Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing solid-state electrolytes for safe, energy-dense batteries

Abstract

Solid-state electrolytes (SSEs) have emerged as high-priority materials for safe, energy-dense and reversible storage of electrochemical energy in batteries. In this Review, we assess recent progress in the design, synthesis and analysis of SSEs, and identify key failure modes, performance limitations and design concepts for creating SSEs to meet requirements for practical applications. We provide an overview of the development and characteristics of SSEs, followed by analysis of ion transport in the bulk and at interfaces based on different single-valent (Li+, Na+, K+) and multivalent (Mg2+, Zn2+, Ca2+, Al3+) cation carriers of contemporary interest. We analyse the progress in overcoming issues associated with the poor ionic conductivity and high interfacial resistance of inorganic SSEs and the poor oxidative stability and cation transference numbers of polymer SSEs. Perspectives are provided on the design requirements for future generations of SSEs, with a focus on the chemical, geometric, mechanical, electrochemical and interfacial transport features required to accelerate progress towards practical solid-state batteries in which metals are paired with energetic cathode chemistries, including Ni-rich and Li-rich intercalating materials, sustainable organic materials, S8, O2 and CO2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Development of SSEs.
Fig. 2: Structures of common solid-state electrolytes.
Fig. 3: Ion transport in SPEs and SIEs.
Fig. 4: Failure modes of SSEs.
Fig. 5: Approaches to high-energy-density electrochemical systems using SPEs.
Fig. 6: Strategies for overcoming the interfacial issues in solid electrolyte interphases.

References

  1. 1.

    Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  2. 2.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    CAS  Google Scholar 

  3. 3.

    Manthiram, A., Yu, X. W. & Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Google Scholar 

  4. 4.

    Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    CAS  Google Scholar 

  5. 5.

    Hu, Y.-S. Batteries: getting solid. Nat. Energy 1, 16042 (2016).

    CAS  Google Scholar 

  6. 6.

    Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Google Scholar 

  7. 7.

    Bruce, P. G. (ed.) Solid State Electrochemistry Ch. 1 1–6 (Cambridge Univ. Press, 1995).

  8. 8.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). This paper reports the highest ionic conductivity for an SIE, achieved using multiple strategies to increase ion conduction through the material.

    CAS  Google Scholar 

  9. 9.

    He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017). This paper explains why only a few materials can deliver exceptionally high ionic conductivity and how to design fast ion conductors following simple principles.

    CAS  Google Scholar 

  10. 10.

    Bockris, J. O. M. & Reddy, A. K. N. Modern Electrochemistry Vol. 1 (Springer, 1998).

  11. 11.

    Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    CAS  Google Scholar 

  12. 12.

    Weston, J. & Steele, B. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ion. 7, 75–79 (1982).

    CAS  Google Scholar 

  13. 13.

    He, Y., Chen, Z., Zhang, Z., Wang, C. & Chen, L. Effect of dispersed phase particles on electrical conduction of PEO-NaSCN. Chem. Res. Chin. Univ. 2, 97–101 (1986).

    Google Scholar 

  14. 14.

    Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    CAS  Google Scholar 

  15. 15.

    Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016). One of the first reports of a multilayer electrolyte that combines the benefits of its organic and inorganic components.

    CAS  Google Scholar 

  16. 16.

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

  17. 17.

    Jost, W. Diffusion and electrolytic conduction in crystals (ionic semiconductors). J. Chem. Phys. 1, 466–475 (1933).

    CAS  Google Scholar 

  18. 18.

    Corish, J. in Handbook of Materials Modeling (ed. Yip, S.) 1889–1899 (Springer, 2005).

  19. 19.

    Knauth, P. & Tuller, H. L. Solid-state ionics: roots, status, and future prospects. J. Am. Ceram. Soc. 85, 1654–1680 (2002).

    CAS  Google Scholar 

  20. 20.

    Minami, T. Fast ion conducting glasses. J. Non-Cryst. Solids 73, 273–284 (1985).

    CAS  Google Scholar 

  21. 21.

    Angell, C. A. Mobile ions in amorphous solids. Annu. Rev. Phys. Chem. 43, 693–717 (1992).

    CAS  Google Scholar 

  22. 22.

    Souquet, J. L. Ionic transport in amorphous solid electrolytes. Annu. Rev. Mater. Sci. 11, 211–231 (1981).

    CAS  Google Scholar 

  23. 23.

    Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015). This paper reveals a fundamental relationship between anion packing and ionic transport in fast Li-ion-conducting materials and exposes the desirable structural attributes of good Li-ion conductors.

    CAS  Google Scholar 

  24. 24.

    Noda, Y. et al. Computational and experimental investigation of the electrochemical stability and Li-ion conduction mechanism of LiZr2(PO4)3. Chem. Mater. 29, 8983–8991 (2017).

    CAS  Google Scholar 

  25. 25.

    Weber, D. A. et al. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chem. Mater. 28, 5905–5915 (2016).

    CAS  Google Scholar 

  26. 26.

    Kwon, O. et al. Synthesis, structure, and conduction mechanism of lithium superionic conductor Li10+δGe1+δP2−δS12. J. Mater. Chem. A 3, 438–446 (2015).

    CAS  Google Scholar 

  27. 27.

    Iwasaki, R. et al. Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12. Chem. Mater. 31, 3694–3699 (2019).

    CAS  Google Scholar 

  28. 28.

    Zhao, C. Z. et al. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446 (2018).

    CAS  Google Scholar 

  29. 29.

    Nitzan, A. & Ratner, M. A. Conduction in polymers - dynamic disorder transport. J. Phys. Chem. 98, 1765–1775 (1994).

    CAS  Google Scholar 

  30. 30.

    Borodin, O. & Smith, G. D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39, 1620–1629 (2006).

    CAS  Google Scholar 

  31. 31.

    Teran, A. A., Tang, M. H., Mullin, S. A. & Balsara, N. P. Effect of molecular weight on conductivity of polymer electrolytes. Solid State Ion. 203, 18–21 (2011).

    CAS  Google Scholar 

  32. 32.

    Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001). This paper provides the first evidence of ion conduction in the crystalline phase of polymers.

    CAS  Google Scholar 

  33. 33.

    Staunton, E., Andreev, Y. G. & Bruce, P. G. Structure and conductivity of the crystalline polymer electrolyte β-PEO6:LiAsF6. J. Am. Chem. Soc. 127, 12176–12177 (2005).

    CAS  Google Scholar 

  34. 34.

    Henderson, W. A. & Passerini, S. Ionic conductivity in crystalline-amorphous polymer electrolytes – P(EO)6: LiX phases. Electrochem. Commun. 5, 575–578 (2003).

    CAS  Google Scholar 

  35. 35.

    Xue, S. et al. Diffusion of lithium ions in amorphous and crystalline poly(ethylene oxide)3:LiCF3SO3 polymer electrolytes. Electrochim. Acta 235, 122–128 (2017).

    CAS  Google Scholar 

  36. 36.

    Gregori, G., Merkle, R. & Maier, J. Ion conduction and redistribution at grain boundaries in oxide systems. Prog. Mater. Sci. 89, 252–305 (2017).

    CAS  Google Scholar 

  37. 37.

    Dawson, J. A., Canepa, P., Famprikis, T., Masquelier, C. & Islam, M. S. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 140, 362–368 (2018).

    CAS  Google Scholar 

  38. 38.

    Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid. State Commun. 86, 689–693 (1993).

    CAS  Google Scholar 

  39. 39.

    Bruce, P. G. The A-C conductivity of polycrystalline LISICON, Li2+2xZn1−xGeO4, and a model for intergranular constriction resistances. J. Electrochem. Soc. 130, 662–6691 (1983).

    CAS  Google Scholar 

  40. 40.

    Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    CAS  Google Scholar 

  41. 41.

    Yu, S. & Siegel, D. J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29, 9639–9647 (2017).

    CAS  Google Scholar 

  42. 42.

    Kotobuki, M., Kanamura, K., Sato, Y., Yamamoto, K. & Yoshida, T. Electrochemical properties of Li7La3Zr2O12 solid electrolyte prepared in argon atmosphere. J. Power Sources 199, 346–349 (2012).

    CAS  Google Scholar 

  43. 43.

    Chen, C. C., Fu, L. & Maier, J. Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536, 159–164 (2016).

    CAS  Google Scholar 

  44. 44.

    Chen, C.-C. & Maier, J. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes. Nat. Energy 3, 102–108 (2018).

    CAS  Google Scholar 

  45. 45.

    Swift, M. W. & Qi, Y. First-principles prediction of potentials and space-charge layers in all-solid-state batteries. Phys. Rev. Lett. 122, 167701 (2019).

    Google Scholar 

  46. 46.

    Nomura, Y. et al. Direct observation of a Li-ionic space-charge layer formed at an electrode/solid-electrolyte interface. Angew. Chem. Int. Ed. 58, 5292–5296 (2019). This paper reports the ionic and potential profiles in the charge-redistribution layer formed at an SSE–electrode interface using phase-shifting electron holography and spatially resolved electron energy-loss spectroscopy.

    CAS  Google Scholar 

  47. 47.

    Thokchom, J. S. & Kumar, B. The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic. J. Power Sources 195, 2870–2876 (2010).

    CAS  Google Scholar 

  48. 48.

    Haruyama, J., Sodeyama, K., Han, L., Takada, K. & Tateyama, Y. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014).

    CAS  Google Scholar 

  49. 49.

    Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    CAS  Google Scholar 

  50. 50.

    Lu, Y., Li, L., Zhang, Q., Niu, Z. & Chen, J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018).

    CAS  Google Scholar 

  51. 51.

    Hong, H. Y. P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 13, 117–124 (1978).

    CAS  Google Scholar 

  52. 52.

    Wang, Y., Richards, W. D., Bo, S. H., Miara, L. J. & Ceder, G. Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X = O, S, Se). Chem. Mater. 29, 7475–7482 (2017).

    CAS  Google Scholar 

  53. 53.

    Sagane, F., Abe, T., Iriyama, Y. & Ogumi, Z. Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. J. Power Sources 146, 749–752 (2005).

    CAS  Google Scholar 

  54. 54.

    Okoshi, M., Yamada, Y., Yamada, A. & Nakai, H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J. Electrochem. Soc. 160, A2160–A2165 (2013).

    CAS  Google Scholar 

  55. 55.

    Chusid, O. et al. Solid-state rechargeable magnesium batteries. Adv. Mater. 15, 627–630 (2003).

    CAS  Google Scholar 

  56. 56.

    Ikeda, S., Takahashi, M., Ishikawa, J. & Ito, K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in Mg-Zr-PO4 system. Solid State Ion. 23, 125–129 (1987).

    CAS  Google Scholar 

  57. 57.

    Higashi, S., Miwa, K., Aoki, M. & Takechi, K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Commun. 50, 1320–1322 (2014).

    CAS  Google Scholar 

  58. 58.

    Yamanaka, T., Hayashi, A., Yamauchi, A. & Tatsumisago, M. Preparation of magnesium ion conducting MgS–P2S5–MgI2 glasses by a mechanochemical technique. Solid State Ion. 262, 601–603 (2014).

    CAS  Google Scholar 

  59. 59.

    Nomura, K., Ikeda, S., Ito, K. & Einaga, H. Framework structure, phase transition and ionic conductivity of MgZr4(PO4)6 and ZnZr4(PO4)6. J. Electroanal. Chem. 326, 351–356 (1992).

    CAS  Google Scholar 

  60. 60.

    Imanaka, N., Okazaki, Y. & Adachi, G. Divalent magnesium ionic conduction in Mg1−2x(Zr1−xNbx)4P6O24 (x = 0–0.4) solid solutions. Electrochem. Solid-State Lett. 3, 327–329 (1999).

    Google Scholar 

  61. 61.

    Imanaka, N., Okazaki, Y. & Adachi, G.-y Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites. J. Mater. Chem. 10, 1431–1435 (2000).

    CAS  Google Scholar 

  62. 62.

    Matsuo, M. et al. Complex hydrides with (BH4) and (NH2) anions as new lithium fast-ion conductors. J. Am. Chem. Soc. 131, 16389–16391 (2009).

    CAS  Google Scholar 

  63. 63.

    Canepa, P. et al. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017).

    Google Scholar 

  64. 64.

    Yang, L., Huq, R., Farrington, G. & Chiodelli, G. Preparation and properties of PEO complexes of divalent cation salts. Solid State Ion. 18–19, 291–294 (1986).

    Google Scholar 

  65. 65.

    Shao, Y. et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy 12, 750–759 (2015).

    CAS  Google Scholar 

  66. 66.

    Zhao, Q. et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018).

    Google Scholar 

  67. 67.

    Farrington, G. C. & Dunn, B. Divalent beta″-aluminas: high conductivity solid electrolytes for divalent cations. Solid State Ion. 7, 267–281 (1982).

    CAS  Google Scholar 

  68. 68.

    Ikeda, S. Solid electrolytes with multivalent cation conduction (2) zinc ion conduction in Zn-Zr-PO4 system. Solid State Ion. 40–41, 79–82 (1990).

    Google Scholar 

  69. 69.

    Martinolich, A. J. et al. Solid-state divalent ion conduction in ZnPS3. Chem. Mater. 31, 3652–3661 (2019).

    CAS  Google Scholar 

  70. 70.

    Abrantes, T., Alcacer, L. & Sequeira, C. Thin film solid state polymer electrolytes containing silver, copper and zinc ions as charge carriers. Solid State Ion. 18–19, 315–320 (1986).

    Google Scholar 

  71. 71.

    Lee, B. S. et al. Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl. Mater. Interfaces 10, 38928–38935 (2018).

    CAS  Google Scholar 

  72. 72.

    Lin, C. et al. Solid-state rechargeable zinc–air battery with long shelf life based on nanoengineered polymer electrolyte. ChemSusChem 11, 3215–3224 (2018).

    CAS  Google Scholar 

  73. 73.

    Nomura, K., Ikeda, S., Ito, K. & Einaga, H. Framework structure, phase transition, and transport properties in MIIZr4(PO4)6 compounds (MII = Mg, Ca, Sr, Ba, Mn, Co, Ni, Zn, Cd, and Pb). Bull. Chem. Soc. Jpn. 65, 3221–3227 (1992).

    CAS  Google Scholar 

  74. 74.

    Zhao, Q. et al. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4, eaau8131 (2018).

    CAS  Google Scholar 

  75. 75.

    Wu, G. M., Lin, S. J. & Yang, C. C. Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes. J. Membr. Sci. 280, 802–808 (2006).

    CAS  Google Scholar 

  76. 76.

    Sun, X. G. et al. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries. Chem. Commun. 52, 292–295 (2016).

    CAS  Google Scholar 

  77. 77.

    Yu, Z. et al. Flexible stable solid-state Al-ion batteries. Adv. Funct. Mater. 29, 1806799 (2019).

    Google Scholar 

  78. 78.

    Han, F., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016).

    Google Scholar 

  79. 79.

    Wenzel, S., Leichtweiss, T., Krüger, D., Sann, J. & Janek, J. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015).

    CAS  Google Scholar 

  80. 80.

    Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    CAS  Google Scholar 

  81. 81.

    Lewis, J. A. et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 4, 591–599 (2019).

    CAS  Google Scholar 

  82. 82.

    Leung, K. et al. Kinetics-controlled degradation reactions at crystalline LiPON/LixCoO2 and crystalline LiPON/Li-metal interfaces. ChemSusChem. 11, 1956–1969 (2018).

    CAS  Google Scholar 

  83. 83.

    Zhang, W. et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017).

    CAS  Google Scholar 

  84. 84.

    Han, F. D., Gao, T., Zhu, Y. J., Gaskell, K. J. & Wang, C. S. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    CAS  Google Scholar 

  85. 85.

    Sahu, G. et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7, 1053–1058 (2014).

    Google Scholar 

  86. 86.

    Hallinan, D. T., Rausch, A. & McGill, B. An electrochemical approach to measuring oxidative stability of solid polymer electrolytes for lithium batteries. Chem. Eng. Sci. 154, 34–41 (2016).

    CAS  Google Scholar 

  87. 87.

    Xia, Y. Y., Fujieda, T., Tatsumi, K., Prosini, P. P. & Sakai, T. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J. Power Sources 92, 234–243 (2001).

    CAS  Google Scholar 

  88. 88.

    Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019). This study reports that SPEs formed in situ exhibit fast interfacial transport.

    CAS  Google Scholar 

  89. 89.

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    CAS  Google Scholar 

  90. 90.

    Han, F. D. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Google Scholar 

  91. 91.

    Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57–61 (2017).

    CAS  Google Scholar 

  92. 92.

    Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018).

    CAS  Google Scholar 

  93. 93.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Google Scholar 

  94. 94.

    Aguesse, F. et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017).

    CAS  Google Scholar 

  95. 95.

    Song, Y. et al. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater. 9, 1900671 (2019).

    Google Scholar 

  96. 96.

    Wu, B. B. et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803–1810 (2018). This paper reveals the origin and evolution of Li dendrite growth along the cracks and holes of ceramics.

    CAS  Google Scholar 

  97. 97.

    Sharafi, A., Meyer, H. M., Nanda, J., Wolfenstine, J. & Sakamoto, J. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016).

    CAS  Google Scholar 

  98. 98.

    Raj, R. & Wolfenstine, J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J. Power Sources 343, 119–126 (2017).

    CAS  Google Scholar 

  99. 99.

    Dejonghe, L. C., Feldman, L. & Beuchele, A. Slow degradation and electron conduction in sodium-beta-aluminas. J. Mater. Sci. 16, 780–786 (1981).

    CAS  Google Scholar 

  100. 100.

    Richards, W. D., Wang, Y., Miara, L. J., Kim, J. C. & Ceder, G. Design of Li1+2xZn1−xPS4, a new lithium ion conductor. Energy Environ. Sci. 9, 3272–3278 (2016).

    CAS  Google Scholar 

  101. 101.

    Garcia, A. New lithium ion conductors based on the γ-LiAlO2 structure. Solid State Ion. 40–41, 13–17 (1990).

    Google Scholar 

  102. 102.

    Kawai, H. Lithium ion conductivity of A-site deficient perovskite solid solution La0.67−xLi3xTiO3. J. Electrochem. Soc. 141, L78–L79 (1994).

    CAS  Google Scholar 

  103. 103.

    Park, K. H. et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018).

    Google Scholar 

  104. 104.

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    CAS  Google Scholar 

  105. 105.

    Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58, 8681–8686 (2019).

    CAS  Google Scholar 

  106. 106.

    Zhang, L. et al. Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity. Adv. Energy Mater. 5, 1501294 (2015).

    Google Scholar 

  107. 107.

    Banerjee, A. et al. Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 55, 9634–9638 (2016).

    CAS  Google Scholar 

  108. 108.

    Kim, K. & Siegel, D. J. Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. J. Mater. Chem. A 7, 3216–3227 (2019).

    CAS  Google Scholar 

  109. 109.

    Lacivita, V. et al. Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 140, 11029–11038 (2018).

    CAS  Google Scholar 

  110. 110.

    Zheng, Z. F., Fang, H. Z., Yang, F., Liu, Z. K. & Wang, Y. Amorphous LiLaTiO3 as solid electrolyte material. J. Electrochem. Soc. 161, A473–A479 (2014).

    CAS  Google Scholar 

  111. 111.

    Sendek, A. D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017).

    CAS  Google Scholar 

  112. 112.

    Nolan, A. M., Zhu, Y. Z., He, X. F., Bai, Q. & Mo, Y. F. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule 2, 2016–2046 (2018).

    CAS  Google Scholar 

  113. 113.

    Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

    CAS  Google Scholar 

  114. 114.

    Xiong, S. et al. Computation-guided design of LiTaSiO5, a new lithium ionic conductor with sphene structure. Adv. Energy Mater. 9, 1803821 (2019).

    Google Scholar 

  115. 115.

    Barteau, K. P. Poly(glycidyl ether)-based Battery Electrolytes: Correlating Polymer Properties to Ion Transport. Thesis, Univ. California, Santa Barbara (2015).

  116. 116.

    Wheatle, B. K., Keith, J. R., Mogurampelly, S., Lynd, N. A. & Ganesan, V. Influence of dielectric constant on ionic transport in polyether-based electrolytes. ACS Macro Lett. 6, 1362–1367 (2017).

    CAS  Google Scholar 

  117. 117.

    Mindemark, J., Imholt, L., Montero, J. & Brandell, D. Allyl ethers as combined plasticizing and crosslinkable side groups in polycarbonate-based polymer electrolytes for solid-state Li batteries. J. Polym. Sci. A 54, 2128–2135 (2016).

    CAS  Google Scholar 

  118. 118.

    Abraham, K. M. & Alamgir, M. Li+-conductive solid polymer electrolytes with liquid-like conductivity. J. Electrochem. Soc. 137, 1657–1658 (1990).

    CAS  Google Scholar 

  119. 119.

    Fu, G. & Kyu, T. Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 33, 13973–13981 (2017).

    CAS  Google Scholar 

  120. 120.

    Fan, L. Z., Hu, Y. S., Bhattacharyya, A. J. & Maier, J. Succinonitrile as a versatile additive for polymer electrolytes. Adv. Funct. Mater. 17, 2800–2807 (2007).

    CAS  Google Scholar 

  121. 121.

    Guzmán, G., Nava, D. P., Vazquez-Arenas, J. & Cardoso, J. Design of a zwitterion polymer electrolyte based on poly[poly (ethylene glycol) methacrylate]: the effect of sulfobetaine group on thermal properties and ionic conduction. Macromol. Symp. 374, 1600136 (2017).

    Google Scholar 

  122. 122.

    Pesko, D. M. et al. Universal relationship between conductivity and solvation-site connectivity in ether-based polymer electrolytes. Macromolecules 49, 5244–5255 (2016).

    CAS  Google Scholar 

  123. 123.

    Lu, Y. et al. A compatible anode/succinonitrile-based electrolyte interface in all-solid-state Na–CO2 batteries. Chem. Sci. 10, 4306–4312 (2019).

    CAS  Google Scholar 

  124. 124.

    Choudhury, S., Stalin, S., Deng, Y. & Archer, L. A. Soft colloidal glasses as solid-state electrolytes. Chem. Mater. 30, 5996–6004 (2018).

    CAS  Google Scholar 

  125. 125.

    Lin, Y., Wang, X., Liu, J. & Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 31, 478–485 (2017).

    CAS  Google Scholar 

  126. 126.

    Liu, W. et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017). This paper reports a composite SPE with well-aligned, inorganic, Li +-conductive nanowires with an ionic conductivity an order of magnitude higher than that of previous SPEs.

    CAS  Google Scholar 

  127. 127.

    Zaman, W., Hortance, N., Dixit, M. B., De Andrade, V. & Hatzell, K. B. Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries. J. Mater. Chem. A 7, 23914–23921 (2019).

    CAS  Google Scholar 

  128. 128.

    Chen, X. C. et al. Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. Mol. Syst. Des. Eng. 4, 379–385 (2019).

    CAS  Google Scholar 

  129. 129.

    Chen, X. C. et al. Determining and minimizing resistance for ion transport at the polymer/ceramic electrolyte interface. ACS Energy Lett. 4, 1080–1085 (2019).

    CAS  Google Scholar 

  130. 130.

    Zhou, W. et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 31, e1805574 (2019). The first report of a multilayer SPE with continuous ion transport across interfaces for high-voltage operation.

    Google Scholar 

  131. 131.

    Seki, S., Kobayashi, Y., Miyashiro, H., Mita, Y. & Iwahori, T. Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept. Chem. Mater. 17, 2041–2045 (2005).

    CAS  Google Scholar 

  132. 132.

    Choudhury, S. et al. Stabilizing polymer electrolytes in high-voltage lithium batteries. Nat. Commun. 10, 3091 (2019).

    Google Scholar 

  133. 133.

    Dong, T. T. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 11, 1197–1203 (2018).

    CAS  Google Scholar 

  134. 134.

    Zhao, Q., Chen, P. Y., Li, S. K., Liu, X. T. & Archer, L. A. Solid-state polymer electrolytes stabilized by task-specific salt additives. J. Mater. Chem. A 7, 7823–7830 (2019).

    CAS  Google Scholar 

  135. 135.

    Xu, K., Zhang, S. S., Jow, T. R., Xu, W. & Angell, C. A. LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochem. Solid-State Lett. 5, A26–A29 (2002).

    CAS  Google Scholar 

  136. 136.

    Li, S. et al. A superionic conductive, electrochemically stable dual-salt polymer electrolyte. Joule 2, 1838–1856 (2018). One of the first reports of the use of crosslinking polymers to wet the porous cathode material before crosslinking to form continuous transport pathways, along with additives to enable operation at high voltages.

    CAS  Google Scholar 

  137. 137.

    Liang, W. F., Shao, Y. F., Chen, Y. M. & Zhu, Y. A 4 V cathode compatible, superionic conductive solid polymer electrolyte for solid lithium metal batteries with long cycle life. ACS Appl. Energy Mater. 1, 6064–6071 (2018).

    Google Scholar 

  138. 138.

    Chai, J. et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4, 1600377 (2017).

    Google Scholar 

  139. 139.

    Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    CAS  Google Scholar 

  140. 140.

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010).

    CAS  Google Scholar 

  141. 141.

    Ohta, N. et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006).

    CAS  Google Scholar 

  142. 142.

    Ito, Y. et al. Application of LiCoO2 particles coated with lithium ortho-oxosalt thin films to sulfide-type all-solid-state lithium batteries. J. Electrochem. Soc. 162, A1610–A1616 (2015).

    CAS  Google Scholar 

  143. 143.

    Woo, J. H., Travis, J. J., George, S. M. & Lee, S.-H. Utilization of Al2O3 atomic layer deposition for Li ion pathways in solid state Li batteries. J. Electrochem. Soc. 162, A344–A349 (2014).

    Google Scholar 

  144. 144.

    Hallinan, D. T., Mullin, S. A., Stone, G. M. & Balsara, N. P. Lithium metal stability in batteries with block copolymer electrolytes. J. Electrochem. Soc. 160, A464–A470 (2013).

    CAS  Google Scholar 

  145. 145.

    Capuano, F. Composite polymer electrolytes. J. Electrochem. Soc. 138, 1918–1922 (1991).

    CAS  Google Scholar 

  146. 146.

    Harry, K. J., Liao, X. X., Parkinson, D. Y., Minor, A. M. & Balsara, N. P. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc. 162, A2699–A2706 (2015).

    CAS  Google Scholar 

  147. 147.

    Harry, K. J., Higa, K., Srinivasan, V. & Balsara, N. P. Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode. J. Electrochem. Soc. 163, A2216–A2224 (2016).

    CAS  Google Scholar 

  148. 148.

    Young, R. & Lovell, P. Introduction to Polymers 3rd edn Ch. 21 (CRC, 2011).

  149. 149.

    Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014). The first report of the use of polymer crosslinking to incorporate a high-modulus component in the electrolyte for the suppression of dendrite growth.

    CAS  Google Scholar 

  150. 150.

    Zeng, X. X. et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc. 138, 15825–15828 (2016).

    CAS  Google Scholar 

  151. 151.

    Choudhury, S. et al. Confining electrodeposition of metals in structured electrolytes. Proc. Natl Acad. Sci. USA 115, 6620–6625 (2018). This paper reports the visual elucidation of the mechanism of dendrite suppression by crosslinked polymer electrolytes and the role of mesh size of the network in stabilizing electrodeposition.

    CAS  Google Scholar 

  152. 152.

    Liu, K. et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc. 139, 4815–4820 (2017).

    CAS  Google Scholar 

  153. 153.

    Zheng, G. Y. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).

    CAS  Google Scholar 

  154. 154.

    Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

    CAS  Google Scholar 

  155. 155.

    Zhao, C. Z. et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl Acad. Sci. USA 114, 11069–11074 (2017).

    CAS  Google Scholar 

  156. 156.

    Tung, S. O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).

    CAS  Google Scholar 

  157. 157.

    Wang, C. et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 13694–13702 (2017).

    CAS  Google Scholar 

  158. 158.

    Gao, Y. et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18, 384–389 (2019).

    CAS  Google Scholar 

  159. 159.

    Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). This work reports a multifunctional, single-ion SPE based on polyanionic block copolymers.

    CAS  Google Scholar 

  160. 160.

    Ma, Q. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016).

    CAS  Google Scholar 

  161. 161.

    Bannister, D. J., Davies, G. R., Ward, I. M. & McIntyre, J. E. Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers. Polymer 25, 1291–1296 (1984).

    CAS  Google Scholar 

  162. 162.

    Matsumoto, K. & Endo, T. Synthesis of networked polymers with lithium counter cations from a difunctional epoxide containing poly(ethylene glycol) and an epoxide monomer carrying a lithium sulfonate salt moiety. J. Polym. Sci. A 48, 3113–3118 (2010).

    CAS  Google Scholar 

  163. 163.

    Zhu, Y. S. et al. A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochem. Commun. 22, 29–32 (2012).

    CAS  Google Scholar 

  164. 164.

    Porcarelli, L. et al. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 1, 678–682 (2016).

    CAS  Google Scholar 

  165. 165.

    Snyder, J. F., Ratner, M. A. & Shriver, D. F. Ion conductivity of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether sidechains. J. Electrochem. Soc. 150, A1090–A1094 (2003).

    CAS  Google Scholar 

  166. 166.

    Rojas, A. A. et al. Effect of lithium-ion concentration on morphology and ion transport in single-ion-conducting block copolymer electrolytes. Macromolecules 48, 6589–6595 (2015).

    CAS  Google Scholar 

  167. 167.

    Porcarelli, L. et al. Single ion conducting polymer electrolytes based on versatile polyurethanes. Electrochim. Acta 241, 526–534 (2017).

    CAS  Google Scholar 

  168. 168.

    Savoie, B. M., Webb, M. A. & Miller, T. F. III Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. J. Phys. Chem. Lett. 8, 641–646 (2017).

    CAS  Google Scholar 

  169. 169.

    Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).

    CAS  Google Scholar 

  170. 170.

    Porcarelli, L. et al. Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl. Mater. Interfaces 8, 10350–10359 (2016).

    CAS  Google Scholar 

  171. 171.

    Park, S. S., Tulchinsky, Y. & Dinca˘, M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu–azolate metal–organic framework. J. Am. Chem. Soc. 139, 13260–13263 (2017).

    CAS  Google Scholar 

  172. 172.

    Fischer, S. et al. A metal–organic framework with tetrahedral aluminate sites as a single-ion Li+ solid electrolyte. Angew. Chem. Int. Ed. 57, 16683–16687 (2018).

    CAS  Google Scholar 

  173. 173.

    Jeong, K. et al. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 141, 5880–5885 (2019).

    CAS  Google Scholar 

  174. 174.

    Luo, W. et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016).

    CAS  Google Scholar 

  175. 175.

    Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). The first paper to propose strategies to decrease the interfacial resistance of garnet electrolytes and Li-metal electrodes using ultrathin Al 2O 3.

    CAS  Google Scholar 

  176. 176.

    Wang, C. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017).

    CAS  Google Scholar 

  177. 177.

    Luo, W. et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017).

    Google Scholar 

  178. 178.

    Hao, F. et al. Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries. Joule 3, 1349–1359 (2019).

    CAS  Google Scholar 

  179. 179.

    Jin, Y. et al. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat. Energy 3, 732–738 (2018).

    CAS  Google Scholar 

  180. 180.

    Cheng, Q. et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating. Joule 3, 1510–1522 (2019).

    CAS  Google Scholar 

  181. 181.

    Yu, Q. et al. Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 9911–9918 (2019).

    CAS  Google Scholar 

  182. 182.

    Tian, Y. et al. Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019).

    CAS  Google Scholar 

  183. 183.

    Gao, Y. et al. Salt-based organic–inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface. Angew. Chem. Int. Ed. 57, 13608–13612 (2018).

    CAS  Google Scholar 

  184. 184.

    Zhang, Z. et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 10, 2556–2565 (2018).

    CAS  Google Scholar 

  185. 185.

    Wang, C. H. et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy 48, 35–43 (2018).

    CAS  Google Scholar 

  186. 186.

    Xu, B. Y., Duan, H. A., Liu, H. Z., Wang, C. A. & Zhong, S. W. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl. Mater. Interfaces 9, 21077–21082 (2017).

    CAS  Google Scholar 

  187. 187.

    Zhang, Z. Z. et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater. 7, 1601196 (2017). Study in which the charge-transfer rate at the electrode–electrolyte interface is increased using a small amount of non-flammable and non-volatile ionic liquid at the cathode in solid-state sodium batteries.

    Google Scholar 

  188. 188.

    Oh, D. Y. et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv. Energy Mater. 5, 1500865 (2015).

    Google Scholar 

  189. 189.

    Duan, H. et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2018).

    CAS  Google Scholar 

  190. 190.

    Chen, X. Z., He, W. J., Ding, L. X., Wang, S. Q. & Wang, H. H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12, 938–944 (2019).

    CAS  Google Scholar 

  191. 191.

    Pan, Q. et al. Correlating electrode–electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries. Adv. Energy Mater. 7, 1701231 (2017).

    Google Scholar 

  192. 192.

    Liu, Y. et al. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 3, eaao0713 (2017).

    Google Scholar 

  193. 193.

    Aldalur, I. et al. Jeffamine based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application. J. Power Sources 347, 37–46 (2017).

    CAS  Google Scholar 

  194. 194.

    Porcarelli, L., Gerbaldi, C., Bella, F. & Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 6, 19892 (2016). One of the first papers to report an all-ethylene-oxide-based crosslinked SSE with improved and continuous ion transport through electrode–electrolyte interfaces.

    CAS  Google Scholar 

  195. 195.

    Dong, D. et al. Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 19, 2343–2349 (2019).

    CAS  Google Scholar 

  196. 196.

    Du, A. et al. A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries. Adv. Mater. 31, e1805930 (2019).

    Google Scholar 

  197. 197.

    Wang, Y.-X. et al. Room-temperature sodium–sulfur batteries: a comprehensive review on research progress and cell chemistry. Adv. Energy Mater. 7, 1602829 (2017).

    Google Scholar 

  198. 198.

    Jacoby, M. Batteries get flexible. Chem. Eng. News 91, 13–18 (2013).

    Google Scholar 

  199. 199.

    Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    CAS  Google Scholar 

  200. 200.

    Sun, C., Liu, J., Gong, Y., Wilkinson, D. P. & Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017).

    CAS  Google Scholar 

  201. 201.

    Wan, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    CAS  Google Scholar 

  202. 202.

    Ates, T., Keller, M., Kulisch, J., Adermann, T. & Passerini, S. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 17, 204–210 (2019).

    Google Scholar 

  203. 203.

    Xiao, N., Ren, X., McCulloch, W. D., Gourdin, G. & Wu, Y. Potassium superoxide: a unique alternative for metal–air batteries. Acc. Chem. Res. 51, 2335–2343 (2018).

    CAS  Google Scholar 

  204. 204.

    Al Sadat, W. I. & Archer, L. A. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Sci. Adv. 2, e1600968 (2016).

    Google Scholar 

  205. 205.

    Lei, X. et al. Flexible lithium–air battery in ambient air with an in situ formed gel electrolyte. Angew. Chem. Int. Ed. 57, 16131–16135 (2018).

    CAS  Google Scholar 

  206. 206.

    Wu, H., Zhuo, D., Kong, D. & Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2014).

    CAS  Google Scholar 

  207. 207.

    Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

    CAS  Google Scholar 

  208. 208.

    Wang, S., Xu, H., Li, W., Dolocan, A. & Manthiram, A. Interfacial chemistry in solid-state batteries: formation of interphase and its consequences. J. Am. Chem. Soc. 140, 250–257 (2018).

    CAS  Google Scholar 

  209. 209.

    Park, K. et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016).

    CAS  Google Scholar 

  210. 210.

    Sun, F. et al. Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography. ACS Energy Lett. 4, 306–316 (2019).

    CAS  Google Scholar 

  211. 211.

    Lv, S. et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 9, 2152 (2018).

    Google Scholar 

  212. 212.

    Wang, C. W. et al. In situ neutron depth profiling of lithium metal–garnet interfaces for solid state batteries. J. Am. Chem. Soc. 139, 14257–14264 (2017).

    CAS  Google Scholar 

  213. 213.

    Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    CAS  Google Scholar 

  214. 214.

    Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    CAS  Google Scholar 

  215. 215.

    Li, Y. Z. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    CAS  Google Scholar 

  216. 216.

    Matsuda, Y. et al. In situ Raman spectroscopy of LiCoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-film lithium battery. Solid State Ion. 335, 7–14 (2019).

    CAS  Google Scholar 

  217. 217.

    Wang, Z. et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016).

    CAS  Google Scholar 

  218. 218.

    Yao, Y.-F. Y. & Kummer, J. T. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 29, 2453–2475 (1967).

    CAS  Google Scholar 

  219. 219.

    Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    CAS  Google Scholar 

  220. 220.

    Hong, H. Y. P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 11, 173–182 (1976).

    CAS  Google Scholar 

  221. 221.

    Aono, H., Imanaka, N. & Adachi, G.-y High Li+ conducting ceramics. Acc. Chem. Res. 27, 265–270 (1994).

    CAS  Google Scholar 

  222. 222.

    Boukamp, B. A. & Huggins, R. A. Ionic conductivity in lithium imide. Phys. Lett. A 72, 464–466 (1979).

    Google Scholar 

  223. 223.

    Matsuo, M. et al. Sodium and magnesium ionic conduction in complex hydrides. J. Alloys Compd. 580, S98–S101 (2013).

    CAS  Google Scholar 

  224. 224.

    Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion. 53–56, 647–654 (1992).

    Google Scholar 

  225. 225.

    Jansen, M. & Henseler, U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem. 99, 110–119 (1992).

    CAS  Google Scholar 

  226. 226.

    Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    CAS  Google Scholar 

  227. 227.

    Zhang, Z. et al. Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci. 11, 87–93 (2018). Report of a Na SSE with an unprecedented 3D structure type that exhibits an ionic conductivity of 1.4mScm −1.

    CAS  Google Scholar 

  228. 228.

    Schwering, G., Honnerscheid, A., van Wullen, L. & Jansen, M. High lithium ionic conductivity in the lithium halide hydrates Li3−n(OHn)Cl (0.83 ≤ n ≤ 2) and Li3−n(OH)nBr (1 ≤ n ≤ 2) at ambient temperatures. ChemPhysChem 4, 343–348 (2003).

    CAS  Google Scholar 

  229. 229.

    Zhao, Y. & Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012).

    CAS  Google Scholar 

  230. 230.

    Thangadurai, V., Kaack, H. & Weppner, W. J. F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003).

    CAS  Google Scholar 

  231. 231.

    Hooper, A. & North, J. M. The fabrication and performance of all solid state polymer-based rechargeable lithium cells. Solid State Ion. 9–10, 1161–1166 (1983).

    Google Scholar 

  232. 232.

    Watanabe, M. et al. High lithium ionic conductivity of polymeric solid electrolytes. Makromol. Chem. Rapid Commun. 2, 741–744 (1981).

    CAS  Google Scholar 

  233. 233.

    Alarco, P. J., Abu-Lebdeh, Y., Abouimrane, A. & Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 3, 476–481 (2004).

    CAS  Google Scholar 

  234. 234.

    Fan, L.-Z. & Maier, J. Composite effects in poly(ethylene oxide)–succinonitrile based all-solid electrolytes. Electrochem. Commun. 8, 1753–1756 (2006).

    CAS  Google Scholar 

  235. 235.

    Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K. & Armand, M. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011).

    CAS  Google Scholar 

  236. 236.

    Maccallum, J., Smith, M. & Vincent, C. The effects of radiation-induced crosslinking on the conductance of LiClO4·PEO electrolytes. Solid State Ion. 11, 307–312 (1984).

    CAS  Google Scholar 

  237. 237.

    Xia, D., Soltz, D. & Smid, J. Conductivities of solid polymer electrolyte complexes of alkali salts with polymers of methoxypolyethyleneglycol methacrylates. Solid State Ion. 14, 221–224 (1984).

    CAS  Google Scholar 

  238. 238.

    Giles, J. R. M., Gray, F. M., MacCallum, J. R. & Vincent, C. A. Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer 28, 1977–1981 (1987).

    CAS  Google Scholar 

  239. 239.

    Yamaguchi, G. & Suzuki, K. On the structures of alkali polyaluminates. Bull. Chem. Soc. Jpn. 41, 93–99 (1968).

    CAS  Google Scholar 

  240. 240.

    Francisco, B. E., Stoldt, C. R. & M’Peko, J.-C. Lithium-ion trapping from local structural distortions in sodium super ionic conductor (NASICON) electrolytes. Chem. Mater. 26, 4741–4749 (2014).

    CAS  Google Scholar 

  241. 241.

    Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003).

    CAS  Google Scholar 

  242. 242.

    Deng, Z., Radhakrishnan, B. & Ong, S. P. Rational composition optimization of the lithium-rich Li3OCl1−xBrx anti-perovskite superionic conductors. Chem. Mater. 27, 3749–3755 (2015).

    CAS  Google Scholar 

  243. 243.

    Jalem, R. et al. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25, 425–430 (2013).

    CAS  Google Scholar 

  244. 244.

    Cheung, I. W. et al. Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes. Electrochim. Acta 48, 2149–2156 (2003).

    CAS  Google Scholar 

  245. 245.

    Shin, J. H. & Passerini, S. Effect of fillers on the electrochemical and interfacial properties of PEO–LiN(SO2CF2CF3)2 polymer electrolytes. Electrochim. Acta 49, 1605–1612 (2004).

    CAS  Google Scholar 

  246. 246.

    Croce, F., Settimi, L., Scrosati, B. & Zane, D. Nanocomposite, PEO-LiBOB polymer electrolytes for low temperature, lithium rechargeable batteries. J. New Mater. Electrochem. Syst. 9, 3–9 (2006).

    CAS  Google Scholar 

  247. 247.

    Wong, D. H. et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 111, 3327–3331 (2014).

    CAS  Google Scholar 

  248. 248.

    Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).

    CAS  Google Scholar 

  249. 249.

    Zoppi, R. A., Fonseca, C. M. N. P., DePaoli, M. A. & Nunes, S. P. Solid electrolytes based on poly(amide 6-b-ethylene oxide). Solid State Ion. 91, 123–130 (1996).

    CAS  Google Scholar 

  250. 250.

    Schaefer, J. L., Yanga, D. A. & Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013).

    CAS  Google Scholar 

  251. 251.

    Zhang, Y. et al. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp 3 boron-based solid single ion conducting polymer electrolyte. J. Power Sources 306, 152–161 (2016).

    CAS  Google Scholar 

  252. 252.

    Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on cross-linked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    CAS  Google Scholar 

  253. 253.

    Ben Youcef, H., Garcia-Calvo, O., Lago, N., Devaraj, S. & Armand, M. Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016).

    Google Scholar 

  254. 254.

    Tärneberg, R. & Lunde˙n, A. Ion diffusion in the high-temperature phases Li2SO4, LiNaSO4, LiAgSO4 and Li4Zn(SO4)3. Solid State Ion. 90, 209–220 (1996).

    Google Scholar 

  255. 255.

    Kummer, J. T. β-alumina electrolytes. Prog. Solid State Chem. 7, 141–175 (1972).

    CAS  Google Scholar 

  256. 256.

    Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).

    CAS  Google Scholar 

  257. 257.

    Kimura, T. et al. Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ion. 333, 45–49 (2019).

    CAS  Google Scholar 

  258. 258.

    Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat. Commun. 8, 1086 (2017).

    Google Scholar 

  259. 259.

    Hayashi, A., Noi, K., Tanibata, N., Nagao, M. & Tatsumisago, M. High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. J. Power Sources 258, 420–423 (2014).

    CAS  Google Scholar 

  260. 260.

    Wang, H. et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem. Int. Ed. 55, 8551–8555 (2016).

    CAS  Google Scholar 

  261. 261.

    Yu, Z. X. et al. Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries. Adv. Mater. 29, 1605561 (2017).

    Google Scholar 

  262. 262.

    Chu, I. H. et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor. Sci. Rep. 6, 33733 (2016).

    CAS  Google Scholar 

  263. 263.

    Sudreau, F., Petit, D. & Boilot, J. P. Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3. J. Solid State Chem. 83, 78–90 (1989).

    CAS  Google Scholar 

  264. 264.

    Le Ruyet, R. et al. Investigation of Mg(BH4)(NH2)-based composite materials with enhanced Mg2+ ionic conductivity. J. Phys. Chem. C 123, 10756–10763 (2019).

    Google Scholar 

  265. 265.

    Zhang, H. et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim. Acta 133, 529–538 (2014).

    CAS  Google Scholar 

  266. 266.

    Vasudevan, S. & Fullerton-Shirey, S. K. Effect of nanoparticle shape on the electrical and thermal properties of solid polymer electrolytes. J. Phys. Chem. C 123, 10720–10726 (2019).

    CAS  Google Scholar 

  267. 267.

    Boschin, A. & Johansson, P. Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries. Electrochim. Acta 175, 124–133 (2015).

    CAS  Google Scholar 

  268. 268.

    Ni’mah, Y. L., Cheng, M.-Y., Cheng, J. H., Rick, J. & Hwang, B.-J. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J. Power Sources 278, 375–381 (2015).

    Google Scholar 

  269. 269.

    Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976).

    Google Scholar 

  270. 270.

    Duan, H. et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 31, e1807789 (2019).

    Google Scholar 

  271. 271.

    Li, X. et al. Constructing double buffer layers to boost electrochemical performances of NCA cathode for ASSLB. Energy Storage Mater. 18, 100–106 (2019).

    Google Scholar 

  272. 272.

    Zheng, J. et al. Li- and Mn-rich cathode materials: challenges to commercialization. Adv. Energy Mater. 7, 1601284 (2017).

    Google Scholar 

  273. 273.

    Xu, R. et al. Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett. 4, 1073–1079 (2019).

    CAS  Google Scholar 

  274. 274.

    Fan, X. et al. High-performance all-solid-state Na–S battery enabled by casting–annealing technology. ACS Nano 12, 3360–3368 (2018).

    CAS  Google Scholar 

  275. 275.

    Lu, X., Bowden, M. E., Sprenkle, V. L. & Liu, J. A low cost, high energy density, and long cycle life potassium-sulfur battery for grid-scale energy storage. Adv. Mater. 27, 5915–5922 (2015).

    CAS  Google Scholar 

  276. 276.

    Zhu, Z. et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014).

    CAS  Google Scholar 

  277. 277.

    Hong, X. et al. Nonlithium metal–sulfur batteries: steps toward a leap. Adv. Mater. 31, e1802822 (2019).

    Google Scholar 

  278. 278.

    Zhao, Q., Zhu, Z. & Chen, J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv. Mater. 25, 1607007 (2017).

    Google Scholar 

  279. 279.

    Liu, Y. et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries. Adv. Energy Mater. 8, 1702374 (2018).

    Google Scholar 

  280. 280.

    Kang, Y. et al. Novel high-energy-density rechargeable hybrid sodium–air cell with acidic electrolyte. ACS Appl. Mater. Interfaces 10, 23748–23756 (2018).

    CAS  Google Scholar 

  281. 281.

    Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015).

    CAS  Google Scholar 

  282. 282.

    Xu, Y., Zhao, Y., Ren, J., Zhang, Y. & Peng, H. An all-solid-state fiber-shaped aluminum–air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem. Int. Ed. 55, 7979–7982 (2016).

    CAS  Google Scholar 

  283. 283.

    Fu, J. et al. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017).

    Google Scholar 

  284. 284.

    Mokhtar, M. et al. Recent developments in materials for aluminum–air batteries: a review. J. Ind. Eng. Chem. 32, 1–20 (2015).

    CAS  Google Scholar 

  285. 285.

    Hu, X., Li, Z. & Chen, J. Flexible Li–CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 56, 5785–5789 (2017).

    CAS  Google Scholar 

  286. 286.

    Hu, X. et al. Quasi-solid state rechargeable Na–CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 3, e1602396 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy Basic Energy Sciences program (award no. DE-SC0016082), the US National Science Foundation Division of Materials Research (award no. DMR-1609125) and the Beijing Institute of Collaborative Innovation through the Cornell Joint Energy Materials and Systems Laboratory.

Author information

Affiliations

Authors

Contributions

Q.Z., S.S., C.-Z.Z. and L.A.A. researched data for the article. All authors contributed to the discussion of content, and writing and editing of the article prior to submission.

Corresponding author

Correspondence to Lynden A. Archer.

Ethics declarations

Competing interests

L.A.A. is a founder and member of the board of directors of NOHMs Technologies, which develops and commercializes electrolytes for lithium-ion and lithium–sulfur battery technologies. Q.Z., S.S. and C.-Z.Z. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bolloré Bluecar: https://www.bluecar.fr/sites/bluecar/files/medias/PDF/2_bluecar_20_p.pdf

Excellatron Thin Film Battery Technology: http://www.excellatron.com/thin-film-battery-technology/

Ionic Materials: https://ionicmaterials.com/the-solution/

NGK Insulators Ltd: https://www.ngk.co.jp/nas/why/comparison.html

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Stalin, S., Zhao, CZ. et al. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing