Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifunctional materials for implantable and wearable photonic healthcare devices

Abstract

Numerous light-based diagnostic and therapeutic devices are routinely used in the clinic. These devices have a familiar look as items plugged in the wall or placed at patients’ bedsides, but recently, many new ideas have been proposed for the realization of implantable or wearable functional devices. Many advances are being fuelled by the development of multifunctional materials for photonic healthcare devices. However, the finite depth of light penetration in the body is still a serious constraint for their clinical applications. In this Review, we discuss the basic concepts and some examples of state-of-the-art implantable and wearable photonic healthcare devices for diagnostic and therapeutic applications. First, we describe emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discuss the path for their clinical translation. Then, we examine implantable photonic healthcare devices in terms of their properties and diagnostic and therapeutic functions. We next describe exemplary cases of noninvasive, wearable photonic healthcare devices across different anatomical applications. Finally, we discuss the future research directions for the field, in particular regarding mobile healthcare and personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental mechanisms underlying representative photonic healthcare applications.
Fig. 2: Multifunctional material platforms for implantable and wearable photonic healthcare devices.
Fig. 3: Implantable photonic healthcare devices.
Fig. 4: Wearable photonic healthcare devices.
Fig. 5: Schematic illustration of mobile health and personalized telemedicine.

Similar content being viewed by others

References

  1. Yun, S. H. & Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008 (2017). This review paper describes the fundamental concept of light, its interactions with biological matters and its applications to diagnosis, therapy and surgery.

    CAS  Google Scholar 

  2. Van Soest, G., Regar, E. & van der Steen, A. F. W. Photonics in cardiovascular medicine. Nat. Photonics 9, 626–629 (2015).

    Google Scholar 

  3. Kim, H. et al. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv. Mater. 30, 1701460 (2018). This review paper describes the fundamental science, synthetic concepts, characteristics and biomedical applications of multifunctional photonic nanomaterials that can interact through light with biological systems.

    Google Scholar 

  4. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    CAS  Google Scholar 

  5. Tuchin, V. V. Polarized light interaction with tissues. J. Biomed. Opt. 21, 071114 (2016).

    Google Scholar 

  6. Weisleder, R. Molecular imaging in cancer. Science 312, 1168–1171 (2006).

    Google Scholar 

  7. Lee, M.-Y. et al. Biodegradable photonic melanoidin for theranostic applications. ACS Nano 10, 822–831 (2016).

    CAS  Google Scholar 

  8. Tak, S., Uga, M., Flandin, G., Dan, I. & Penny, W. D. Sensor space group analysis for fNIRS data. J. Neurosci. Methods 264, 103–112 (2016).

    CAS  Google Scholar 

  9. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013).

    CAS  Google Scholar 

  10. Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    Google Scholar 

  11. Lee, D.-E. et al. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41, 2656–2672 (2012).

    CAS  Google Scholar 

  12. Shao, J. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016).

    CAS  Google Scholar 

  13. Liu, K. et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew. Chem. Int. Ed. 55, 3036–3039 (2016).

    CAS  Google Scholar 

  14. Hamblin, M. R., Huang, Y.-Y. & Heiskanen, V. Non-mammalian hosts and photobiomodulation: do all life-forms respond to light? Photochem. Photobiol. 95, 126–139 (2019).

    CAS  Google Scholar 

  15. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    CAS  Google Scholar 

  16. Kuffler, D. P. Photobiomodulation in promoting wound healing: a review. Regen. Med. 11, 107–122 (2016).

    CAS  Google Scholar 

  17. Wang, Y., Huang, Y.-Y., Wang, Y., Lyu, P. & Hamblin, M. R. Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochim. Biophys. Acta 1861, 441–449 (2017).

    CAS  Google Scholar 

  18. Hamblin, M. R. Shining light on the head: photobiomodulation for brain disorders. Biochim. Biophys. Acta Clin. 6, 113–124 (2016).

    Google Scholar 

  19. Choi, M. H. et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 7, 987–994 (2013). This paper describes light-guiding hydrogel implants for in vivo optogenetic nanotoxicity sensing and optogenetic therapy in diabetic mice.

    CAS  Google Scholar 

  20. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019). This paper describes a wireless, miniaturized bio-optoelectronic implant for the optogenetic modulation of the peripheral nervous system.

    CAS  Google Scholar 

  21. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    CAS  Google Scholar 

  22. Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521 (2017).

    CAS  Google Scholar 

  23. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13–23 (2013).

    CAS  Google Scholar 

  24. Biju, V., Itoh, T., Anas, A., Sujith, A. & Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal. Bioanal. Chem. 391, 2469–2495 (2008).

    CAS  Google Scholar 

  25. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  Google Scholar 

  26. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  Google Scholar 

  27. Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    CAS  Google Scholar 

  28. Yang, X., Yang, M., Pang, B., Vara, M. & Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 115, 10410–10488 (2015).

    CAS  Google Scholar 

  29. Giljohann, D. A. et al. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49, 3280–3294 (2010).

    CAS  Google Scholar 

  30. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  31. Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional material. Chem. Rev. 113, 3766–3798 (2013).

    CAS  Google Scholar 

  32. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    CAS  Google Scholar 

  33. Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    CAS  Google Scholar 

  34. Tian, G. et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 24, 1226–1231 (2012).

    CAS  Google Scholar 

  35. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999). This review paper describes the background science, materials fabrication and semiconductor physics of electroluminescent conjugated polymers.

    CAS  Google Scholar 

  36. Bernholc, J., Brenner, D., Nardelli, M. B., Meunier, V. & Roland, C. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32, 347–375 (2002).

    CAS  Google Scholar 

  37. Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012).

    CAS  Google Scholar 

  38. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    CAS  Google Scholar 

  39. Park, Y., Yoo, J., Lim, B., Kwon, W. & Rhee, S.-W. Improving the functionality of carbon nanodots: doping and surface functionalization. J. Mater. Chem. A 4, 11582–11603 (2016).

    CAS  Google Scholar 

  40. Kim, H. et al. Dual-color-emitting carbon nanodots for multicolor bioimaging and optogenetic control of ion channels. Adv. Sci. 4, 1700325 (2017).

    Google Scholar 

  41. Del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    Google Scholar 

  42. Chen, K. et al. Direct growth of single-crystalline III–V semiconductors on amorphous substrates. Nat. Commun. 7, 10502 (2016).

    CAS  Google Scholar 

  43. Okamoto, K. Fundamentals of Optical Waveguides 2nd edn Ch. 1 (Academic, 2006).

  44. Parker, G. J. in Encyclopedia of Materials: Science and Technology 2nd edn (eds Buschow, K. H. J. et al.) 3703–3707 (Pergamon, 2001).

  45. Sparta, D. R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012).

    CAS  Google Scholar 

  46. Humar, M. et al. Toward biomaterial-based implantable photonic devices. Nanophotonics 6, 414–434 (2017).

    Google Scholar 

  47. Dupuis, A. et al. Prospective for biodegradable microstructured optical fibers. Opt. Lett. 32, 109–111 (2007).

    CAS  Google Scholar 

  48. Parker, S. T. et al. Biocompatible silk printed optical waveguides. Adv. Mater. 21, 2411–2415 (2009).

    CAS  Google Scholar 

  49. Shan, D. et al. Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials 143, 142–148 (2017).

    CAS  Google Scholar 

  50. Nizamoglu, S. et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 7, 10374 (2016).

    CAS  Google Scholar 

  51. Guo, J., Zhou, M. & Yang, C. Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci. Rep. 7, 7902 (2017).

    Google Scholar 

  52. Jain, A., Yang, A. H. J. & Erickson, D. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. Opt. Lett. 37, 1472–1474 (2012).

    CAS  Google Scholar 

  53. Manocchi, A. K., Domachuk, P., Omenetto, F. G. & Yi, H. Facile fabrication of gelatin-based biopolymeric optical waveguides. Biotechnol. Bioeng. 103, 725–732 (2009).

    CAS  Google Scholar 

  54. Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018). This review paper describes intrinsically stretchable materials for conductors, semiconductors and insulators, and futuristic self-healable or biodegradable electronic materials.

    CAS  Google Scholar 

  55. Oh, J. Y. & Bao, Z. Second skin enabled by advanced electronics. Adv. Sci. 6, 1900186 (2019).

    Google Scholar 

  56. Irimia-Vladu, M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43, 588–610 (2014).

    CAS  Google Scholar 

  57. Kong, D. et al. Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv. Funct. Mater. 26, 4680–4686 (2016).

    CAS  Google Scholar 

  58. Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105, 18675–18680 (2008).

    CAS  Google Scholar 

  59. Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structure designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    CAS  Google Scholar 

  60. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).

    CAS  Google Scholar 

  61. Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    CAS  Google Scholar 

  62. Park, M., Park, J. & Jeong, U. Design of conductive composite elastomers for stretchable electronics. Nano Today 9, 244–260 (2014).

    CAS  Google Scholar 

  63. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

    CAS  Google Scholar 

  64. Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421–428 (2012).

    CAS  Google Scholar 

  65. Oh, J. Y., Kim, S., Baik, H. K. & Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455–4461 (2016).

    CAS  Google Scholar 

  66. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Google Scholar 

  67. Dickey, M. D. Stretchable and soft electronics using liquid metals. Adv. Mater. 29, 1606425 (2017).

    Google Scholar 

  68. Yan, J., Lu, Y., Chen, G., Yang, M. & Gu, Z. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47, 2518–2533 (2018).

    CAS  Google Scholar 

  69. Xu, F. et al. Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. Nano Lett. 14, 682–686 (2014).

    CAS  Google Scholar 

  70. Müller, C. et al. Tough, semiconducting polyethylene-poly(3-hexylthiophene) diblock copolymers. Adv. Funct. Mater. 17, 2674–2679 (2007).

    Google Scholar 

  71. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    CAS  Google Scholar 

  72. Wang, G. J. N. et al. Inducing elasticity through oligosiloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv. Funct. Mater. 26, 7254–7262 (2016).

    CAS  Google Scholar 

  73. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    CAS  Google Scholar 

  74. Kang, J., Tok, J. B.-H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Google Scholar 

  75. Rao, Y.-L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).

    CAS  Google Scholar 

  76. Kang, J. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846 (2018).

    Google Scholar 

  77. Hart, L. R. et al. Perylene as an electron-rich moiety in healable, complementary π–π stacked, supramolecular polymer systems. Polymer 69, 293–300 (2015).

    CAS  Google Scholar 

  78. Hohlbein, N., Shaaban, A. & Schmidt, A. Remote-controlled activation of self-healing behavior in magneto-responsive ionomeric composites. Polymer 69, 301–309 (2015).

    CAS  Google Scholar 

  79. Tee, B. C., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012).

    CAS  Google Scholar 

  80. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    CAS  Google Scholar 

  81. Lei, T. et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl Acad. Sci. USA 114, 5107–5112 (2017).

    CAS  Google Scholar 

  82. Irimia-Vladu, M. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20, 4069–4076 (2010).

    CAS  Google Scholar 

  83. Bettinger, C. J. & Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22, 651–655 (2010).

    CAS  Google Scholar 

  84. Hwang, S.-W. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 15, 2801–2808 (2015).

    CAS  Google Scholar 

  85. Boutry, C. M. et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 27, 6954–6961 (2015).

    CAS  Google Scholar 

  86. Hastings, J. W. Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J. Mol. Evol. 19, 309–321 (1983).

    CAS  Google Scholar 

  87. Jones, K. A. et al. Orthogonal luciferase–luciferin pairs for bioluminescence imaging. J. Am. Chem. Soc. 139, 2351–2358 (2017).

    CAS  Google Scholar 

  88. Yeh, H.-W. et al. Red-shifted luciferase–luciferin pairs for enhanced bioluminescence imaging. Nat. Methods 14, 971–974 (2017).

    CAS  Google Scholar 

  89. Maguire, C. A. et al. Triple bioluminescence imaging for in vivo monitoring of cellular processes. Mol. Ther. Nucl. Acids 2, e99 (2013).

    Google Scholar 

  90. Bhaumik, S. & Gambhir, S. S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl Acad. Sci. USA 99, 377–382 (2002).

    CAS  Google Scholar 

  91. Pfleger, K. D. G. & Eidne, K. A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat. Methods 3, 165–174 (2006).

    CAS  Google Scholar 

  92. James, J. R., Oliveira, M. I., Carmo, A. M., Iaboni, A. & Davis, S. J. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods 3, 1001–1006 (2006).

    CAS  Google Scholar 

  93. Salahpour, A. et al. BRET biosensors to study GPCR biology, pharmacology, and signal transduction. Front. Endocrinol. 3, 105 (2012).

    Google Scholar 

  94. Kobayashi, H., Picard, L. P., Schönegge, A. M. & Bouvier, M. Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells. Nat. Protoc. 14, 1084–1107 (2019).

    CAS  Google Scholar 

  95. Yao, H., Zhang, Y., Xiao, F., Xia, Z. & Rao, J. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew. Chem. Int. Ed. 46, 4346–4349 (2007).

    CAS  Google Scholar 

  96. Sarkar, K., Xue, Y. & Sant, S. in The Immune Response to Implanted Materials and Devices (ed. Corradetti, B.) 81–105 (Springer, 2017).

  97. Singh, A. et al. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat. Mater. 13, 988–995 (2014).

    CAS  Google Scholar 

  98. Merrill, E. W. in Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications (ed. Harris, J. M.) 199–220 (Plenum, 1992).

  99. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    CAS  Google Scholar 

  100. Kastellorizios, M., Papadimitrakopoulos, F. & Burgess, D. J. Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J. Control. Rel. 214, 103–111 (2015).

    CAS  Google Scholar 

  101. Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).

    CAS  Google Scholar 

  102. Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–79 (2016).

    CAS  Google Scholar 

  103. Salles, G. N. et al. A novel bioresorbable device as a controlled release system for protecting cells from oxidative stress from Alzheimer’s disease. Mol. Neurobiol. 54, 6827–6838 (2017).

    CAS  Google Scholar 

  104. Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    CAS  Google Scholar 

  105. Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).

    CAS  Google Scholar 

  106. Lee, J. O. et al. A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsyst. Nanoeng. 3, 17057 (2017).

    CAS  Google Scholar 

  107. Bansal, A., Yang, F., Xi, T., Zhang, Y. & Ho, J. S. In vivo wireless photonic photodynamic therapy. Proc. Natl Acad. Sci. USA 115, 1469–1474 (2018).

    CAS  Google Scholar 

  108. Yamagishi, K. et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat. Biomed. Eng. 3, 27–36 (2019). This paper describes an implantable optoelectronic device to overcome the light-penetration issue in the application of photodynamic therapy.

    CAS  Google Scholar 

  109. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    CAS  Google Scholar 

  110. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    CAS  Google Scholar 

  111. Samineni, V. K. et al. Optogenetic silencing of nociceptive primary afferents reduces evoked and ongoing bladder pain. Sci. Rep. 7, 15865 (2017).

    Google Scholar 

  112. Park, S.-I. et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009).

    CAS  Google Scholar 

  113. Kim, H.-S. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 108, 10072–10077 (2011).

    CAS  Google Scholar 

  114. Kim, T.-I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    CAS  Google Scholar 

  115. Kim, S. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl Acad. Sci. USA 107, 17095–17100 (2010).

    CAS  Google Scholar 

  116. Agarwal, K., Jegadeesan, R., Guo, Y. X. & Thakor, N. V. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev. Biomed. Eng. 10, 136–161 (2017).

    Google Scholar 

  117. Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    CAS  Google Scholar 

  118. Djourno, A. & Eyries, C. Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling. Presse Med. 65, 1417 (1957).

    CAS  Google Scholar 

  119. Brindley, G. S. & Lewin, W. S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968).

    CAS  Google Scholar 

  120. Kelly, S. K. & Rizzo, J. in Artificial Vision (ed. Gabel, V. P.) 85–97 (Springer, 2017).

  121. Gather, M. C. & Yun, S. H. Single-cell biological lasers. Nat. Photonics 5, 406–410 (2011).

    CAS  Google Scholar 

  122. Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photonics 9, 572–576 (2015).

    CAS  Google Scholar 

  123. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).

    CAS  Google Scholar 

  124. Reiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2017).

    Google Scholar 

  125. Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D.-H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019).

    Google Scholar 

  126. Xu, H., Yin, L., Lui, C., Sheng, X. & Zhao, N. Recent advances in biointegrated optoelectronic devices. Adv. Mater. 30, 1800156 (2018).

    Google Scholar 

  127. Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    Google Scholar 

  128. Park, S. I. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl Acad. Sci. USA 113, E8169–E8177 (2016).

    CAS  Google Scholar 

  129. Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).

    CAS  Google Scholar 

  130. Lee, W. et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl Acad. Sci. USA 114, 10554–10559 (2017).

    CAS  Google Scholar 

  131. Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    CAS  Google Scholar 

  132. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    CAS  Google Scholar 

  133. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 13, 750–754 (2015).

    Google Scholar 

  134. Tan, P., He, L., Han, G. & Zhou, Y. Optogenetic immunomodulation: shedding light on antitumor immunity. Trends Biotechnol. 35, 215–226 (2017).

    CAS  Google Scholar 

  135. Park, J. H. et al. Optogenetic modulation of urinary bladder contraction for lower urinary tract dysfunction. Sci. Rep. 7, 40872 (2017).

    CAS  Google Scholar 

  136. Häusser, M. Optogenetics: the age of light. Nat. Methods 11, 1012–1014 (2014).

    Google Scholar 

  137. Iaccarino, H. F. et al. Gamma frequency entertainment attenuates amyloid load and modifies microglia. Nature 540, 230–235 (2016). This paper demonstrates the feasibility of optogenetic therapy to control brain signals with a gamma frequency of 40 Hz for the treatment of Alzheimer disease.

    CAS  Google Scholar 

  138. Aron, L. & Yankner, B. A. Neural synchronization in Alzheimer’s disease. Nature 540, 207–208 (2016).

    CAS  Google Scholar 

  139. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    CAS  Google Scholar 

  140. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    CAS  Google Scholar 

  141. Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: a jump-start for electroceuticals. Nature 496, 159–161 (2013).

    CAS  Google Scholar 

  142. Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2, e1600418 (2016).

    Google Scholar 

  143. Kim, J. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27, 1604373 (2017).

    Google Scholar 

  144. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013).

    CAS  Google Scholar 

  145. Kim, T. et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 11, 5992–6003 (2017).

    CAS  Google Scholar 

  146. Kaltenbrunner, M. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Google Scholar 

  147. Yin, D. et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 7, 11573 (2016).

    CAS  Google Scholar 

  148. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6, 105–110 (2012).

    CAS  Google Scholar 

  149. Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013).

    CAS  Google Scholar 

  150. Liang, J. et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014).

    CAS  Google Scholar 

  151. Bade, S. G. R. et al. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv. Mater. 29, 1607053 (2017).

    Google Scholar 

  152. Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).

    CAS  Google Scholar 

  153. Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

    CAS  Google Scholar 

  154. Takei, K., Honda, W., Harada, S., Arie, T. & Akita, S. Toward flexible and wearable human-interactive health-monitoring devices. Adv. Healthc. Mater. 4, 487–500 (2015).

    CAS  Google Scholar 

  155. Senior, M. Novartis signs up for Google smart lens. Nat. Biotechnol. 3, 856 (2014).

    Google Scholar 

  156. Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018). This paper describes smart contact lenses that can measure tear glucose concentration and display it using light-emitting diodes powered wirelessly.

    Google Scholar 

  157. Yao, H., Shum, A. J., Cowan, M., Lähdesmäki, I. & Parviz, B. A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 3290–3296 (2011).

    CAS  Google Scholar 

  158. Elsherif, M., Hassan, M. U., Yetisen, A. K. & Butt, H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12, 5452–5462 (2018).

    CAS  Google Scholar 

  159. Leonardi, M., Pitchon, E. M., Bertsch, A., Renaud, P. & Mermoud, A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 87, 433–437 (2009).

    Google Scholar 

  160. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    CAS  Google Scholar 

  161. Domschke, A., March, W. F., Kabilan, S. & Lowe, C. Initial clinical testing of a holographic non-invasive contact lens glucose sensor. Diabetes Technol. Ther. 8, 89–93 (2006).

    CAS  Google Scholar 

  162. Deng, J. et al. Self-reporting colorimetric analysis of drug release by molecular imprinted structural color contact lens. ACS Appl. Mater. Interfaces 10, 34611–34617 (2018).

    CAS  Google Scholar 

  163. March, W. F., Mueller, A. & Herbrechtsmeier, P. Clinical trial of a noninvasive contact lens glucose sensor. Diabetes Technol. Ther. 6, 782–789 (2004).

    CAS  Google Scholar 

  164. Badugu, R., Lakowicz, J. R. & Geddes, C. D. Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens. Anal. Chem. 76, 610–618 (2004).

    CAS  Google Scholar 

  165. Badugu, R., Lakowicz, J. R. & Geddes, C. D. A glucose-sensing contact lens: from bench top to patient. Curr. Opin. Biotechnol. 16, 100–107 (2005).

    CAS  Google Scholar 

  166. Zhang, J., Hodge, W., Hutnick, C. & Wang, X. Noninvasive diagnostic devices for diabetes through measuring tear glucose. J. Diabetes Sci. Technol. 5, 166–172 (2011).

    Google Scholar 

  167. Khalil, O. S. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin. Chem. 45, 165–177 (1999).

    CAS  Google Scholar 

  168. Maruo, K., Tsurugi, M., Tamura, M. & Ozaki, Y. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy. Appl. Spectrosc. 57, 1236–1244 (2003).

    CAS  Google Scholar 

  169. Hahn, S. K., Lee, G.-H., Sim, J. Y., Koo, J. H. & Keum, D. H., Smart remotely controlled contact lens. Korean Patent 10-2017-0059225, PCT/KR2017/015243, Korean Patent 10-1956701 (2019).

  170. Tang, J. et al. (2013). Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro. Investig. Ophthalmol. Vis. Sci. 54, 3681–3690 (2013).

    Google Scholar 

  171. Eells, J. T. et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc. Natl Acad. Sci. USA 100, 3439–3444 (2003).

    CAS  Google Scholar 

  172. Albarracin, R., Eells, J. T. & Valter, K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Investig. Ophthalmol. Vis. Sci. 52, 3582–3592 (2011).

    Google Scholar 

  173. Cashmore, A. R., Jarillo, J. A., Wu, Y. J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    CAS  Google Scholar 

  174. Thresher, R. J. et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282, 1490–1494 (1998).

    CAS  Google Scholar 

  175. van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    Google Scholar 

  176. Kim, W.-Y. et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356–360 (2007).

    CAS  Google Scholar 

  177. Emery, P., So, W. V., Kaneko, M., Hall, J. C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679 (1998).

    CAS  Google Scholar 

  178. Strong, R. E. et al. Narrow-band blue-light treatment of seasonal affective disorder in adults and the influence of additional nonseasonal symptoms. Depress. Anxiety 26, 273–278 (2009).

    Google Scholar 

  179. Gordijn, M. C. & Meesters, Y. The effects of blue-enriched light treatment compared to standard light treatment in seasonal affective disorder. J. Affect. Disord. 136, 72–80 (2012).

    CAS  Google Scholar 

  180. Glickman, G., Byrne, B., Pineda, C., Hauck, W. W. & Brainard, G. C. Light therapy for seasonal affective disorder with blue narrow-band light-emitting diodes (LEDs). Biol. Psychiatry 59, 502–507 (2006).

    Google Scholar 

  181. Anderson, J. L., Glod, C. A., Dai, J., Cao, Y. & Lockley, S. W. Lux vs. wavelength in light treatment of seasonal affective disorder. Acta Psychiatr. Scand. 120, 203–212 (2009).

    CAS  Google Scholar 

  182. Bragard, I. & Coucke, P. A. Impact of the use of Luminette on well-being at work in a radiotherapy department. Cancer Radiother. 17, 731–735 (2013).

    CAS  Google Scholar 

  183. Langevin, R. H., Laurent, A. & Sauvéc, A. Preliminary assessment on the effectiveness of the Luminette in adolescents with a delayed sleep phase syndrome (DSPS): randomized single blind placebo-controlled study. Méd. Sommeil 11, 91–97 (2014).

    Google Scholar 

  184. Kirschbaum-Lesch, I., Gest, S., Legenbauer, T. & Holtmann, M. Feasibility and efficacy of bright light therapy in depressed adolescent inpatients. Z. Kinder Jugendpsychiatr. Psychother. 46, 423–429 (2018).

    Google Scholar 

  185. Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 8, 14–25 (2012).

    Google Scholar 

  186. Chua, C.-P. E., Redmond, S. J., McDarby, G. & Heneghan, C. Towards using photo-plethysmogram amplitude to measure blood pressure during sleep. Ann. Biomed. Eng. 38, 945–954 (2010).

    Google Scholar 

  187. Kim, M.-G., Kim, C., Alrowais, H. & Brand, O. Multiscale and uniform liquid metal thin-film patterning based on soft lithography for 3D heterogeneous integrated soft microsystems: additive stamping and subtractive reverse stamping. Adv. Mater. Technol. 3, 1800061 (2018).

    Google Scholar 

  188. Han, D. et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv. Mater. 29, 1606206 (2017).

    Google Scholar 

  189. Park, S. et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 30, 1802359 (2018).

    Google Scholar 

  190. Lee, H. et al. Toward all-day wearable health monitoring: an ultralow-power, reflective organic pulse oximetry sensing patch. Sci. Adv. 4, eaas9530 (2018). This paper describes thin-film photonic devices for pulse oximetry with significantly reduced power consumption, enabling all-day wearable healthcare.

    CAS  Google Scholar 

  191. Khan, Y. et al. A flexible organic reflectance oximeter array. Proc. Natl Acad. Sci. USA 115, E11015–E11024 (2018).

    CAS  Google Scholar 

  192. Chu, B., Burnett, W., Chung, J. W. & Bao, Z. Bring on the bodynet. Nature 549, 328–330 (2017). This Comment article describes stretchable sensors, circuits and batteries to fabricate wearable devices on the bodynet, a network of sensors, screens and smart devices woven into our clothing, worn on our skin and implanted in our bodies.

    CAS  Google Scholar 

  193. Karu, T. I. Cellular mechanisms of low-power laser therapy. Proc. SPIE 5149, 60–66 (2003).

    Google Scholar 

  194. Jeon, Y. et al. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 3, 1700391 (2018).

    Google Scholar 

  195. Lee, H. E. et al. Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 12, 9587–9595 (2018).

    CAS  Google Scholar 

  196. Kalajian, T. A., Aldoukhi, A., Veronikis, A. J., Persons, K. & Holick, M. F. Ultraviolet B light emitting diodes (LEDs) are more efficient and effective in producing vitamin D3 in human skin compared to natural sunlight. Sci. Rep. 7, 11489 (2017).

    CAS  Google Scholar 

  197. Han, S. et al. Upconversion nanoparticles/hyaluronate–rose bengal conjugate complex for noninvasive photochemical tissue bonding. ACS Nano 11, 9979–9988 (2017).

    CAS  Google Scholar 

  198. Darlot, F. et al. Near-infrared light is neuroprotective in a monkey model of Parkinson disease. Ann. Neurol. 79, 59–75 (2016).

    Google Scholar 

  199. Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

    CAS  Google Scholar 

  200. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    CAS  Google Scholar 

  201. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS  Google Scholar 

  202. Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010).

    CAS  Google Scholar 

  203. Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    CAS  Google Scholar 

  204. Berlin, S. et al. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat. Methods 12, 852–858 (2015).

    CAS  Google Scholar 

  205. Kyung, T. et al. Optogenetic control of endogenous Ca2+ channels in vivo. Nat. Biotechnol. 33, 1092–1096 (2015).

    CAS  Google Scholar 

  206. Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 33, 204–209 (2015).

    CAS  Google Scholar 

  207. Lapp, H. et al. Frequency-dependent drug screening using optogenetic stimulation of human iPSC-derived cardiomyocytes. Sci. Rep. 7, 9629 (2017).

    Google Scholar 

  208. PDB ID 1LCI. Conti, E., Franks, N. P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Center for Advanced Soft Electronics (Global Frontier Project, CASE-2015M3A6A5072945), Engineering Research Center (ERC) Program (grant no. NRF-2017R1A5A1014708) and the Basic Science Research Program (2017R1E1A1A03070458) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Korea. This work was also supported by the World Class 300 Project (S2482887) of the Small and Medium Business Administration (SMBA), Korea. The Stanford researchers acknowledge support from Stanford Catalyst for Collaborative Solutions Program and Stanford Bio-X seed funding. The Stanford researchers acknowledge support from Department of Defense Air Force Office of Scientific Research (FA9550-15-1-0106), Samsung Electronics and Stanford Catalyst for Collaborative Solutions Program.

Author information

Authors and Affiliations

Authors

Contributions

G.-H.L., H.M., H.K., G.H.L., W.K. and S.K.H. researched data and wrote the manuscript. S.Y., D.M., S.H.Y, Z.B. and S.K.H. reviewed and edited the manuscript. All authors discussed the contents and provided important contributions to the manuscript.

Corresponding authors

Correspondence to Seok Hyun Yun, Zhenan Bao or Sei Kwang Hahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GH., Moon, H., Kim, H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 5, 149–165 (2020). https://doi.org/10.1038/s41578-019-0167-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0167-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing