Scalable fabrication and coating methods for perovskite solar cells and solar modules

Abstract

Since the report in 2012 of a solid-state perovskite solar cell (PSC) with a power-conversion efficiency (PCE) of 9.7% and a stability of 500 h, intensive efforts have been made to increase the certified PCE, reaching 25.2% in 2019. The PCE of PSCs now exceeds that of conventional thin-film solar-cell technologies, and the rate at which this increase has been achieved is unprecedented in the history of photovoltaics. Moreover, the development of moisture-stable and heat-stable materials has increased the stability of PSCs. Small-area devices (<1 cm2) are typically fabricated using a spin-coating method; however, this approach may not be suitable for the preparation of the large-area (>100 cm2) substrates required for commercialization. Thus, materials and methods need to be developed for coating large-area PSCs. In this Review, we discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large-area coatings, and provide an overview of the methodologies for achieving high-efficiency perovskite solar modules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Performance of perovskite solar cells.
Fig. 2: Antisolvent engineering and Lewis acid–base adduct methods.
Fig. 3: Cluster-containing precursor solutions for D-bar coating large-area MAPbI3 films.
Fig. 4: Pressure-processing method for large-area perovskite coatings.
Fig. 5: Blade coating of large-area MAPbI3 films.
Fig. 6: Slot-die coating process.
Fig. 7: Spray coating of perovskite films.
Fig. 8: Stamping and vacuum-deposition methods.
Fig. 9: Perovskite solar modules.

References

  1. 1.

    Weber, D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure [German]. Z. Naturforsch. B 33, 1443–1445 (1978).

  2. 2.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  3. 3.

    Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).

  4. 4.

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

  5. 5.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

  6. 6.

    National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2019).

  7. 7.

    Green, M. A. et al. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 27, 3–12 (2019).

  8. 8.

    Park, N.-G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).

  9. 9.

    Chen, J. & Park, N.-G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, 1803019 (2019).

  10. 10.

    Sarritzu, V. et al. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Sci. Rep. 7, 44629 (2017).

  11. 11.

    Park, N.-G. & Segawa, H. Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics 5, 2970–2977 (2018).

  12. 12.

    Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

  13. 13.

    Sherkar, T. S. et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017).

  14. 14.

    Dunlap-Shohl, W. A., Zhou, Y., Padture, N. P. & Mitzi, D. B. Synthetic approaches for halide perovskite thin films. Chem. Rev. 119, 3193–3295 (2019).

  15. 15.

    Doremus, R. H. Precipitation kinetics of ionic salts from solution. J. Phys. Chem. 62, 1068–1075 (1958).

  16. 16.

    Ahn, N., Kang, S. M., Lee, J.-W., Choi, M. & Park, N.-G. Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells. J. Mater. Chem. A 3, 19901–19906 (2015).

  17. 17.

    Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014).

  18. 18.

    Xiao, M. et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014).

  19. 19.

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

  20. 20.

    Paek, S. et al. From nano- to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29, 3490–3498 (2017).

  21. 21.

    Ahn, N. et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015).

  22. 22.

    Lee, J.-W., Kim, H.-S. & Park, N.-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016).

  23. 23.

    Lee, J.-W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).

  24. 24.

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

  25. 25.

    Lee, J.-W., Seol, D.-J., Cho, A.-N. & Park, N.-G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014).

  26. 26.

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

  27. 27.

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

  28. 28.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

  29. 29.

    Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

  30. 30.

    Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).

  31. 31.

    Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

  32. 32.

    Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).

  33. 33.

    Son, D.-Y. et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016).

  34. 34.

    Zhang, Y., Kim, S.-G., Lee, D., Shin, H. & Park, N.-G. Bifacial stamping for high efficiency perovskite solar cells. Energy Environ. Sci. 12, 308–321 (2019).

  35. 35.

    Cui, P. et al. Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150–159 (2019).

  36. 36.

    Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

  37. 37.

    Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018).

  38. 38.

    Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

  39. 39.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

  40. 40.

    Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

  41. 41.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

  42. 42.

    Seok, S. I., Grätzel, M. & Park, N.-G. Methodologies toward highly efficient perovskite solar cells. Small 14, 1704177 (2018).

  43. 43.

    Jeong, D.-N. et al. Perovskite cluster-containing solution for scalable D-bar coating toward high-throughput perovskite solar cells. ACS Energy Lett. 4, 1189–1195 (2019).

  44. 44.

    Zhou, Z. et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. 54, 9705–9709 (2015).

  45. 45.

    Zong, Y. et al. Thin-film transformation of NH4PbI3 to CH3NH3PbI3 perovskite: a methylamine-induced conversion–healing process. Angew. Chem. Int. Ed. 55, 14723–14727 (2016).

  46. 46.

    Pang, S. et al. Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid–gas interaction between HPbI3-CH3NH2 precursor pair. J. Am. Chem. Soc. 138, 750–753 (2016).

  47. 47.

    Ji, F. et al. Simultaneous evolution of uniaxially oriented grains and ultralow-density grain-boundary network in CH3NH3PbI3 perovskite thin films. ACS Energy Lett. 2, 2727–2733 (2017).

  48. 48.

    Chen, H. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017).

  49. 49.

    Zhao, P. et al. Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Adv. Mater. 30, 1802763 (2018).

  50. 50.

    Li, F. et al. A novel strategy for scalable high-efficiency planar perovskite solar cells with new precursors and cation displacement approach. Adv. Mater. 30, 1804454 (2018).

  51. 51.

    Wang, F. et al. Materials toward the upscaling of perovskite solar cells: progress, challenges, and strategies. Adv. Funct. Mater. 28, 1803753 (2018).

  52. 52.

    Kim, J. H., Williams, S. T., Cho, N., Chueh, C. C. & Jen, A. K. Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 5, 1401229 (2015).

  53. 53.

    Yang, Z. et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 5, 1500328 (2015).

  54. 54.

    Deng, Y. et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 8, 1544–1550 (2015).

  55. 55.

    Deng, Y., Wang, Q., Yuan, Y. & Huang, J. Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Mater. Horiz. 2, 578–583 (2015).

  56. 56.

    Hu, Q. et al. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles. Nat. Commun. 8, 15688 (2017).

  57. 57.

    Deng, Y., Dong, Q., Bi, C., Yuan, Y. & Huang, J. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Adv. Energy Mater. 6, 1600372 (2016).

  58. 58.

    Tang, S. et al. Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017).

  59. 59.

    Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

  60. 60.

    He, M. et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun. 8, 16045 (2017).

  61. 61.

    Le Berre, M., Chen, Y. & Baigl, D. From convective assembly to Landau–Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir 25, 2554–2557 (2009).

  62. 62.

    Landau, L. & Levich, B. Dragging of a liquid by a moving plate. Acta Physicochim. URSS 17, 42–54 (1942).

  63. 63.

    Krechetnikov, R. & Homsy, G. M. Surfactant effects in the Landau–Levich problem. J. Fluid Mech. 559, 429–450 (2006).

  64. 64.

    Parvazian, E., Abdollah-zadeh, A., Dehghani, M. & Taghavinia, N. Photovoltaic performance improvement in vacuum-assisted meniscus printed triple-cation mixed-halide perovskite films by surfactant engineering. ACS Appl. Energy Mater. 2, 6209–6217 (2019).

  65. 65.

    Li, C. et al. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with >18% efficiency. J. Am. Chem. Soc. 141, 6345–6351 (2019).

  66. 66.

    Deng, Y. et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018).

  67. 67.

    Krechetnikova, R. & Homsy, G. M. Dip coating in the presence of a substrate-liquid interaction potential. Phys. Fluids 17, 102105 (2005).

  68. 68.

    Mayer, H. C. & Krechetnikov, R. Landau-Levich flow visualization: revealing the flow topology responsible for the film thickening phenomena. Phys. Fluids 24, 052103 (2012).

  69. 69.

    Beguin, A. E. Method of coating strip material. US Patent 2681294 (1954).

  70. 70.

    Ruschak, K. J. Limiting flow in a pre-metered coating device. Chem. Eng. Sci. 31, 1057–1060 (1976).

  71. 71.

    Ding, X., Liu, J. & Harris, T. A. L. A review of the operating limits in slot die coating processes. AIChE J. 62, 2058–2524 (2016).

  72. 72.

    Lee, S. & Nam, J. Analysis of slot coating flow under tilted die. AIChE J. 61, 1745–1758 (2015).

  73. 73.

    Hwang, K. et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015).

  74. 74.

    Krebs, F. C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cell 93, 394–412 (2009).

  75. 75.

    Cotella, G. et al. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cell 159, 362–369 (2017).

  76. 76.

    Kim, J.-E. et al. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cell 179, 80–86 (2018).

  77. 77.

    Qin, T. et al. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31, 210–217 (2017).

  78. 78.

    Bu, T. et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018).

  79. 79.

    Sears, K. K. et al. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes. Sol. RRL 1, 1700059 (2017).

  80. 80.

    Bishop, J. E., Routledge, T. J. & Lidzey, D. G. Advances in spray-cast perovskite solar cells. J. Phys. Chem. Lett. 9, 1977–1984 (2018).

  81. 81.

    Liu, S., Zhang, X., Zhang, L. & Xie, W. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices. Sci. Rep. 6, 37042 (2016).

  82. 82.

    Girotto, C., Moia, D., Rand, B. P. & Heremans, P. High-performance organic solar cells with spray-coated hole-transport and active layers. Adv. Funct. Mater. 21, 64–72 (2011).

  83. 83.

    Gittens, G. Variation of surface tension of water with temperature. J. Colloid Interface Sci. 30, 406–412 (1969).

  84. 84.

    Fanton, X. & Cazabat, A. Spreading and instabilities induced by a solutal Marangoni effect. Langmuir 14, 2554–2561 (1998).

  85. 85.

    Hu, R. et al. Realization of large-scale polymer solar cells using ultrasonic spray technique via solvent engineering. Sol. RRL 2, 1800064 (2018).

  86. 86.

    Zheng, D., Huang, J., Zheng, Y. & Yu, J. High performance airbrush spray coated organic solar cells via tuning the surface tension and saturated vapor pressure of different ternary solvent systems. Org. Electron. 25, 275–282 (2015).

  87. 87.

    Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642 (2016).

  88. 88.

    Chen, H. et al. Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: combining theories with practices. J. Power Sources 402, 82–90 (2018).

  89. 89.

    Barrows, A. T. et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray deposition. Energy Environ. Sci. 7, 2944–2950 (2014).

  90. 90.

    Mohamad, D. K., Griffin, J., Bracher, C., Barrows, A. T. & Lidzey, D. G. Spray-cast multilayer organometal perovskite solar cells fabricated in air. Adv. Energy Mater. 6, 1600994 (2016).

  91. 91.

    Huang, H. et al. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy 27, 352–358 (2016).

  92. 92.

    Lilliu, S. et al. Grain rotation and lattice deformation during perovskite spray coating and annealing probed in situ by GI-WAXS. CrystEngComm 18, 5448–5455 (2016).

  93. 93.

    Rocks, C., Svrcek, V., Maguirea, P. & Mariotti, D. Understanding surface chemistry during MAPbI3 spray deposition and its effect on photovoltaic performance. J. Mater. Chem. C 5, 902–916 (2017).

  94. 94.

    Bishop, J. E., Mohamad, D. K., Wong-Stringer, M., Smith, A. & Lidzey, D. G. Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2. Sci. Rep. 7, 7962 (2017).

  95. 95.

    Chang, W.-C., Lan, D.-H., Lee, K.-M., Wang, X.-F. & Liu, C.-L. Controlled deposition and performance optimization of perovskite solar cells using ultrasonic spray-coating of photoactive layers. ChemSusChem 10, 1405–1412 (2017).

  96. 96.

    Habibi, M., Rahimzadeh, A., Bennouna, I. & Eslamian, M. Defect-free large-area (25 cm2) light absorbing perovskite thin films made by spray coating. Coatings 7, 42 (2017).

  97. 97.

    Park, M. et al. Highly reproducible large-area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3. Small 15, 1804005 (2019).

  98. 98.

    Jiang, Y. et al. Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules. Adv. Energy Mater. 9, 1803047 (2019).

  99. 99.

    Era, M., Hattori, T., Taira, T. & Tsutsui, T. Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chem. Mater. 9, 8–10 (1997).

  100. 100.

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

  101. 101.

    Momblona, C. et al. Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456–3463 (2016).

  102. 102.

    Ávila, J. et al. High voltage vacuum-deposited CH3NH3PbI3–CH3NH3PbI3 tandem solar cells. Energy Environ. Sci. 11, 3292–3297 (2018).

  103. 103.

    Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2016).

  104. 104.

    Borchert, J. et al. Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804 (2017).

  105. 105.

    Fan, P. et al. High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 29910 (2016).

  106. 106.

    Liang, G. et al. Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation. Coatings 8, 256 (2018).

  107. 107.

    Turkevych, I. et al. Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics. Nat. Nanotechnol. 14, 57–63 (2019).

  108. 108.

    Yang, M. et al. Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization. ACS Energy Lett. 3, 322–328 (2018).

  109. 109.

    Di Giacomo, F. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cell 181, 53–59 (2018).

  110. 110.

    Hu, Y. et al. Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Sol. RRL 1, 1600019 (2017).

  111. 111.

    Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

  112. 112.

    Qiu, L. et al. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. J. Mater. Chem. A 7, 6920–6929 (2019).

  113. 113.

    Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

  114. 114.

    Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

  115. 115.

    Rakocevic, L. et al. Interconnection optimization for highly efficient perovskite modules. IEEE J. Photovolt. 7, 404–408 (2017).

  116. 116.

    Walter, A. et al. Closing the cell-to-module efficiency gap: a fully laser scribed perovskite minimodule with 16% steady-state aperture area efficiency. IEEE J. Photovolt. 8, 151–155 (2018).

  117. 117.

    Dagar, J. et al. Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Res. 11, 2669–2681 (2018).

  118. 118.

    Moon, S. et al. Laser-scribing patterning for the production of organometallic halide perovskite solar modules. IEEE J. Photovolt. 5, 1087–1092 (2015).

  119. 119.

    Palma, A. L. et al. Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J. Photovolt. 7, 1674–1680 (2017).

  120. 120.

    Wilkinson, B., Chang, N. L., Green, M. A. & Ho-Baillie, A. W. Y. Scaling limits to large area perovskite solar cell efficiency. Prog. Photovolt. Res. Appl. 26, 659–674 (2018).

  121. 121.

    Extance, A. The reality behind solar power’s next star material. Nature 570, 429–432 (2019).

  122. 122.

    Cheacharoen, R. et al. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018).

  123. 123.

    Cheacharoen, R. et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustain. Energy Fuels 2, 2398–2406 (2018).

  124. 124.

    Fu, Z. et al. Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability. Adv. Funct. Mater. 29, 1809129 (2019).

  125. 125.

    Shi, L. et al. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS Appl. Mater. Interfaces 9, 25073–25081 (2017).

  126. 126.

    Noufi, R. & Zweibel, K. in Proc. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference 317–320 (IEEE, 2016).

  127. 127.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

  128. 128.

    Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

  129. 129.

    Han, Q. et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018).

  130. 130.

    Kim, D. H. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3, 1734–1745 (2019).

  131. 131.

    Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

  132. 132.

    Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

  133. 133.

    Berry, J. J. et al. Perovskite photovoltaics: the path to a printable terawatt-scale technology. ACS Energy Lett. 2, 2540–2544 (2017).

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT of Korea under contracts NRF-2012M3A6A7054861 (Global Frontier R&D Program on Center for Multiscale Energy System), NRF-2016M3D1A1027663 and NRF-2016M3D1A1027664 (Future Materials Discovery Program), and NRF-2015M1A2A2053004 (Climate Change Management Program). The work at the National Renewable Energy Laboratory was supported by the US Department of Energy (DOE) under contract no. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory. K.Z. acknowledges support from the De-risking Halide Perovskite Solar Cells program of the National Center for Photovoltaics, funded by the US DOE, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. The views expressed in this article do not necessarily represent the views of the US DOE or the US Government.

Author information

The authors contributed equally to all aspects of the article.

Correspondence to Nam-Gyu Park or Kai Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, N., Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat Rev Mater (2020). https://doi.org/10.1038/s41578-019-0176-2

Download citation