N. M. et al. Co-existence of distinct supramolecular assemblies in solution and in the solid state. Chem. Eur. J. 23, 2315–2322 (2017).

    CAS  Google Scholar 

  169. Shu, J. et al. Coexistence of helical morphologies in columnar stacks of star-shaped discotic hydrazones. J. Am. Chem. Soc. 135, 11075–11086 (2013).

    CAS  Google Scholar 

  170. Reddy, G. N. M., Ballesteros-Garrido, R., Lacour, J. & Caldarelli, S. Determination of labile chiral supramolecular ion pairs by chromatographic NMR spectroscopy. Angew. Chem. Int. Ed. 125, 3337–3340 (2013).

    Google Scholar 

  171. Herkert, L. et al. Pathway control in cooperative vs. anti-cooperative supramolecular polymers. Angew. Chem. Int. Ed. 58, 11344–11349 (2019).

    CAS  Google Scholar 

  172. Langenstroer, A. et al. Unraveling concomitant packing polymorphism in metallosupramolecular polymers. J. Am. Chem. Soc. 141, 5192–5200 (2019).

    CAS  Google Scholar 

  173. Wolf, J. et al. Benzo[1,2-b:4,5-b′]dithiophene–pyrido[3,4-b]pyrazine small-molecule donors for bulk heterojunction solar cells. Chem. Mater. 28, 2058–2066 (2016).

    CAS  Google Scholar 

  174. Wang, K. et al. Donor and acceptor unit sequences influence material performance in benzo[1,2-b:4,5-b′]dithiophene–6,7-difluoroquinoxaline small molecule donors for BHJ solar cells. Adv. Funct. Mater. 26, 7103–7114 (2016).

    CAS  Google Scholar 

  175. Shaibat, M. A., Casabianca, L. B., Siberio-Pérez, D. Y., Matzger, A. J. & Ishii, Y. Distinguishing polymorphs of the semiconducting pigment copper phthalocyanine by solid-state NMR and Raman spectroscopy. J. Phys. Chem. B 114, 4400–4406 (2010).

    CAS  Google Scholar 

  176. Zhou, C. et al. Topological transformation of π-conjugated molecules reduces resistance to crystallization. Angew. Chem. Int. Ed. 56, 9318–9321 (2017).

    CAS  Google Scholar 

  177. Seifrid, M. T., Reddy, G. N. M., Zhou, C., Chmelka, B. F. & Bazan, G. C. Direct observation of the relationship between molecular topology and bulk morphology for a π-conjugated material. J. Am. Chem. Soc. 141, 5078–5082 (2019). This study shows how a combination of in situ NMR spectroscopy and DFT analysis can be used to probe a change in molecular conformation from twisted to planar between amorphous and ordered solid-state morphologies, respectively.

    CAS  Google Scholar 

  178. Kropewnicki, M. L. et al. Determination of molecular orientational order in cold-stretched poly(p-phenylene vinylene) thin films by DECODER 13C NMR. Solid State Nucl. Magn. Reson. 22, 275–297 (2002).

    CAS  Google Scholar 

  179. Suzuki, K. et al. Analysis of molecular orientation in organic semiconducting thin films using static dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 56, 14842–14846 (2017).

    CAS  Google Scholar 

  180. Street, R. A. Unraveling charge transport in conjugated polymers. Science 341, 1072–1073 (2013).

    CAS  Google Scholar 

  181. Zhang, X. et al. Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 4, 2238 (2013).

    Google Scholar 

  182. Tsao, H. N. et al. Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605–2612 (2011).

    CAS  Google Scholar 

  183. Nishiyama, Y., Fukushima, T., Fukuchi, M., Fujimura, S. & Kaji, H. Sensitivity boosting in solid-state NMR of thin organic semiconductors by a paramagnetic dopant of copper phthalocyanine. Chem. Phys. Lett. 556, 195–199 (2013).

    CAS  Google Scholar 

  184. Bryce, D. L. New frontiers for solid-state NMR across the periodic table: a snapshot of modern techniques and instrumentation. Dalton Trans. 48, 8014–8020 (2019).

    CAS  Google Scholar 

  185. Chen, P. et al. Magic angle spinning spheres. Sci. Adv. 4, eaau1540 (2018).

    Google Scholar 

  186. Samoson, A. H-MAS. J. Magn. Reson. 306, 167–172 (2019).

    CAS  Google Scholar 

  187. Reddy, G. N. M., Malon, M., Marsh, A., Nishiyama, Y. & Brown, S. P. Fast magic-angle spinning three-dimensional NMR experiment for simultaneously probing H–H and N–H proximities in solids. Anal. Chem. 88, 11412–11419 (2016).

    CAS  Google Scholar 

  188. Hong, Y.-L., Reddy, G. N. M. & Nishiyama, Y. Selective detection of active pharmaceutical ingredients in tablet formulations using solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 106, 101651 (2020).

    CAS  Google Scholar 

  189. Lee, S. Sensitive detection of NMR for thin films. Solid State Nucl. Magn. Reson. 71, 1–10 (2015).

    Google Scholar 

  190. Zhao, E. W. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579, 224–228 (2020).

    CAS  Google Scholar 

  191. Griffin, J. M., Forse, A. C. & Grey, C. P. Solid-state NMR studies of supercapacitors. Solid State Nucl. Magn. Reson. 74–75, 16–35 (2016).

    Google Scholar 

  192. Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Google Scholar 

  193. Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    CAS  Google Scholar 

  194. Witherspoon, V. J., Xu, J. & Reimer, J. A. Solid-state NMR investigations of carbon dioxide gas in metal–organic frameworks: insights into molecular motion and adsorptive behavior. Chem. Rev. 118, 10033–10048 (2018).

    CAS  Google Scholar 

  195. Witherspoon, V. J. et al. Translational and rotational motion of C8 aromatics adsorbed in isotropic porous media (MOF-5): NMR studies and MD simulations. J. Phys. Chem. C 121, 15456–15462 (2017).

    CAS  Google Scholar 

  196. Forse, A. C. et al. Unexpected diffusion anisotropy of carbon dioxide in the metal–organic framework Zn2(dobpdc). J. Am. Chem. Soc. 140, 1663–1673 (2018).

    CAS  Google Scholar 

  197. Forse, A. C., Altobelli, S. A., Benders, S., Conradi, M. S. & Reimer, J. A. Revisiting anisotropic diffusion of carbon dioxide in the metal–organic framework Zn2(dobpdc). J. Phys. Chem. C 122, 15344–15351 (2018).

    CAS  Google Scholar 

  198. van der Wel, P. C. A. New applications of solid-state NMR in structural biology. Emerg. Top. Life Sci. 2, 57–67 (2018).

    Google Scholar 

  199. Mandala, V. S., Williams, J. K. & Hong, M. Structure and dynamics of membrane proteins from solid-state NMR. Annu. Rev. Biophys. 47, 201–222 (2018).

    CAS  Google Scholar 

  200. Knight, M. J. et al. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc. Natl Acad. Sci.USA 109, 11095–11100 (2012).

    CAS  Google Scholar 

  201. Hou, H. et al. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 25, 1593–1597 (2013).

    CAS  Google Scholar 

  202. Yan, H., Catania, C. & Bazan, G. C. Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems. Adv. Mater. 27, 2958–2973 (2015).

    CAS  Google Scholar 

  203. Garner, L. E., Thomas, A. W., Sumner, J. J., Harvey, S. P. & Bazan, G. C. Conjugated oligoelectrolytes increase current response and organic contaminant removal in wastewater microbial fuel cells. Energy Environ. Sci. 5, 9449–9452 (2012).

    CAS  Google Scholar 

  204. Herland, A. & Inganäs, O. Conjugated polymers as optical probes for protein interactions and protein conformations. Macromol. Rapid Commun. 28, 1703–1713 (2007).

    CAS  Google Scholar 

  205. Yuan, H., Wang, B., Lv, F., Liu, L. & Wang, S. Conjugated-polymer-based energy-transfer systems for antimicrobial and anticancer applications. Adv. Mater. 26, 6978–6982 (2014).

    CAS  Google Scholar 

  206. Gryn’ova, G., Lin, K.-H. & Corminboeuf, C. Read between the molecules: computational insights into organic semiconductors. J. Am. Chem. Soc. 140, 16370–16386 (2018). This perspective article presents the opportunities and challenges in modern computational approaches and methodological strategies for modelling OSC structures and properties.

    Google Scholar 

  207. Paruzzo, F. M. et al. Chemical shifts in molecular solids by machine learning. Nat. Commun. 9, 4501 (2018).

    Google Scholar 

  208. Palkovic, S. D. et al. Roadmap across the mesoscale for durable and sustainable cement paste — a bioinspired approach. Constr. Build. Mater. 115, 13–31 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the US Department of the Navy, Office of Naval Research (award nos. N00014-14-1-0580 and N00014-16-1-2520) and the Mitsubishi Chemical Center for Advanced Materials (MC-CAM). G.N.M.R. gratefully acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 795091. The authors thank M.R. Hansen for helpful discussions and for providing them with ssNMR spectra.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and G.N.M.R. researched the literature and wrote the initial manuscript draft. All authors contributed to the discussion of the content and edited the manuscript before submission.

Corresponding authors

Correspondence to G. N. Manjunatha Reddy, Bradley F. Chmelka or Guillermo C. Bazan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifrid, M., Reddy, G.N.M., Chmelka, B.F. et al. Insight into the structures and dynamics of organic semiconductors through solid-state NMR spectroscopy. Nat Rev Mater 5, 910–930 (2020). https://doi.org/10.1038/s41578-020-00232-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00232-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing