Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Superatoms in materials science

Abstract

Clusters are ensembles of bound atoms intermediate in size between a molecule and a bulk solid. Some of these clusters form stable units with atomically precise structures that give rise to collective behaviours that mimic those of traditional atoms, essentially functioning as ‘superatoms’. Such superatoms are exciting, nanoscale building blocks for materials design. Sustained synthetic and theoretical efforts over the past 40 years have created a vast library of chemically tuneable superatoms that display unique physical and chemical properties. The use of superatoms as building blocks for materials offers opportunities to design materials with tailored functionalities; however, this potential has only begun to be realized in the past few years. The assembly of superatomic crystals presents numerous challenges, including the design of suitable building blocks, control of the self-assembly process, promotion of strong inter-superatom coupling and understanding the resulting collective properties. In this Review, we assess recent advances in meeting these challenges by focusing on metal chalcogenide and carbon-based clusters (for example, fullerenes) as superatomic building blocks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of superatomic crystals.
Fig. 2: Synthesis and tunability of superatoms.
Fig. 3: Oligomerization of superatoms.
Fig. 4: Monocomponent assemblies of superatoms.
Fig. 5: Structures and collective properties of C60-based superatomic crystals.
Fig. 6: Structural and electronic phase transitions in [Co6Te8(PEt3)6][C70]2.
Fig. 7: Multicomponent superatomic crystals.
Fig. 8: Covalent superatomic crystals.

Similar content being viewed by others

References

  1. Collier, C. P., Vossmeyer, T. & Heath, J. R. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998).

    Article  CAS  Google Scholar 

  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  3. Auyeung, E. et al. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nat. Nanotechnol. 7, 24–28 (2012).

    Article  CAS  Google Scholar 

  4. Khanna, S. N. & Jena, P. Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51, 13705–13716 (1995). A theoretical study of atomic clusters and one of the first mentions of the potential of discrete clusters as building blocks.

    Article  CAS  Google Scholar 

  5. Bergeron, D. E., Castleman, A. W. Jr, Morisato, T. & Khanna, S. N. Formation of Al13I: evidence for the superhalogen character of Al13. Science 304, 84–87 (2004).

    Article  CAS  Google Scholar 

  6. Reber, A. C. & Khanna, S. N. Superatoms: electronic and geometric effects on reactivity. Acc. Chem. Res. 50, 255–263 (2017). A theoretical study of the reactivities of superatoms.

    Article  CAS  Google Scholar 

  7. Jena, P. & Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118, 5755–5870 (2018). A review of the properties of clusters as superatoms and a broad survey of their use as building blocks.

    Article  CAS  Google Scholar 

  8. Steigerwald, M. L. Clusters as small solids. Polyhedron 13, 1245–1252 (1994).

    Article  CAS  Google Scholar 

  9. Dance, I. & Fisher, K. Metal chalcogenide cluster chemistry. Prog. Inorg. Chem. 41, 637–803 (1994). A review of the synthesis of several classes of superatoms and metal chalcogenide clusters.

    CAS  Google Scholar 

  10. MacDonald, D. G. & Corrigan, J. F. Metal chalcogenide nanoclusters with ‘tailored’ surfaces via ‘designer’ silylated chalcogen reagents. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 1455–1472 (2010).

    Article  CAS  Google Scholar 

  11. Pfund, A. H. Bismuth black and its applications. Rev. Sci. Instrum. 1, 397–399 (1930).

    Article  CAS  Google Scholar 

  12. Knight, W. D., Monot, R., Dietz, E. R. & George, A. R. Stern-Gerlach deflection of metallic-cluster beams. Phys. Rev. Lett. 40, 1324–1326 (1978).

    Article  CAS  Google Scholar 

  13. Dietz, T. G., Duncan, M. A., Powers, D. E. & Smalley, R. E. Laser production of supersonic metal cluster beams. J. Chem. Phys. 74, 6511–6512 (1981).

    Article  CAS  Google Scholar 

  14. Knight, W. D. et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141–2143 (1984).

    Article  CAS  Google Scholar 

  15. Bondybey, V. E. & English, J. H. Laser induced fluorescence of metal clusters produced by laser vaporization: gas phase spectrum of Pb2. J. Chem. Phys. 74, 6978–6979 (1981).

    Article  CAS  Google Scholar 

  16. Abreu, M. B., Powell, C., Reber, A. C. & Khanna, S. N. Ligand-induced active sites: reactivity of iodine-protected aluminum superatoms with methanol. J. Am. Chem. Soc. 134, 20507–20512 (2012).

    Article  CAS  Google Scholar 

  17. Palmer, R. E., Cai, R. S. & Vernieres, J. Synthesis without solvents: the cluster (nanoparticle) beam route to catalysts and sensors. Acc. Chem. Res. 51, 2296–2304 (2018).

    Article  CAS  Google Scholar 

  18. Crawford, N. R. M., Hee, A. G. & Long, J. R. Cluster synthesis via ligand-arrested solid growth: triethylphosphine-capped fragments of binary metal chalcogenides. J. Am. Chem. Soc. 124, 14842–14843 (2002).

    Article  CAS  Google Scholar 

  19. Fenske, D., Ohmer, J., Hachgenei, J. & Merzweiler, K. New transition metal clusters with ligands from main groups five and six. Angew. Chem. Int. Ed. 27, 1277–1296 (1988).

    Article  Google Scholar 

  20. Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).

    Article  CAS  Google Scholar 

  21. Sokolov, M. N. & Abramov, P. A. Chalcogenide clusters of groups 8–10 noble metals. Coord. Chem. Rev. 256, 1972–1991 (2012).

    Article  CAS  Google Scholar 

  22. Hidai, M., Kuwata, S. & Mizobe, Y. Synthesis and reactivities at cubane-type sulfido clusters containing noble metals. Acc. Chem. Res. 33, 46–52 (2000).

    Article  CAS  Google Scholar 

  23. Cecconi, F., Ghilardi, C. A. & Midollini, S. A novel paramagnetic octahedral iron cluster: synthesis and X-ray structural characterization of [Fe63-S)8(PEt3)6][BPh4]2. J. Chem. Soc., Chem. Commun. 13, 640–641 (1981).

    Article  Google Scholar 

  24. Brennan, J. G., Siegrist, T., Stuczynski, S. M. & Steigerwald, M. L. The transition from molecules to solids: molecular syntheses of Ni9Te6(PEt3)8, Ni20Te18(PEt3)12, and NiTe. J. Am. Chem. Soc. 111, 9240–9241 (1989).

    Article  CAS  Google Scholar 

  25. Lee, S. C. & Holm, R. H. Nonmolecular metal chalcogenide/halide solids and their molecular cluster analogues. Angew. Chem. Int. Ed. 29, 840–856 (1990).

    Article  Google Scholar 

  26. Speziali, N. L. et al. Single-crystal growth, structure and characterization of the octahedral cluster compound Re6Se8Br2. Mater. Res. Bull. 23, 1597–1604 (1988).

    Article  CAS  Google Scholar 

  27. Fischer, C., Fiechter, S., Tributsch, H., Reck, G. & Schultz, B. Crystal structure and thermodynamic analysis of the new semiconducting Chevrel phase Re6S8Cl2. Ber. Bunsenges. Phys. Chem. 96, 1652–1658 (1992).

    Article  CAS  Google Scholar 

  28. Leduc, L., Perrin, A. & Sergent, M. Structure du dichlorure et octaséléniure d’hexarhénium, Re6Se8Cl2: composé bidimensionnel à clusters octaédriques Re6 [French]. Acta Crystallogr. C 39, 1503–1506 (1983).

    Article  Google Scholar 

  29. Mironov, Y. V., Virovets, A. V., Naumov, N. G., Ikorskii, V. N. & Fedorov, V. E. Excision of the {Mo6Se8} cluster core from a Chevrel phase: synthesis and properties of the first molybdenum octahedral cluster selenocyanide anions [Mo6Se8(CN)6]7− and [Mo6Se8(CN)6]6−. Chem. Eur. J. 6, 1361–1365 (2000).

    Article  CAS  Google Scholar 

  30. Magliocchi, C., Xie, X. B. & Hughbanks, T. A cyanide-bridged chain of Mo6Se8 clusters: a product of cyanide-melt cluster synthesis. Inorg. Chem. 39, 5000–5001 (2000).

    Article  CAS  Google Scholar 

  31. Bájan, B. & Meyer, H. J. Two-dimensional networks in the structure of Li2[Nb6Cl16]. Z. Anorg. Allg. Chem. 623, 791–795 (1997).

    Article  Google Scholar 

  32. Zhang, J. J. & Lachgar, A. Superexpanded Prussian-blue analogue with [Fe(CN)6]4−, [Nb6Cl12(CN)6]4−, and [Mn(salen)]+ as building units. J. Am. Chem. Soc. 129, 250–251 (2007).

    Article  CAS  Google Scholar 

  33. Reber, A. C., Khanna, S. N. & Castleman, A. W. Superatom compounds, clusters, and assemblies: ultra alkali motifs and architectures. J. Am. Chem. Soc. 129, 10189–10194 (2007).

    Article  CAS  Google Scholar 

  34. Chauhan, V., Reber, A. C. & Khanna, S. N. Metal chalcogenide clusters with closed electronic shells and the electronic properties of alkalis and halogens. J. Am. Chem. Soc. 139, 1871–1877 (2017).

    Article  CAS  Google Scholar 

  35. Baran, P. et al. Synthesis, characterization, and study of octanuclear iron-oxo clusters containing a redox-active Fe4O4-cubane core. Inorg. Chem. 47, 645–655 (2008).

    Article  CAS  Google Scholar 

  36. Orto, P. J. et al. Cluster carbonyls of the [Re63-Se)8]2+ core: synthesis, structural characterization, and computational analysis. Dalton Trans. 32, 4247–4253 (2008).

    Article  CAS  Google Scholar 

  37. Yoshimura, T. et al. Direct observation of a {Re63-S)8} core-to-ligand charge-transfer excited state in an octahedral hexarhenium complex. Inorg. Chem. 50, 9918–9920 (2011).

    Article  CAS  Google Scholar 

  38. Turkiewicz, A. et al. Assembling hierarchical cluster solids with atomic precision. J. Am. Chem. Soc. 136, 15873–15876 (2014).

    Article  CAS  Google Scholar 

  39. Chauhan, V., Sahoo, S. & Khanna, S. N. Ni9Te6(PEt3)8C60 is a superatomic superalkali superparamagnetic cluster assembled material (S3-CAM). J. Am. Chem. Soc. 138, 1916–1921 (2016). A theoretical study of the electronic and magnetic properties of [Ni 9Te 6(PEt 3) 8][C 60].

    Article  CAS  Google Scholar 

  40. Reber, A. C., Chauhan, V. & Khanna, S. N. Symmetry and magnetism in Ni9Te6 clusters ligated by CO or phosphine ligands. J. Chem. Phys. 146, 024302 (2017).

    Article  CAS  Google Scholar 

  41. Liu, G. X. et al. Tuning the electronic properties of hexanuclear cobalt sulfide superatoms via ligand substitution. Chem. Sci. 10, 1760–1766 (2019).

    Article  CAS  Google Scholar 

  42. Tulsky, E. G. & Long, J. R. Heterometal substitution in the dimensional reduction of cluster frameworks: synthesis of soluble [Re6−nOsnSe8Cl6](4−n)− (n = 1–3) cluster-containing solids. Inorg. Chem. 40, 6990–7002 (2001).

    Article  CAS  Google Scholar 

  43. Khanna, S. N. & Linderoth, S. Magnetic behavior of clusters of ferromagnetic transition metals. Phys. Rev. Lett. 67, 742–745 (1991).

    Article  CAS  Google Scholar 

  44. Kortus, J., Baruah, T., Pederson, M. R., Ashman, C. & Khanna, S. N. Magnetic moment and anisotropy in FenCom clusters. Appl. Phys. Lett. 80, 4193–4195 (2002).

    Article  CAS  Google Scholar 

  45. Reveles, J. U. et al. Designer magnetic superatoms. Nat. Chem. 1, 310–315 (2009).

    Article  CAS  Google Scholar 

  46. Chauhan, V., Medel, V. M., Reveles, J. U., Khanna, S. N. & Sen, P. Shell magnetism in transition metal doped calcium superatom. Chem. Phys. Lett. 528, 39–43 (2012).

    Article  CAS  Google Scholar 

  47. Zhang, X. X. et al. On the existence of designer magnetic superatoms. J. Am. Chem. Soc. 135, 4856–4861 (2013).

    Article  CAS  Google Scholar 

  48. Xu, X. S., Yin, S. Y., Moro, R. & de Heer, W. A. Magnetic moments and adiabatic magnetization of free cobalt clusters. Phys. Rev. Lett. 95, 237209 (2005).

    Article  CAS  Google Scholar 

  49. Billas, I. M. L., Chatelain, A. & Deheer, W. A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265, 1682–1684 (1994).

    Article  CAS  Google Scholar 

  50. Cox, A. J., Louderback, J. G. & Bloomfield, L. A. Experimental observation of magnetism in rhodium clusters. Phys. Rev. Lett. 71, 923–926 (1993).

    Article  CAS  Google Scholar 

  51. Datta, S. & Saha-Dasgupta, T. Structural, electronic and magnetic properties of transition metal binary alloy clusters with isoelectronic components: case study with MnmTcn, TimZrn and MnmRen. J. Phys. Condens. Matter 25, 225302 (2013).

    Article  CAS  Google Scholar 

  52. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    Article  CAS  Google Scholar 

  53. Bencini, A. & Midollini, S. Some synthetic and theoretical aspects of the chemistry of polynuclear transition-metal complexes. Coord. Chem. Rev. 120, 87–136 (1992).

    Article  CAS  Google Scholar 

  54. Gabriel, J. C. P., Boubekeur, K., Uriel, S. & Batail, P. Chemistry of hexanuclear rhenium chalcohalide clusters. Chem. Rev. 101, 2037–2066 (2001).

    Article  CAS  Google Scholar 

  55. Maverick, A. W. & Gray, H. B. Luminescence and redox photochemistry of the molybdenum(II) cluster Mo6Cl14 2−. J. Am. Chem. Soc. 103, 1298–1300 (1981).

    Article  CAS  Google Scholar 

  56. Shestopalov, M. A. et al. Cluster core controlled reactions of substitution of terminal bromide ligands by triphenylphosphine in octahedral rhenium chalcobromide complexes. J. Am. Chem. Soc. 129, 3714–3721 (2007).

    Article  CAS  Google Scholar 

  57. Kitamura, N. et al. Temperature dependent emission of hexarhenium(III) clusters [Re63-S)8X6]4− (X = Cl, Br, and I): analysis by four excited triplet-state sublevels. Inorg. Chem. 44, 6308–6313 (2005).

    Article  CAS  Google Scholar 

  58. Rosemann, N. W. et al. A highly efficient directional molecular white-light emitter driven by a continuous-wave laser diode. Science 352, 1301–1304 (2016).

    Article  CAS  Google Scholar 

  59. Pinkard, A., Champsaur, A. M. & Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 51, 919–929 (2018).

    Article  CAS  Google Scholar 

  60. Castleman, A. W. & Khanna, S. N. Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C. 113, 2664–2675 (2009).

    Article  CAS  Google Scholar 

  61. Champsaur, A. M. et al. Building diatomic and triatomic superatom molecules. Nano Lett. 16, 5273–5277 (2016).

    Article  CAS  Google Scholar 

  62. Long, J. R., McCarty, L. S. & Holm, R. H. A solid-state route to molecular clusters: access to the solution chemistry of [Re6Q8]2+ (Q = S, Se) core-containing clusters via dimensional reduction. J. Am. Chem. Soc. 118, 4603–4616 (1996).

    Article  CAS  Google Scholar 

  63. Zheng, Z. P., Long, J. R. & Holm, R. H. A basis set of Re6Se8 cluster building blocks and demonstration of their linking capability: directed synthesis of an Re12Se16 dicluster. J. Am. Chem. Soc. 119, 2163–2171 (1997).

    Article  CAS  Google Scholar 

  64. Orto, P. J., Nichol, G. S., Wang, R. Y. & Zheng, Z. P. Cluster carbonyls of the [Re63-Se)8]2+ core. Inorg. Chem. 46, 8436–8438 (2007).

    Article  CAS  Google Scholar 

  65. Zheng, Z. P., Gray, T. G. & Holm, R. H. Synthesis and structures of solvated monoclusters and bridged di- and triclusters based on the cubic building block [Re63-Se)8]2+. Inorg. Chem. 38, 4888–4895 (1999).

    Article  CAS  Google Scholar 

  66. Roland, B. K., Selby, H. D., Carducci, M. D. & Zheng, Z. P. Built to order: molecular tinkertoys from the [Re63-Se)8]2+ clusters. J. Am. Chem. Soc. 124, 3222–3223 (2002).

    Article  CAS  Google Scholar 

  67. Selby, H. D., Roland, B. K. & Zheng, Z. P. Ligand-bridged oligomeric and supramolecular arrays of the hexanuclear rhenium selenide clusters – exploratory synthesis, structural characterization, and property investigation. Acc. Chem. Res. 36, 933–944 (2003). A review detailing approaches by which superatoms can be linked together to obtain oligomeric and dendrimeric structures.

    Article  CAS  Google Scholar 

  68. Zheng, Z. P. & Holm, R. H. Cluster condensation by thermolysis: synthesis of a rhomb-linked Re12Se16 dicluster and factors relevant to the formation of the Re24Se32 tetracluster. Inorg. Chem. 36, 5173–5178 (1997).

    Article  CAS  Google Scholar 

  69. Amari, S., Imoto, H. & Saito, T. Synthesis of a molybdenum cluster complex [Mo12(μ 3-S)14(μ 4-S)2(PEt3)10] with Chevrel phase type intercluster bondings. Chem. Lett. 26, 967–968 (1997).

    Article  Google Scholar 

  70. Saito, T. Group 6 metal chalcogenide cluster complexes and their relationships to solid-state cluster compounds. Adv. Inorg. Chem. 44, 45–91 (1996).

    Article  Google Scholar 

  71. Cecconi, F., Ghilardi, C. A., Midollini, S. & Orlandini, A. Dimerization of the stellated octahedral unit Co6S8P6: synthesis and X-ray crystal structure of [Co123-S)144-S)2(PEt3)10][TCNQ]2, where TCNQ=tetracyanoquinodimethane. Inorg. Chim. Acta 214, 13–15 (1993).

    Article  CAS  Google Scholar 

  72. Champsaur, A. M., Hochuli, T. J., Paley, D. W., Nuckolls, C. & Steigerwald, M. L. Superatom fusion and the nature of quantum confinement. Nano Lett. 18, 4564–4569 (2018).

    Article  CAS  Google Scholar 

  73. Roland, B. K., Carter, C. & Zheng, Z. Routes to metallodendrimers of the [Re63-Se)8]2+ core-containing clusters. J. Am. Chem. Soc. 124, 6234–6235 (2002).

    Article  CAS  Google Scholar 

  74. Roland, B. K., Flora, W. H., Selby, H. D., Armstrong, N. R. & Zheng, Z. P. Dendritic arrays of [R63-Se)8]2+ core-containing clusters: exploratory synthesis and electrochemical studies. J. Am. Chem. Soc. 128, 6620–6625 (2006).

    Article  CAS  Google Scholar 

  75. Li, Q. et al. Modulating the hierarchical fibrous assembly of Au nanoparticles with atomic precision. Nat. Commun. 9, 3871 (2018).

    Article  CAS  Google Scholar 

  76. Yoon, B. et al. Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice. Nat. Mater. 13, 807–811 (2014).

    Article  CAS  Google Scholar 

  77. Nonappa et al. Reversible supracolloidal self-assembly of cobalt nanoparticles to hollow capsids and their superstructures. Angew. Chem. Int. Ed. 56, 6473–6477 (2017).

    Article  CAS  Google Scholar 

  78. Kato, T., Uchida, J., Ichikawa, T. & Sakamoto, T. Functional liquid crystals towards the next generation of materials. Angew. Chem. Int. Ed. 57, 4355–4371 (2018).

    Article  CAS  Google Scholar 

  79. Guy, K. et al. Lord of the crowns: a new precious in the kingdom of clustomesogens. Angew. Chem. Int. Ed. 57, 11692–11696 (2018).

    Article  CAS  Google Scholar 

  80. Molard, Y. et al. Clustomesogens: liquid crystal materials containing transition-metal clusters. Angew. Chem. Int. Ed. 49, 3351–3355 (2010).

    Article  CAS  Google Scholar 

  81. Molard, Y. et al. Ionically self-assembled clustomesogen with switchable magnetic/luminescence properties containing [Re6Se8(CN)6]n (n = 3, 4) anionic clusters. Chem. Mater. 23, 5122–5130 (2011).

    Article  CAS  Google Scholar 

  82. Nayak, S. K. et al. Phosphorescent columnar hybrid materials containing polyionic inorganic nanoclusters. Chem. Commun. 52, 3127–3130 (2011).

    Article  CAS  Google Scholar 

  83. Golden, J. H., Deng, H. B., Disalvo, F. J., Frechet, J. M. J. & Thompson, P. M. Monodisperse metal clusters 10 angstroms in diameter in a polymeric host – the ‘monomer-as-solvent’ approach. Science 268, 1463–1466 (1995).

    Article  CAS  Google Scholar 

  84. Robinson, L. M. & Shriver, D. F. Synthesis and photophysical properties of polymer-bound hexanuclear molybdenum clusters. J. Coord. Chem. 37, 119–129 (1996).

    Article  CAS  Google Scholar 

  85. Molard, Y. et al. Red-NIR luminescent hybrid poly(methyl methacrylate) containing covalently linked octahedral rhenium metallic clusters. Chem. Eur. J. 16, 5613–5619 (2010).

    Article  CAS  Google Scholar 

  86. Amela-Cortes, M. et al. Deep red luminescent hybrid copolymer materials with high transition metal cluster content. J. Mater. Chem. C 2, 1545–1552 (2014).

    Article  CAS  Google Scholar 

  87. Robin, M. et al. Direct integration of red-NIR emissive ceramic-like AnM6Xi 8Xa 6 metal cluster salts in organic copolymers using supramolecular interactions. Chem. Eur. J. 24, 4825–4829 (2018).

    Article  CAS  Google Scholar 

  88. Voevodin, A., Campos, L. M. & Roy, X. Multifunctional vesicles from a self-assembled cluster-containing diblock copolymer. J. Am. Chem. Soc. 140, 5607–5611 (2018).

    Article  CAS  Google Scholar 

  89. Baudron, S. A. et al. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic–inorganic hybrid compound: electronic instability, molecular motion, and charge localization. J. Am. Chem. Soc. 127, 11785–11797 (2005). A report on the use of electrocrystallization to produce a superatomic material and demonstration of the power of the technique in producing the rare Kagome-type lattice.

    Article  CAS  Google Scholar 

  90. Renault, A. et al. Evidence for a spin-Peierls-like transition in the 1-D organic cation radical salt: β-(TMTSF)2Re6Se5Cl9. Mol. Cryst. Liq. Cryst. 161, 329–334 (1988).

    Google Scholar 

  91. Penicaud, A., Batail, P., Coulon, C., Canadell, E. & Perrin, C. Novel redox properties of the paramagnetic hexanuclear niobium cluster halide Nb6Cl18 3− and the preparation, structures, and conducting and magnetic properties of its one-dimensional mixed-valence tetramethyltetra(selena and thia)fulvalenium salts: [TMTSF and TMTTF]5[Nb6Cl18]·(CH2Cl2)0.5. Chem. Mater. 2, 123–132 (1990).

    Article  CAS  Google Scholar 

  92. Karadas, F., Avendano, C., Hilfiger, M. G., Prosvirin, A. V. & Dunbar, K. R. Use of a rhenium cyanide nanomagnet as a building block for new clusters and extended networks. Dalton Trans. 39, 4968–4977 (2010).

    Article  CAS  Google Scholar 

  93. Roy, X. et al. Nanoscale atoms in solid-state chemistry. Science 341, 157–160 (2013). A seminal example of the use of superatoms and C 60 to produce a solid-state charge-transfer material.

    Article  CAS  Google Scholar 

  94. Ong, W. L. et al. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. Nat. Mater. 16, 83–88 (2017). A paper describing thermal-transport tunability in superatomic materials, highlighting how properties depend on the identity of the superatom.

    Article  CAS  Google Scholar 

  95. Lee, C. H. et al. Ferromagnetic ordering in superatomic solids. J. Am. Chem. Soc. 136, 16926–16931 (2014).

    Article  CAS  Google Scholar 

  96. O’Brien, E. S. et al. Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal. Nat. Chem. 9, 1170–1174 (2017).

    Article  CAS  Google Scholar 

  97. Shott, J. L. et al. Ball and socket assembly of binary superatomic solids containing trinuclear nickel cluster cations and fulleride anions. Inorg. Chem. 56, 10984–10990 (2017).

    Article  CAS  Google Scholar 

  98. Kawamoto, T. A theoretical model for ferromagnetism of TDAE-C60. Solid State Commun. 101, 231–235 (1997).

    Article  CAS  Google Scholar 

  99. O’Brien, E. S. et al. Spontaneous electronic band formation and switchable behaviors in a phase-rich superatomic crystal. J. Am. Chem. Soc. 140, 15601–15605 (2018).

    Article  CAS  Google Scholar 

  100. Chaur, M. N., Melin, F., Ortiz, A. L. & Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem. Int. Ed. 48, 7514–7538 (2009).

    Article  CAS  Google Scholar 

  101. Voevodin, A. et al. Dimerization of endohedral fullerene in a superatomic crystal. Chem. Eur. J. 23, 13305–13308 (2017).

    Article  CAS  Google Scholar 

  102. Pan, G. B. et al. Configurations of a calix[8]arene and a C60/calix[8]arene complex on a Au(111) surface. Angew. Chem. Int. Ed. 42, 2747–2751 (2003).

    Article  CAS  Google Scholar 

  103. Xiao, W. et al. C60/corannulene on Cu(110): a surface-supported bistable buckybowl–buckyball host–guest system. J. Am. Chem. Soc. 130, 4767–4771 (2008).

    Article  CAS  Google Scholar 

  104. Perez, E. M. & Martin, N. Curves ahead: molecular receptors for fullerenes based on concave–convex complementarity. Chem. Soc. Rev. 37, 1512–1519 (2008).

    Article  CAS  Google Scholar 

  105. Ball, M. et al. Contorted polycyclic aromatics. Acc. Chem. Res. 48, 267–276 (2015).

    Article  CAS  Google Scholar 

  106. Choi, B. et al. van der Waals solids from self-assembled nanoscale building blocks. Nano Lett. 16, 1445–1449 (2016).

    Article  CAS  Google Scholar 

  107. Lee, K. H. et al. Two-dimensional fullerene assembly from an exfoliated van der Waals template. Angew. Chem. Int. Ed. 57, 6125–6129 (2018).

    Article  CAS  Google Scholar 

  108. Shores, M. P., Beauvais, L. G. & Long, J. R. Cluster-expanded Prussian blue analogues. J. Am. Chem. Soc. 121, 775–779 (1999). One of the first reports on the use of superatoms to synthesize Prussian blue analogues.

    Article  CAS  Google Scholar 

  109. Beauvais, L. G., Shores, M. P. & Long, J. R. Cyano-bridged Re6Q8 (Q = S, Se) cluster-metal framework solids: a new class of porous materials. Chem. Mater. 10, 3783–3786 (1998).

    Article  CAS  Google Scholar 

  110. Yan, B. B., Zhou, H. J. & Lachgar, A. Octahedral niobium chloride clusters as building blocks of templated Prussian blue framework analogues. Inorg. Chem. 42, 8818–8822 (2003).

    Article  CAS  Google Scholar 

  111. Zhang, J. J. & Lachgar, A. Octahedral metal clusters as building blocks of trimetallic superexpanded Prussian blue analogues. Inorg. Chem. 54, 1082–1090 (2015).

    Article  CAS  Google Scholar 

  112. Zhou, H. J. & Lachgar, A. Octahedral metal clusters [Nb6Cl12(CN)6]4− as molecular building blocks: from supramolecular assemblies to coordination polymers. Eur. J. Inorg. Chem. 2007, 1053–1066 (2007).

    Article  CAS  Google Scholar 

  113. Tulsky, E. G., Crawford, N. R. M., Baudron, S. A., Batail, P. & Long, J. R. Cluster-to-metal magnetic coupling: synthesis and characterization of 25-electron [Re6−nOsnSe8(CN)6](5−n) − (n = 1, 2) clusters and {Re6−nOsnSe8[CNCu(Me6tren)]6}9+ (n = 0, 1, 2) assemblies. J. Am. Chem. Soc. 125, 15543–15553 (2003).

    Article  CAS  Google Scholar 

  114. O’Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    Article  CAS  Google Scholar 

  115. Champsaur, A. M. et al. Two-dimensional nanosheets from redox-active superatoms. ACS Cent. Sci. 3, 1050–1055 (2017).

    Article  CAS  Google Scholar 

  116. Champsaur, A. M. et al. Weaving nanoscale cloth through electrostatic templating. J. Am. Chem. Soc. 139, 11718–11721 (2017).

    Article  CAS  Google Scholar 

  117. Cecconi, F., Ghilardi, C. A., Midollini, S., Orlandini, A. & Zanello, P. Synthesis, properties and structures of the two “electron rich” cobalt-sulphur clusters [Co63-S)8(PEt3)6]1+,0. Polyhedron 5, 2021–2031 (1986).

    Article  CAS  Google Scholar 

  118. Saito, T. et al. Molecular models of the superconducting Chevrel phases: syntheses and structures of [Mo6X8(PEt3)6] and [PPN][Mo6X8(PEt3)6] (X = S, Se, PPN = (Ph3P)2N). Inorg. Chem. 29, 764–770 (1990).

    Article  CAS  Google Scholar 

  119. Cecconi, F., Ghilardi, C. A., Midollini, S., Orlandini, A. & Zanello, P. Redox behaviour of the iron–sulphur cluster [Fe63-S)8(PEt3)6]2+. Synthesis and crystal structure of the new paramagnetic monopositive species [Fe63-S)8(PEt3)6]+ as its [PF6] salt. J. Chem. Soc. Dalton Trans. 1987, 831–835 (1987).

    Article  Google Scholar 

  120. Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B. 87, 035437 (2013).

    Article  CAS  Google Scholar 

  121. Bennett, M. V., Beauvais, L. G., Shores, M. P. & Long, J. R. Expanded Prussian blue analogues incorporating [Re6Se8(CN)6]3−/4− clusters: adjusting porosity via charge balance. J. Am. Chem. Soc. 123, 8022–8032 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their many collaborators who have helped with these projects. C.N. thanks Sheldon and Dorothea Buckler for their generous support. This work was supported by the Center for Precision Assembly of Superstratic and Superatomic Solids, the US National Science Foundation (NSF) Materials Research Science and Engineering Centers (award no. DMR-1420634) and the US Air Force Office of Scientific Research (award no. FA9550-18-1-0020). X-ray diffraction measurements were performed in the Shared Materials Characterization Laboratory at Columbia University. Use of the Shared Materials Characterization Laboratory was made possible by funding from Columbia University. A.V. was supported by the NSF Graduate Research Fellowship Program (award no. DGE-16-44869). E.A.D. is supported by the NSF (award no. CHE-1807654) and the donors of the American Chemical Society Petroleum Research Fund (award no. ACS PRF# 57062-DNI10). A.M.C. thanks the Arun Guthikonda Memorial Fellowship in Organic Chemistry for their generous support of her studies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and the editing of the manuscript prior to submission. E.A.D., A.V., T.J.H. and A.M.C. researched data. E.A.D. and A.V. wrote the manuscript with help from T.J.H. and A.M.C.

Corresponding authors

Correspondence to Colin Nuckolls or Xavier Roy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doud, E.A., Voevodin, A., Hochuli, T.J. et al. Superatoms in materials science. Nat Rev Mater 5, 371–387 (2020). https://doi.org/10.1038/s41578-019-0175-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0175-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing