High-entropy ceramics

Abstract

Disordered multicomponent systems, occupying the mostly uncharted centres of phase diagrams, were proposed in 2004 as innovative materials with promising applications. The idea was to maximize the configurational entropy to stabilize (near) equimolar mixtures and achieve more robust systems, which became known as high-entropy materials. Initial research focused mainly on metal alloys and nitride films. In 2015, entropy stabilization was demonstrated in a mixture of oxides. Other high-entropy disordered ceramics rapidly followed, stimulating the addition of more components to obtain materials expressing a blend of properties, often highly enhanced. The systems were soon proven to be useful in wide-ranging technologies, including thermal barrier coatings, thermoelectrics, catalysts, batteries and wear-resistant and corrosion-resistant coatings. In this Review, we discuss the current state of the disordered ceramics field by examining the applications and the high-entropy features fuelling them, covering both theoretical predictions and experimental results. The influence of entropy is unavoidable and can no longer be ignored. In the space of ceramics, it leads to new materials that, both as bulk and thin films, will play important roles in technology in the decades to come.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Applications of high-entropy ceramics.
Fig. 2: High-symmetry structures of high-entropy ceramics.

References

  1. 1.

    Miracle, D. B. High entropy alloys as a bold step forward in alloy development. Nat. Commun. 10, 1805 (2019).

    CAS  Google Scholar 

  2. 2.

    Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Google Scholar 

  3. 3.

    Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principle elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS  Google Scholar 

  4. 4.

    Feng, R., Liaw, P. K., Gao, M. C. & Widom, M. First-principles prediction of high-entropy-alloy stability. npj Comput. Mater. 3, 50 (2017).

    Google Scholar 

  5. 5.

    Gao, M. C. et al. Computational modeling of high-entropy alloys: structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627–3641 (2017).

    CAS  Google Scholar 

  6. 6.

    Widom, M. Modeling the structure and thermodynamics of high-entropy alloys. J. Mater. Res. 33, 2881–2898 (2018).

    CAS  Google Scholar 

  7. 7.

    George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    CAS  Google Scholar 

  8. 8.

    Yeh, J.-W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31, 633–648 (2006).

    CAS  Google Scholar 

  9. 9.

    Takeuchi, I. et al. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180–184 (2003).

    CAS  Google Scholar 

  10. 10.

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    CAS  Google Scholar 

  11. 11.

    Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    CAS  Google Scholar 

  12. 12.

    Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019).

    Google Scholar 

  13. 13.

    Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    CAS  Google Scholar 

  14. 14.

    Gild, J. et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).

    CAS  Google Scholar 

  15. 15.

    Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Google Scholar 

  16. 16.

    Castle, E., Csanádi, T., Grasso, S., Dusza, J. & Reece, M. J. Processing and properties of high-entropy ultra-high temperature carbides. Sci. Rep. 8, 8609 (2018).

    Google Scholar 

  17. 17.

    Yan, X. et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J. Amer. Ceram. Soc. 101, 4486–4491 (2018).

    CAS  Google Scholar 

  18. 18.

    Jin, T. et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 30, 1707512 (2018).

    Google Scholar 

  19. 19.

    Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).

    CAS  Google Scholar 

  20. 20.

    Gild, J. et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Materiomics 5, 337–343 (2019).

    Google Scholar 

  21. 21.

    Qin, Y. et al. A high entropy silicide by reactive spark plasma sintering. J. Adv. Ceram. 8, 148–152 (2019).

    CAS  Google Scholar 

  22. 22.

    Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    CAS  Google Scholar 

  23. 23.

    Tsai, M.-H. & Yeh, J.-W. High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014).

    Google Scholar 

  24. 24.

    Miracle, D. B. High-entropy alloys: a current evaluation of founding ideas and core effects and exploring nonlinear alloys. JOM 69, 2130–2136 (2017).

    Google Scholar 

  25. 25.

    Grzesik, Z. et al. Defect structure and transport properties in (Co,Cu,Mg,Ni,Zn)O high entropy oxide. J. Eur. Ceram. Soc. 39, 4292–4298 (2019).

    CAS  Google Scholar 

  26. 26.

    Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    CAS  Google Scholar 

  27. 27.

    Sarkar, A. et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38, 2318–2327 (2018).

    CAS  Google Scholar 

  28. 28.

    Dong, Y. et al. High-entropy environmental barrier coating for the ceramic matrix composites. J. Eur. Ceram. Soc. 39, 2574–2579 (2019).

    CAS  Google Scholar 

  29. 29.

    Ren, X., Tian, Z., Zhang, J. & Wang, J. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scr. Mater. 168, 47–50 (2019).

    CAS  Google Scholar 

  30. 30.

    Chen, J. et al. Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5. J. Phys. Chem. C. 123, 17735–17744 (2019).

    CAS  Google Scholar 

  31. 31.

    Zhao, Z., Xiang, H., Dai, F.-Z., Peng, Z. & Zhou, Y. (TiZrHf)P2O7: an equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity. J. Mater. Sci. Technol. 35, 2227–2231 (2019).

    Google Scholar 

  32. 32.

    Chen, H. et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. J. Mater. Sci. Technol. 35, 1700–1705 (2019).

    Google Scholar 

  33. 33.

    Tsai, D.-C. et al. Oxidation resistance and characterization of (AlCrMoTaTi)–Six–N coating deposited via magnetron sputtering. J. Alloys Compd. 647, 179–188 (2015).

    CAS  Google Scholar 

  34. 34.

    Vladescu, A. et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLOS ONE 11, e0161151 (2016).

    Google Scholar 

  35. 35.

    Zhou, J. et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int. 44, 22014–22018 (2018).

    CAS  Google Scholar 

  36. 36.

    Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).

    Google Scholar 

  37. 37.

    Zheng, Y. et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Mater. 23, 678–683 (2019).

    Google Scholar 

  38. 38.

    Wang, Q. et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019).

    CAS  Google Scholar 

  39. 39.

    Cheng, K.-H., Tsai, C.-W., Lin, S.-J. & Yeh, J.-W. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)–Six–N coatings by reactive RF magnetron sputtering. J. Phys. D 44, 205405 (2011).

    Google Scholar 

  40. 40.

    Hsieh, M.-H., Tsai, M.-H., Shen, W.-J. & Yeh, J.-W. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surf. Coat. Technol. 221, 118–123 (2013).

    CAS  Google Scholar 

  41. 41.

    Braun, J. L. et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. 30, 1805004 (2018).

    Google Scholar 

  42. 42.

    Lai, C.-H., Lin, S.-J., Yeh, J.-W. & Chang, S.-Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 201, 3275–3280 (2006).

    CAS  Google Scholar 

  43. 43.

    Huang, P.-K. & Yeh, J.-W. Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. J. Phys. D 42, 115401 (2009).

    Google Scholar 

  44. 44.

    Huang, P.-K. & Yeh, J.-W. Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater. 62, 105–108 (2010).

    CAS  Google Scholar 

  45. 45.

    Harrington, T. J. et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271–280 (2019).

    CAS  Google Scholar 

  46. 46.

    Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012).

    Google Scholar 

  47. 47.

    Friedrich, R. et al. Coordination corrected ab initio formation enthalpies. npj Comput. Mater. 5, 59 (2019).

    Google Scholar 

  48. 48.

    Toher, C., Oses, C., Hicks, D. & Curtarolo, S. Unavoidable disorder and entropy in multi-component systems. npj Comput. Mater. 5, 69 (2019).

    Google Scholar 

  49. 49.

    van de Walle, A. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33, 266–278 (2009).

    Google Scholar 

  50. 50.

    Lederer, Y., Toher, C., Vecchio, K. S. & Curtarolo, S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater. 159, 364–383 (2018).

    CAS  Google Scholar 

  51. 51.

    Chen, T.-K., Shun, T. T., Yeh, J.-W. & Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–189, 193–200 (2004).

    Google Scholar 

  52. 52.

    Chen, T.-K., Wong, M.-S., Shun, T.-T. & Yeh, J.-W. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 200, 1361–1365 (2005).

    CAS  Google Scholar 

  53. 53.

    Huang, Y.-S., Chen, L., Lui, H.-W., Cai, M.-H. & Yeh, J.-W. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater. Sci. Eng. A 457, 77–83 (2007).

    Google Scholar 

  54. 54.

    Chen, T.-K. & Wong, M.-S. Structure and properties of reactively-sputtered AlxCoCrCuFeNi oxide films. Thin Solid. Films 516, 141–146 (2007).

    CAS  Google Scholar 

  55. 55.

    Anand, G., Wynn, A. P., Handley, C. M. & Freeman, C. L. Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119–125 (2018).

    CAS  Google Scholar 

  56. 56.

    Yang, Y., Wang, W., Gan, G.-Y., Shi, X.-F. & Tang, B.-Y. Structural, mechanical and electronic properties of (TaNbHfTiZr)C high entropy carbide under pressure: ab initio investigation. Phys. B 550, 163–170 (2018).

    CAS  Google Scholar 

  57. 57.

    Zunger, A., Wei, S.-H., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990).

    CAS  Google Scholar 

  58. 58.

    Ye, B. et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater. 170, 15–23 (2019).

    CAS  Google Scholar 

  59. 59.

    Yang, K., Oses, C. & Curtarolo, S. Modeling off-stoichiometry materials with a high-throughput ab-initio approach. Chem. Mater. 28, 6484–6492 (2016).

    CAS  Google Scholar 

  60. 60.

    Rák, Zs. et al. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J. Appl. Phys. 120, 095105 (2016).

    Google Scholar 

  61. 61.

    Rost, C. M., Rák, Zs., Brenner, D. W. & Maria, J.-P. Local structure of the MgxNixCoxCuxZnxO(x = 0.2) entropy-stabilized oxide: an EXAFS study. J. Amer. Ceram. Soc. 100, 2732–2738 (2017).

    CAS  Google Scholar 

  62. 62.

    Rák, Zs., Maria, J.-P. & Brenner, D. W. Evidence for Jahn–Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: a DFT study. Mater. Lett. 217, 300–303 (2018).

    Google Scholar 

  63. 63.

    Bérardan, D., Franger, S., Dragoe, D., Meena, A. K. & Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Stat. Solidi Rapid Res. Lett. 10, 328–333 (2016).

    Google Scholar 

  64. 64.

    Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).

    Google Scholar 

  65. 65.

    Osenciat, N. et al. Charge compensation mechanisms in Li-substituted high-entropy oxides and influence on Li superionic conductivity. J. Amer. Ceram. Soc. 102, 6156–6162 (2019).

    CAS  Google Scholar 

  66. 66.

    Bérardan, D., Meena, A. K., Franger, S., Herrero, C. & Dragoe, N. Controlled Jahn–Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys Compd. 704, 693–700 (2017).

    Google Scholar 

  67. 67.

    Kaufman, L. & Bernstein, H. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic Press, 1970).

  68. 68.

    Saunders, N. & Miodownik, A. P. CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier Science, 1998).

  69. 69.

    Zhong, Y. et al. Exploration of high entropy ceramics (HECs) with computational thermodynamics — a case study with LaMnO3 ± δ. Mater. Des. 182, 108060 (2019).

    CAS  Google Scholar 

  70. 70.

    Wang, Y.-P., Gan, G.-Y., Wang, W., Yang, Y. & Tang, B.-Y. Ab initio prediction of mechanical and electronic properties of ultrahigh temperature high-entropy ceramics (Hf0.2Zr0.2Ta0.2M 0.2Ti0.2)B2 (M = Nb, Mo, Cr). Phys. Stat. Solidi B 255, 1800011 (2018).

    Google Scholar 

  71. 71.

    Zhang, Q., Zhang, J., Li, N. & Chen, W. Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa)C combined experiments and first-principles simulation. J. Appl. Phys. 126, 025101 (2019).

    Google Scholar 

  72. 72.

    Dupuy, A. D., Wang, X. & Schoenung, J. M. Entropic phase transformation in nanocrystalline high entropy oxides. Mater. Res. Lett. 7, 60–67 (2019).

    CAS  Google Scholar 

  73. 73.

    Sarkar, A. et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37, 747–754 (2017).

    CAS  Google Scholar 

  74. 74.

    Chen, H. et al. Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. J. Mater. Chem. A 6, 11129–11133 (2018).

    CAS  Google Scholar 

  75. 75.

    Biesuz, M., Spiridigliozzi, L., Dell’Agli, G., Bortolotti, M. & Sglavo, V. M. Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods. J. Mater. Sci. 53, 8074–8085 (2018).

    CAS  Google Scholar 

  76. 76.

    Mao, A. et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. J. Magn. Magn. Mater. 484, 245–252 (2019).

    CAS  Google Scholar 

  77. 77.

    Chen, H. et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater. Lett. 1, 83–88 (2019).

    CAS  Google Scholar 

  78. 78.

    Balcerzak, M., Kawamura, K., Bobrowski, R., Rutkowski, P. & Brylewski, T. Mechanochemical synthesis of (Co,Cu,Mg,Ni,Zn)O high-entropy oxide and its physicochemical properties. J. Elec. Mater. 48, 7105–7113 (2019).

    CAS  Google Scholar 

  79. 79.

    Kotsonis, G. N., Rost, C. M., Harris, D. T. & Maria, J.-P. Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment. MRS Commun. 8, 1371–1377 (2018).

    CAS  Google Scholar 

  80. 80.

    Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Google Scholar 

  81. 81.

    Meisenheimer, P. B. et al. Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. Phys. Rev. Mater. 3, 104420 (2019).

    CAS  Google Scholar 

  82. 82.

    Hong, W. et al. Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high-entropy ceramics. J. Amer. Ceram. Soc. 102, 2228–2237 (2019).

    CAS  Google Scholar 

  83. 83.

    Diercks, D. R., Brennecka, G., Gorman, B. P., Rost, C. M. & Maria, J.-P. Nanoscale compositional analysis of a thermally processed entropy-stabilized oxide via correlative TEM and APT. Microsc. Microanal. 23, 1640–1641 (2017).

    Google Scholar 

  84. 84.

    Meisenheimer, P. B., Kratofil, T. J. & Heron, J. T. Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures. Sci. Rep. 7, 13344 (2017).

    CAS  Google Scholar 

  85. 85.

    Jimenez-Segura, M. P. et al. Long-range magnetic ordering in rocksalt-type high-entropy oxides. Appl. Phys. Lett. 114, 122401 (2019).

    Google Scholar 

  86. 86.

    Zhang, J. et al. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater. 31, 3705–3711 (2019).

    CAS  Google Scholar 

  87. 87.

    Djenadic, R. et al. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 5, 102–109 (2017).

    CAS  Google Scholar 

  88. 88.

    Sarkar, A. et al. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans. 46, 12167–12176 (2017).

    CAS  Google Scholar 

  89. 89.

    Gild, J. et al. High-entropy fluorite oxides. J. Eur. Ceram. Soc. 38, 3578–3584 (2018).

    CAS  Google Scholar 

  90. 90.

    Chen, K. et al. A five-component entropy-stabilized fluorite oxide. J. Eur. Ceram. Soc. 38, 4161–4164 (2018).

    CAS  Google Scholar 

  91. 91.

    Jiang, S. et al. A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018).

    CAS  Google Scholar 

  92. 92.

    Biesuz, M. et al. High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering. J. Asian Ceram. Soc. 7, 127–132 (2019).

    Google Scholar 

  93. 93.

    Oses, C., Toher, C. & Curtarolo, S. Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery. MRS Bull. 43, 670–675 (2018).

    Google Scholar 

  94. 94.

    Mehl, M. J. et al. The AFLOW library of crystallographic prototypes: part 1. Comput. Mater. Sci. 136, S1–S828 (2017).

    CAS  Google Scholar 

  95. 95.

    Hicks, D. et al. The AFLOW library of crystallographic prototypes: part 2. Comput. Mater. Sci. 161, S1–S1011 (2019).

    CAS  Google Scholar 

  96. 96.

    Witte, R. et al. High-entropy oxides: an emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 3, 034406 (2019).

    CAS  Google Scholar 

  97. 97.

    Dąbrowa, J. et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 216, 32–36 (2018).

    Google Scholar 

  98. 98.

    Mao, A. et al. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 1194, 11–18 (2019).

    CAS  Google Scholar 

  99. 99.

    Mao, A. et al. A new class of spinel high-entropy oxides with controllable magnetic properties. J. Magn. Magn. Mater. 497, 165884 (2020).

    CAS  Google Scholar 

  100. 100.

    Vinnik, D. A. et al. High-entropy oxide phases with magnetoplumbite structure. Ceram. Int. 45, 12942–12948 (2019).

    CAS  Google Scholar 

  101. 101.

    Vinnik, D. A. et al. Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: synthesis, structure, properties, prospects. Nanomater. 9, 559 (2019).

    CAS  Google Scholar 

  102. 102.

    Tseng, K.-P., Yang, Q., McCormack, S. J. & Kriven, W. M. High-entropy, phase-constrained, lanthanide sesquioxide. J. Amer. Ceram. Soc. 103, 569–576 (2019).

    Google Scholar 

  103. 103.

    Chen, H., Xiang, H., Dai, F.-Z., Liu, J. & Zhou, Y. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J. Mater. Sci. Technol. 36, 134–139 (2020).

    Google Scholar 

  104. 104.

    Zhao, Z., Xiang, H., Dai, F.-Z., Peng, Z. & Zhou, Y. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J. Mater. Sci. Technol. 35, 2647–2651 (2019).

    Google Scholar 

  105. 105.

    Li, F., Zhou, L., Liu, J.-X., Liang, Y. & Zhang, G.-J. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J. Adv. Ceram. 8, 576–582 (2019).

    Google Scholar 

  106. 106.

    Zhang, J. et al. High-entropy oxides 10La2O3–20TiO2–10Nb2O5–20WO3–20ZrO2 amorphous spheres prepared by containerless solidification. Mater. Lett. 244, 167–170 (2019).

    CAS  Google Scholar 

  107. 107.

    Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Zhou, Y. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162, 90–93 (2019).

    CAS  Google Scholar 

  108. 108.

    Ye, B., Ning, S., Liu, D., Wen, T. & Chu, Y. One-step synthesis of coral-like high-entropy metal carbide powders. J. Amer. Ceram. Soc. 102, 6372–6378 (2019).

    CAS  Google Scholar 

  109. 109.

    Feng, L., Fahrenholtz, W. G. & Hilmas, G. E. Low-temperature sintering of single-phase, high-entropy carbide ceramics. J. Amer. Ceram. Soc. 102, 7217–7224 (2019).

    CAS  Google Scholar 

  110. 110.

    Wei, X.-F. et al. High entropy carbide ceramics from different starting materials. J. Eur. Ceram. Soc. 39, 2989–2994 (2019).

    CAS  Google Scholar 

  111. 111.

    Liu, D., Wen, T., Ye, B. & Chu, Y. Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 167, 110–114 (2019).

    CAS  Google Scholar 

  112. 112.

    Zhang, Y. et al. Dense high-entropy boride ceramics with ultra-high hardness. Scr. Mater. 164, 135–139 (2019).

    CAS  Google Scholar 

  113. 113.

    Zhang, Y. et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction. J. Eur. Ceram. Soc. 39, 3920–3924 (2019).

    CAS  Google Scholar 

  114. 114.

    Liu, D., Liu, H., Ning, S., Ye, B. & Chu, Y. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction. J. Amer. Ceram. Soc. 102, 7071–7076 (2019).

    CAS  Google Scholar 

  115. 115.

    Chicardi, E., García-Garrido, C. & Gotor, F. J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route. Ceram. Int. 45, 21858–21863 (2019).

    CAS  Google Scholar 

  116. 116.

    Qiu, N. et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 777, 767–774 (2019).

    CAS  Google Scholar 

  117. 117.

    Wang, Q. et al. High entropy oxides as anode material for Li-ion battery applications: a practical approach. Electrochem. Commun. 100, 121–125 (2019).

    CAS  Google Scholar 

  118. 118.

    Lu, X. et al. Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014).

    Google Scholar 

  119. 119.

    Zhai, S. et al. The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy Environ. Sci. 11, 2172–2178 (2018).

    CAS  Google Scholar 

  120. 120.

    Zhang, G. et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 279, 19–23 (2018).

    CAS  Google Scholar 

  121. 121.

    Wang, A.-L., Wan, H.-C., Xu, H., Tong, Y.-X. & Li, G.-R. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochim. Acta 127, 448–453 (2014).

    CAS  Google Scholar 

  122. 122.

    Löffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Google Scholar 

  123. 123.

    Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    CAS  Google Scholar 

  124. 124.

    Cui, X., Zhang, B., Zeng, C. & Guo, S. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. MRS Commun. 8, 1230–1235 (2018).

    CAS  Google Scholar 

  125. 125.

    Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Google Scholar 

  126. 126.

    Yusenko, K. V. et al. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 138, 22–27 (2017).

    CAS  Google Scholar 

  127. 127.

    Qiu, H.-J. et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7, 6499–6506 (2019).

    CAS  Google Scholar 

  128. 128.

    Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    CAS  Google Scholar 

  129. 129.

    Lv, Z. Y. et al. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 6, 34213 (2016).

    CAS  Google Scholar 

  130. 130.

    Zhang, Z. et al. Mechanochemical nonhydrolytic sol–gel-strategy for the production of mesoporous multimetallic oxides. Chem. Mater. 31, 5529–5536 (2019).

    CAS  Google Scholar 

  131. 131.

    Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    CAS  Google Scholar 

  132. 132.

    Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

    Google Scholar 

  133. 133.

    Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130 (2011).

    CAS  Google Scholar 

  134. 134.

    Li, Y. et al. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 7, 394–400 (2012).

    CAS  Google Scholar 

  135. 135.

    Banham, D. et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 285, 334–348 (2015).

    CAS  Google Scholar 

  136. 136.

    Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018).

    CAS  Google Scholar 

  137. 137.

    Venkadesan, G. & Muthusamy, J. Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine. Ceram. Int. 45, 3166–3176 (2019).

    Google Scholar 

  138. 138.

    Roychowdhury, S., Ghosh, T., Arora, R., Waghmare, U. V. & Biswas, K. Stabilizing n-type cubic GeSe by entropy-driven alloying of AgBiSe2: ultralow thermal conductivity and promising thermoelectric performance. Angew. Chem. Int. Ed. 57, 15167–15171 (2018).

    CAS  Google Scholar 

  139. 139.

    Yang, Y.-C., Tsau, C.-H. & Yeh, J.-W. TiFeCoNi oxide thin film — a new composition with extremely low electrical resistivity at room temperature. Scr. Mater. 64, 173–176 (2011).

    CAS  Google Scholar 

  140. 140.

    Tsau, C.-H., Yang, Y.-C., Lee, C.-C., Wu, L.-Y. & Huang, H.-J. The low electrical resistivity of the high-entropy alloy oxide thin films. Procedia Eng. 36, 246–252 (2012).

    CAS  Google Scholar 

  141. 141.

    Dedoncker, R., Radnóczi, G., Abadias, G. & Depla, D. Reactive sputter deposition of CoCrCuFeNi in oxygen/argon mixtures. Surf. Coat. Technol. 378, 124362 (2019).

    Google Scholar 

  142. 142.

    Braic, V., Vladescu, A., Balaceanu, M., Luculescu, C. R. & Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf. Coat. Technol. 211, 117–121 (2012).

    CAS  Google Scholar 

  143. 143.

    Lin, M.-I., Tsai, M.-H., Shen, W.-J. & Yeh, J.-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films 518, 2732–2737 (2010).

    CAS  Google Scholar 

  144. 144.

    Tsai, M.-H., Wang, C.-W., Lai, C.-H., Yeh, J.-W. & Gan, J.-Y. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization. Appl. Phys. Lett. 92, 052109 (2008).

    Google Scholar 

  145. 145.

    Chang, S.-Y., Li, C.-E., Chiang, S.-C. & Huang, Y.-C. 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects. J. Alloys Compd. 515, 4–7 (2012).

    CAS  Google Scholar 

  146. 146.

    Chang, S.-Y., Chen, M.-K. & Chen, D.-S. Multiprincipal-element AlCrTaTiZr–nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization. J. Electrochem. Soc. 156, G37–G42 (2009).

    CAS  Google Scholar 

  147. 147.

    Chang, S.-Y. et al. Improved diffusion-resistant ability of multicomponent nitrides: from unitary TiN to senary high-entropy (TiTaCrZrAlRu)N. JOM 65, 1790–1796 (2013).

    CAS  Google Scholar 

  148. 148.

    Sharma, Y. et al. Single-crystal high entropy perovskite oxide epitaxial films. Phys. Rev. Mater. 2, 060404 (2018).

    CAS  Google Scholar 

  149. 149.

    Braic, V. et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 10, 197–205 (2012).

    CAS  Google Scholar 

  150. 150.

    Wang, Y., Jie, W., Yang, C., Wei, X. & Hao, J. Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Func. Mater. 29, 1808118 (2019).

    Google Scholar 

  151. 151.

    Leyland, A. & Matthews, A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246, 1–11 (2000).

    CAS  Google Scholar 

  152. 152.

    Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016).

    CAS  Google Scholar 

  153. 153.

    Troparevsky, M. C., Morris, J. R., Kent, P. R. C., Lupini, A. R. & Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  154. 154.

    Widom, M. in High-Entropy Alloys: Fundamentals and Applications Ch. 8 (eds Gao, M. C., Yeh, J.-W., Liaw, P. K. & Zhang, Y.) 267–298 (Springer, 2016).

  155. 155.

    Huhn, W. P. & Widom, M. Prediction of A2 to B2 phase transition in the high entropy alloy Mo–Nb–Ta–W. JOM 65, 1772–1779 (2013).

    CAS  Google Scholar 

  156. 156.

    Widom, M. Entropy and diffuse scattering: comparison of NbTiVZr and CrMoNbV. Metall. Mater. Trans. A 47, 3306–3311 (2016).

    CAS  Google Scholar 

  157. 157.

    de Fontaine, D. in Solid State Physics Vol. 47 Ch. 2 (eds Ehrenreich, H. & Turnbull, D.) 33–176 (Academic Press, 1994).

  158. 158.

    van de Walle, A. & Asta, M. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams. Model. Simul. Mater. Sci. Eng. 10, 521 (2002).

    Google Scholar 

  159. 159.

    Balluffi, R. W., Allen, S. M. & Carter, W. C. Kinetics of Materials (Wiley, 2005).

  160. 160.

    Ye, B., Wen, T., Huang, K., Wang, C.-Z. & Chu, Y. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic. J. Amer. Ceram. Soc. 102, 4344–4352 (2019).

    CAS  Google Scholar 

  161. 161.

    Demirskyi, D. et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scr. Mater. 164, 12–16 (2019).

    CAS  Google Scholar 

  162. 162.

    Peng, C. et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Appl. Phys. Lett. 114, 011905 (2019).

    Google Scholar 

  163. 163.

    Zhang, H. & Akhtar, F. Processing and characterization of refractory quaternary and quinary high-entropy carbide composite. Entropy 21, 474 (2019).

    CAS  Google Scholar 

  164. 164.

    Zhang, H., Hedman, D., Feng, P., Han, G. & Akhtar, F. A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite. Dalton Trans. 48, 5161–5167 (2019).

    CAS  Google Scholar 

  165. 165.

    Lai, C.-H., Cheng, K.-H., Lin, S.-J. & Yeh, J.-W. Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coat. Technol. 202, 3732–3738 (2008).

    CAS  Google Scholar 

  166. 166.

    Lin, C. H., Duh, J. G. & Yeh, J.-W. Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surf. Coat. Technol. 201, 6304–6308 (2007).

    CAS  Google Scholar 

  167. 167.

    Lin, C. H. & Duh, J. G. Corrosion behavior of (Ti–Al–Cr–Si–V)xNy coatings on mild steels derived from RF magnetron sputtering. Surf. Coat. Technol. 203, 558–561 (2008).

    CAS  Google Scholar 

  168. 168.

    Chang, H.-W. et al. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surf. Coat. Technol. 202, 3360–3366 (2008).

    CAS  Google Scholar 

  169. 169.

    Huang, P.-K. & Yeh, J.-W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coat. Technol. 203, 1891–1896 (2009).

    CAS  Google Scholar 

  170. 170.

    Hsieh, T. H., Hsu, C. H., Wu, C. Y., Kao, J. Y. & Hsu, C. Y. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr. Appl. Phys. 18, 512–518 (2018).

    Google Scholar 

  171. 171.

    Liang, S.-C. et al. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings. Appl. Surf. Sci. 257, 7709–7713 (2011).

    CAS  Google Scholar 

  172. 172.

    Cheng, K.-H., Lai, C.-H., Lin, S.-J. & Yeh, J.-W. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid. Films 519, 3185–3190 (2011).

    CAS  Google Scholar 

  173. 173.

    Chang, S.-Y., Lin, S.-Y. & Huang, Y.-C. Microstructures and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings. Thin Solid. Films 519, 4865–4869 (2011).

    CAS  Google Scholar 

  174. 174.

    Lin, S.-Y., Chang, S.-Y., Huang, Y.-C., Shieu, F.-S. & Yeh, J.-W. Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NCy multi-component coatings co-sputtered with bias. Surf. Coat. Technol. 206, 5096–5102 (2012).

    CAS  Google Scholar 

  175. 175.

    Lee, C.-T. et al. Effects of DC bias on the microstructure, residual stress and hardness properties of TiVCrZrTaN films by reactive RF magnetron sputtering. Proc. Eng. 36, 316–321 (2012).

    CAS  Google Scholar 

  176. 176.

    Chang, Z.-C., Tsai, D.-C. & Chen, E.-C. Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings. Mater. Sci. Semiconductor Proc. 39, 30–39 (2015).

    CAS  Google Scholar 

  177. 177.

    Hsueh, H.-T., Shen, W.-J., Tsai, M.-H. & Yeh, J.-W. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx. Surf. Coat. Technol. 206, 4106–4112 (2012).

    CAS  Google Scholar 

  178. 178.

    Sobol’, O. V. et al. Reproducibility of the single-phase structural state of the multielement high-entropy Ti–V–Zr–Nb–Hf system and related superhard nitrides formed by the vacuum-arc method. Tech. Phys. Lett. 38, 616–619 (2012).

    Google Scholar 

  179. 179.

    Pogrebnjak, A. D. et al. Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions. Mater. Chem. Phys. 147, 1079–1091 (2014).

    CAS  Google Scholar 

  180. 180.

    Tsai, C.-W. et al. Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid. Films 520, 2613–2618 (2012).

    CAS  Google Scholar 

  181. 181.

    Braic, M., Balaceanu, M., Vladescu, A., Zoita, C. N. & Braic, V. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings. Appl. Surf. Sci. 284, 671–678 (2013).

    CAS  Google Scholar 

  182. 182.

    Tsai, D.-C. et al. Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering. Appl. Surf. Sci. 282, 789–797 (2013).

    CAS  Google Scholar 

  183. 183.

    Gorban’, V. F. et al. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy. J. Superhard Mater. 39, 166–171 (2017).

    Google Scholar 

  184. 184.

    Malinovskis, P. et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater. Des. 149, 51–62 (2018).

    CAS  Google Scholar 

  185. 185.

    Jhong, Y.-S., Huang, C.-W. & Lin, S.-J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Mater. Chem. Phys. 210, 348–352 (2018).

    CAS  Google Scholar 

  186. 186.

    Mayrhofer, P. H., Kirnbauer, A., Ertelthaler, Ph. & Koller, C. M. High-entropy ceramic thin films; a case study on transition metal diborides. Scr. Mater. 149, 93–97 (2018).

    CAS  Google Scholar 

  187. 187.

    Chang, S.-Y. & Chen, D.-S. 10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900 °C. Appl. Phys. Lett. 94, 231909 (2009).

    Google Scholar 

  188. 188.

    Liang, S.-C. et al. Thermally stable TiVCrZrHf nitride films as diffusion barriers in copper metallization. Electrochem. Solid-State Lett. 15, H5–H8 (2012).

    CAS  Google Scholar 

  189. 189.

    Tsai, D.-C. et al. Interfacial reactions and characterization of (TiVCrZrHf)N thin films during thermal treatment. Surf. Coat. Technol. 240, 160–166 (2014).

    CAS  Google Scholar 

  190. 190.

    Tsau, C.-H., Hwang, Z.-Y. & Chen, S.-K. The microstructures and electrical resistivity of (Al, Cr, Ti)FeCoNiOx high-entropy alloy oxide thin films. Adv. Mater. Sci. Eng. 2015, 353140 (2015).

    Google Scholar 

  191. 191.

    Dinu, M. et al. In vitro corrosion resistance of Si containing multi-principal element carbide coatings. Mater. Corros. 67, 908–914 (2016).

    CAS  Google Scholar 

  192. 192.

    Sarkar, A. et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31, 1806236 (2019).

    Google Scholar 

  193. 193.

    Chellali, M. R. et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale. Scr. Mater. 166, 58–63 (2019).

    CAS  Google Scholar 

  194. 194.

    Urban, A., Abdellahi, A., Dacek, S., Artrith, N. & Ceder, G. Electronic-structure origin of cation disorder in transition-metal oxides. Phys. Rev. Lett. 119, 176402 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors thank K. Vecchio, J.-P. Maria, E. Opila, P. Hopkins, J. Luo, D. Brenner, D. Hicks, Y. Lederer, O. Levy and X. Campilongo for fruitful discussions. Research sponsored by DOD-ONR (N00014-15-1-2863, N00014-16-1-2326, N00014-17-1-2876).

Author information

Affiliations

Authors

Contributions

S.C., C.O. and C.T. performed the literature search. All authors contributed equally to the article.

Corresponding author

Correspondence to Stefano Curtarolo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AB3C6_cI80_206_a_d_e (bixbyite structure): http://aflow.org/CrystalDatabase/AB3C6_cI80_206_a_d_e

AB3C_oP20_62_c_cd_a (orthorhombic perovskite structure): http://aflow.org/CrystalDatabase/AB3C_oP20_62_c_cd_a

A3B4_cF56_227_ad_e (spinel structure): http://aflow.org/CrystalDatabase/A3B4_cF56_227_ad_e

A2B2C7_cF88_227_c_d_af (pyrochlore structure): http://aflow.org/CrystalDatabase/A2B2C7_cF88_227_c_d_af

A7B2C2_mC22_12_aij_h_i (thortveitite structure): http://aflow.org/CrystalDatabase/A7B2C2_mC22_12_aij_h_i

AB_cF8_225_a_b (rock-salt structure): http://aflow.org/CrystalDatabase/AB_cF8_225_a_b

AB2_cF12_225_a_c (fluorite structure): http://aflow.org/CrystalDatabase/AB2_cF12_225_a_c

AB3C_cP5_221_a_c_b (cubic perovskite structure): http://aflow.org/CrystalDatabase/AB3C_cP5_221_a_c_b

AB2_hP3_191_a_d (AlB 2 structure): http://aflow.org/CrystalDatabase/AB2_hP3_191_a_d

AB2_hP9_180_d_j (C40 structure): http://aflow.org/CrystalDatabase/AB2_hP9_180_d_j

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat Rev Mater 5, 295–309 (2020). https://doi.org/10.1038/s41578-019-0170-8

Download citation

Further reading