Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple nanoemulsions

Abstract

The structural and chemical uniformity of traditional emulsions facilitates their production; however, this simplicity also limits the scope of their applications. Multiphase or ‘multiple’ emulsions have increased complexity and potentially broader utility than conventional emulsions, owing to their internalized phases, enabling chemical compartmentalization, control of active-ingredient release and complex particle templates. However, multiple-emulsion droplets prepared with conventional methods are too large for emerging applications. As a result, there has been increased research interest in the development of multiple nanoemulsions, whereby the nanoscale droplet size overcomes many of the limitations of more common, micrometre-scale multiple emulsions. Although numerous successful demonstrations of multiple-nanoemulsion production have emerged, there remain considerable challenges to improve stability, control over internal structure and characterization of multiphase nanodroplets. Overcoming these challenges provides unique opportunities to exploit the hierarchical structure, enhanced colloidal stability and multiphase chemical solubilization for applications, such as delivery vehicles, chemical sinks and particle templates, with functions that are otherwise inaccessible. In this Review, we summarize the techniques used to generate and characterize multiple nanoemulsions, theories to understand their formation and stability, and discuss current and future applications that are, or may be, enabled by their unique structures and chemistries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of different classes of emulsions.
Fig. 2: A design space of multiphase emulsions.
Fig. 3: Schematic illustration of the techniques used to generate multiple nanoemulsions.
Fig. 4: Potential mechanisms governing the instability of multiple nanoemulsions.
Fig. 5: Design features of multiple nanoemulsions.

Similar content being viewed by others

References

  1. Brummer, R. & Godersky, S. Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin. Colloids Surf. A 152, 89–94 (1999).

    CAS  Google Scholar 

  2. Gilbert, L., Picard, C., Savary, G. & Grisel, M. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloids Surf. A 421, 150–163 (2013).

    CAS  Google Scholar 

  3. O’Toole, J. T. Kinetics of emulsion polymerization. J. Appl. Polym. Sci. 9, 1291–1297 (1965).

    Google Scholar 

  4. Wang, L., Li, X., Zhang, G., Dong, J. & Eastoe, J. Oil-in-water nanoemulsions for pesticide formulations. J. Colloid Interface Sci. 314, 230–235 (2007).

    CAS  Google Scholar 

  5. Hainey, P., Huxham, I. M., Rowatt, B., Sherrington, D. C. & Tetley, L. Synthesis and ultrastructural studies of styrene-divinylbenzene polyhipe polymers. Macromolecules 24, 117–121 (1991).

    CAS  Google Scholar 

  6. Pileni, M.-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2, 145–150 (2003).

    CAS  Google Scholar 

  7. Bhumgara, Z. Polyhipe foam materials as filtration media. Filtr. Sep. 32, 245–251 (1995).

    CAS  Google Scholar 

  8. Helgeson, M. E. Colloidal behavior of nanoemulsions: interactions, structure, and rheology. Curr. Opin. Colloid Interface Sci. 25, 39–50 (2016).

    CAS  Google Scholar 

  9. Jaiswal, M., Dudhe, R. & Sharma, P. K. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5, 123–127 (2015).

    Google Scholar 

  10. Donalisio, M. et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics 10, 46 (2018).

    Google Scholar 

  11. Mahmood, T., Akhtar, N. & Manickam, S. Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability. J. Nanobiotechnol. 12, 20 (2014).

    Google Scholar 

  12. Datta, S. S. et al. Double emulsion templated solid microcapsules: mechanics and controlled release. Adv. Mater. 26, 2205–2218 (2014).

    CAS  Google Scholar 

  13. Silva, B. F. B., Rodríguez-Abreu, C. & Vilanova, N. Recent advances in multiple emulsions and their application as templates. Curr. Opin. Colloid Interface Sci. 25, 98–108 (2016).

    CAS  Google Scholar 

  14. Abate, A. R. & Weitz, D. A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 5, 2030–2032 (2009).

    CAS  Google Scholar 

  15. Allouche, J., Tyrode, E., Sadtler, V., Choplin, L. & Salager, J.-L. Single- and two-step emulsification to prepare a persistent multiple emulsion with a surfactant–polymer mixture. Ind. Eng. Chem. Res. 42, 3982–3988 (2003).

    CAS  Google Scholar 

  16. Kim, S., Kim, K. & Choi, S. Q. Controllable one-step double emulsion formation via phase inversion. Soft Matter 14, 1094–1099 (2018).

    CAS  Google Scholar 

  17. Min, J.-Y., Ahn, S.-I., Lee, Y.-K., Kwak, H.-S. & Chang, Y. H. Optimized conditions to produce water-in-oil-in-water nanoemulsion and spray-dried nanocapsule of red ginseng extract. Food Science Technol. 38, 485–492 (2018).

    Google Scholar 

  18. Mason, T. G., Graves, S. M., Wilking, J. N. & Lin, M. Y. Extreme emulsification: formation and structure of nanoemulsions. Condens. Matter Phys. 9, 193–199 (2006).

    Google Scholar 

  19. McClements, D. J. & Rao, J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51, 285–330 (2011).

    CAS  Google Scholar 

  20. Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. M. Nanoemulsions: formation, structure, and physical properties. J. Phys. Condens. Matter 18, R635–R666 (2006).

    CAS  Google Scholar 

  21. Bilati, U., Allémann, E. & Doelker, E. Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm. Dev. Technol. 8, 1–9 (2003).

    CAS  Google Scholar 

  22. Koroleva, M. Y. & Yurtov, E. V. Nanoemulsions: the properties, methods of preparation and promising applications. Russ. Chem. Rev. 81, 21–43 (2012).

    CAS  Google Scholar 

  23. Solans, C. & Solé, I. Nano-emulsions: formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 17, 246–254 (2012).

    CAS  Google Scholar 

  24. Forgiarini, A., Esquena, J., González, C. & Solans, C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17, 2076–2083 (2001).

    CAS  Google Scholar 

  25. Anton, N. & Vandamme, T. F. The universality of low-energy nano-emulsification. Int. J. Pharm. 377, 142–147 (2009). An adept description of the single, surfactant-driven mechanism through which spontaneous emulsification occurs, regardless of concentration or temperature driving force.

    CAS  Google Scholar 

  26. Gupta, A., Badruddoza, A. Z. M. & Doyle, P. S. A general route for nanoemulsion synthesis using low-energy methods at constant temperature. Langmuir 33, 7118–7123 (2017).

    CAS  Google Scholar 

  27. Izquierdo, P. et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18, 26–30 (2002).

    CAS  Google Scholar 

  28. Leitner, S., Solans, C., García-Celma, M. J. & Calderó, G. Low-energy nano-emulsification approach as a simple strategy to prepare positively charged ethylcellulose nanoparticles. Carbohydr. Polym. 205, 117–124 (2019).

    CAS  Google Scholar 

  29. Yang, Y., Marshall-Breton, C., Leser, M. E., Sher, A. A. & McClements, D. J. Fabrication of ultrafine edible emulsions: comparison of high-energy and low-energy homogenization methods. Food Hydrocoll. 29, 398–406 (2012).

    CAS  Google Scholar 

  30. McClements, D. J. Food Emulsions: Principles, Practices, and Techniques 2nd edn (CRC, 2005).

  31. Para, G., Jarek, E., Warszyński, P. & Adamczyk, Z. Effect of electrolytes on surface tension of ionic surfactant solutions. Colloids Surf. A 222, 213–222 (2003).

    CAS  Google Scholar 

  32. Sainis, S. K., Germain, V., Mejean, C. O. & Dufresne, E. R. Electrostatic interactions of colloidal particles in nonpolar solvents: role of surface chemistry and charge control agents. Langmuir 24, 1160–1164 (2008).

    CAS  Google Scholar 

  33. Espinosa, C. E., Guo, Q., Singh, V. & Behrens, S. H. Particle charging and charge screening in nonpolar dispersions with nonionic surfactants. Langmuir 26, 16941–16948 (2010).

    CAS  Google Scholar 

  34. Tadros, T. F. Applied Surfactants: Principles and Applications (Wiley-VCH, 2005).

  35. Luan, F. et al. Prediction of hydrophile–lipophile balance values of anionic surfactants using a quantitative structure–property relationship. J. Colloid Interface Sci. 336, 773–779 (2009).

    CAS  Google Scholar 

  36. Florence, A. T. & Whitehill, D. The formulation and stability of multiple emulsions. Int. J. Pharm. 11, 277–308 (1982).

    CAS  Google Scholar 

  37. Pal, R. Multiple O/W/O emulsion rheology. Langmuir 12, 2220–2225 (1996).

    CAS  Google Scholar 

  38. Carlotti, M. E., Gallarate, M., Sapino, S., Ugazio, E. & Morel, S. W/O/W multiple emulsions for dermatological and cosmetic use, obtained with ethylene oxide free emulsifiers. J. Dispers. Sci. Technol. 26, 183–192 (2005).

    CAS  Google Scholar 

  39. Morais, J. M., Santos, O. D. H., Nunes, J. R. L., Zanatta, C. F. & Rocha-Filho, P. A. W/O/W multiple emulsions obtained by one-step emulsification method and evaluation of the involved variables. J. Dispers. Sci. Technol. 29, 63–69 (2008).

    CAS  Google Scholar 

  40. Fryd, M. M. & Mason, T. G. Advanced nanoemulsions. Annu. Rev. Phys. Chem. 63, 493–518 (2012).

    CAS  Google Scholar 

  41. Pawar, A. B., Caggioni, M., Ergun, R., Hartel, R. W. & Spicer, P. T. Arrested coalescence in Pickering emulsions. Soft Matter 7, 7710–7716 (2011).

    CAS  Google Scholar 

  42. Chevalier, Y. & Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A 439, 23–34 (2013).

    CAS  Google Scholar 

  43. Vignati, E., Piazza, R. & Lockhart, T. P. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir 19, 6650–6656 (2003).

    CAS  Google Scholar 

  44. Lee, Y.-T. et al. Ultrasound-based formation of nano-Pickering emulsions investigated via in-situ SAXS. J. Colloid Interface Sci. 536, 281–290 (2019).

    CAS  Google Scholar 

  45. Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A. & Flores-Mosquera, M. Focusing capillary jets close to the continuum limit. Nat. Phys. 3, 737–742 (2007).

    Google Scholar 

  46. Saleem, R. & Ahmad, R. Effect of ultrasonication on secondary structure and heat induced gelation of chicken myofibrils. J. Food Sci. Technol. 53, 3340–3348 (2016).

    CAS  Google Scholar 

  47. Zhang, M. et al. Controlling complex nanoemulsion morphology using asymmetric cosurfactants for the preparation of polymer nanocapsules. Langmuir 34, 978–990 (2018).

    CAS  Google Scholar 

  48. Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973).

    CAS  Google Scholar 

  49. Malo de Molina, P., Zhang, M., Bayles, A. V. & Helgeson, M. E. Oil-in-water-in-oil multinanoemulsions for templating complex nanoparticles. Nano Lett. 16, 7325–7332 (2016).

    CAS  Google Scholar 

  50. Hanson, J. A. et al. Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455, 85–88 (2008). This paper demonstrates the use of asymmetric co-surfactants to produce metastable core–shell double nanoemulsions.

    CAS  Google Scholar 

  51. Fryd, M. M. & Mason, T. G. Cerberus nanoemulsions produced by multidroplet flow-induced fusion. Langmuir 29, 15787–15793 (2013). This paper demonstrates the ability to form high-order structures by increasing the number of immiscible phases within dispersed droplets.

    CAS  Google Scholar 

  52. Patel, S. K., Zhang, Y., Pollock, J. A. & Janjic, J. M. Cyclooxgenase-2 inhibiting perfluoropoly (ethylene glycol) ether theranostic nanoemulsions—in vitro study. PLOS ONE 8, e55802 (2013). This paper highlights the development of a triphasic fluorocarbon-in-hydrocarbon-in-water core–shell double-nanoemulsion system and demonstrates its use for dual-mode imaging in vitro.

    CAS  Google Scholar 

  53. Patel, S. K., Patrick, M. J., Pollock, J. A. & Janjic, J. M. Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemulsions. J. Biomed. Opt. 18, 101312 (2013).

    Google Scholar 

  54. Wu, S., Hung, Y. & Mou, C. Compartmentalized hollow silica nanospheres templated from nanoemulsions. Chem. Mater. 25, 352–364 (2013). This paper highlights the use of interfacial silica polymerization to form nested double nanoemulsions for the potential application of co-encapsulation of water-soluble and oil-soluble drugs.

    CAS  Google Scholar 

  55. van der Graaf, S., Schroën, C. G. P. H. & Boom, R. M. Preparation of double emulsions by membrane emulsification: a review. J. Membr. Sci. 251, 7–15 (2005).

    Google Scholar 

  56. Zambaux, M. F. et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Rel. 50, 31–40 (1998).

    CAS  Google Scholar 

  57. Tang, S. Y., Sivakumar, M. & Nashiru, B. Impact of osmotic pressure and gelling in the generation of highly stable single core water-in-oil-in-water (W/O/W) nano multiple emulsions of aspirin assisted by two-stage ultrasonic cavitational emulsification. Colloids Surf. B 102, 653–658 (2013).

    CAS  Google Scholar 

  58. Tang, S. Y., Sivakumar, M., Ng, A. M. & Shridharan, P. Anti-inflammatory and analgesic activity of novel oral aspirin-loaded nanoemulsion and nano multiple emulsion formulations generated using ultrasound cavitation. Int. J. Pharm. 430, 299–306 (2012).

    CAS  Google Scholar 

  59. Zhang, M. et al. Synthesis of oil-laden poly(ethylene glycol) diacrylate hydrogel nanocapsules from double nanoemulsions. Langmuir 33, 6116–6126 (2017). This work demonstrates the technique of sequential emulsification and one of the resulting applications enabled by core–shell nanoemulsions — templating of oil-laden hydrogel nanocapsules.

    CAS  Google Scholar 

  60. Nisisako, T., Okushima, S. & Torii, T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1, 23–27 (2005).

    CAS  Google Scholar 

  61. Chu, L.-Y., Utada, A. S., Shah, R. K., Kim, J. W. & Weitz, D. A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 46, 8970–8974 (2007).

    CAS  Google Scholar 

  62. Zhang, M.-Y., Zhao, H., Xu, J.-H. & Luo, G.-S. Controlled coalescence of two immiscible droplets for Janus emulsions in a microfluidic device. RSC Adv. 5, 32768–32774 (2015).

    CAS  Google Scholar 

  63. Park, J., Forster, J. D. & Dufresne, E. R. High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J. Am. Chem. Soc. 132, 5960–5961 (2010).

    CAS  Google Scholar 

  64. Li, J. et al. A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions. Nanoscale 7, 19977–19984 (2015).

    CAS  Google Scholar 

  65. Lu, Y. et al. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J. Am. Chem. Soc. 125, 12724–12725 (2003).

    CAS  Google Scholar 

  66. Oh, C., Park, J., Shin, S. & Oh, S. O/W/O multiple emulsions via one-step emulsification process. J. Dispers. Sci. Technol. 25, 53–62 (2004).

    CAS  Google Scholar 

  67. Galindo-Alvarez, J., Sadtler, V., Choplin, L. & Salager, J.-L. Viscous oil emulsification by catastrophic phase inversion: influence of oil viscosity and process conditions. Ind. Eng. Chem. Res. 50, 5575–5583 (2011).

    CAS  Google Scholar 

  68. Liu, Y., Carter, E. L., Gordon, G. V., Feng, Q. J. & Friberg, S. E. An investigation into the relationship between catastrophic inversion and emulsion phase behaviors. Colloids Surf. A 399, 25–34 (2012).

    CAS  Google Scholar 

  69. Sigward, E. et al. Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions. Int. J. Nanomed. 8, 611–625 (2013).

    Google Scholar 

  70. Shakeel, F., Haq, N., Al-Dhfyan, A., Alanazi, F. K. & Alsarra, I. A. Double w/o/w nanoemulsion of 5-fluorouracil for self-nanoemulsifying drug delivery system. J. Mol. Liq. 200, 183–190 (2014).

    CAS  Google Scholar 

  71. Sigward, E. et al. Preparation and evaluation of multiple nanoemulsions containing gadolinium (III) chelate as a potential magnetic resonance imaging (MRI) contrast agent. Pharm. Res. 32, 2983–2994 (2015).

    CAS  Google Scholar 

  72. Pangeni, R., Choi, S. W., Jeon, O.-C., Byun, Y. & Park, J. W. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation. Int. J. Nanomed. 11, 6379–6399 (2016).

    CAS  Google Scholar 

  73. Ding, S. et al. A new method for the formulation of double nanoemulsions. Soft Matter 13, 1660–1669 (2017). W/O/W double nanoemulsions are produced using an emulsification process involving a primary step of high-pressure homogenization to generate a W/O nanoemulsion, followed by spontaneous emulsification of the W/O nanoemulsion in water to stabilize W/O/W core–shell droplets.

    CAS  Google Scholar 

  74. Lee, H. S., Morrison, E. D., Frethem, C. D., Zasadzinski, J. A. & McCormick, A. V. Cryogenic electron microscopy study of nanoemulsion formation from microemulsions. Langmuir 30, 10826–10833 (2014).

    CAS  Google Scholar 

  75. Lee, H. S., Morrison, E. D., Zhang, Q. & McCormick, A. V. Cryogenic transmission electron microscopy study: preparation of vesicular dispersions by quenching microemulsions. J. Microsc. 263, 293–299 (2016). This study describes the technique of temperature-induced and concentration-induced microemulsion phase inversion to form core–shell and nested double nanoemulsions.

    CAS  Google Scholar 

  76. Zhao, Y., Zhang, J., Wang, Q., Li, J. & Han, B. Water-in-oil-in-water double nanoemulsion induced by CO2. Phys. Chem. Chem. Phys. 13, 684–689 (2011).

    CAS  Google Scholar 

  77. Tiarks, F., Landfester, K. & Antonietti, M. Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17, 908–918 (2001). The demonstration that core–shell and lens-type droplets arise through dewetting of a monomer solution from polymerizing particles during nanoparticle synthesis.

    CAS  Google Scholar 

  78. Grundy, L. S. et al. Rapid production of internally structured colloids by flash nanoprecipitation of block copolymer blends. ACS Nano 12, 4660–4668 (2018).

    CAS  Google Scholar 

  79. Lin, T. J. Low-energy emulsification I: Principles and applications. J. Soc. Cosmet. Chem. 29, 117–125 (1978).

    Google Scholar 

  80. Komaiko, J. S. & McClements, D. J. Optimization of isothermal low-energy nanoemulsion formation: hydrocarbon oil, non-ionic surfactant, and water systems. J. Colloid Interface Sci. 425, 59–66 (2014).

    CAS  Google Scholar 

  81. Komaiko, J. S. & McClements, D. J. Low-energy formation of edible nanoemulsions by spontaneous emulsification: factors influencing particle size. J. Food Eng. 146, 122–128 (2015).

    CAS  Google Scholar 

  82. Komaiko, J. S. & McClements, D. J. Formation of food-grade nanoemulsions using low-energy preparation methods: a review of available methods. Compr. Rev. Food Sci. Food Saf. 15, 331–352 (2016).

    CAS  Google Scholar 

  83. Provencher, S. W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227 (1982).

    Google Scholar 

  84. Thomas, D. G. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid Sci. 20, 267–277 (1965).

    CAS  Google Scholar 

  85. Tadros, T. F., Izquierdo, P., Esquena, J. & Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 108–109, 303–318 (2004).

    Google Scholar 

  86. Gupta, A., Eral, H. B., Hatton, T. A. & Doyle, P. S. Nanoemulsions: formation, properties and applications. Soft Matter 12, 2826–2841 (2016).

    CAS  Google Scholar 

  87. McClements, D. J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8, 1719–1729 (2012).

    CAS  Google Scholar 

  88. Matalanis, A., Jones, O. G. & McClements, D. J. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll. 25, 1865–1880 (2011).

    CAS  Google Scholar 

  89. Qian, J. & Law, C. K. Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 59–80 (1997).

    CAS  Google Scholar 

  90. Leal, L. G. Flow induced coalescence of drops in a viscous fluid. Phys. Fluids 16, 1833–1851 (2004).

    CAS  Google Scholar 

  91. Baldessari, F. & Leal, L. G. Effect of overall drop deformation on flow-induced coalescence at low capillary numbers. Phys. Fluids 18, 013602 (2006).

    Google Scholar 

  92. Rother, M. A. & Davis, R. H. The effect of slight deformation on droplet coalescence in linear flows. Phys. Fluids 13, 1178–1190 (2001).

    CAS  Google Scholar 

  93. Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985).

    Google Scholar 

  94. Taylor, P. Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 75, 107–163 (1998).

    CAS  Google Scholar 

  95. Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Google Scholar 

  96. Roger, K., Olsson, U., Schweins, R. & Cabane, B. Emulsion ripening through molecular exchange at droplet contacts. Angew. Chem. Int. Ed. 54, 1452–1455 (2015).

    CAS  Google Scholar 

  97. Ficheux, M.-F., Bonakdar, L., Leal-Calderon, F. & Bibette, J. Some stability criteria for double emulsions. Langmuir 14, 2702–2706 (1998).

    CAS  Google Scholar 

  98. Pays, K., Giermanska-Kahn, J., Pouligny, B., Bibette, J. & Leal-Calderon, F. Double emulsions: How does release occur? J. Control. Rel. 79, 193–205 (2002).

    CAS  Google Scholar 

  99. Pays, K., Giermanska-Kahn, J., Pouligny, B., Bibette, J. & Leal-Calderon, F. Coalescence in surfactant-stabilized double emulsions. Langmuir 17, 7758–7769 (2001).

    CAS  Google Scholar 

  100. Jiao, J., Rhodes, D. G. & Burgess, D. J. Multiple emulsion stability: pressure balance and interfacial film strength. J. Colloid Interface Sci. 250, 444–450 (2002).

    CAS  Google Scholar 

  101. Schmidts, T., Dobler, D., Nissing, C. & Runkel, F. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions. J. Colloid Interface Sci. 338, 184–192 (2009).

    CAS  Google Scholar 

  102. Zeeb, B., Saberi, A. H., Weiss, J. & McClements, D. J. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft Matter 11, 2228–2236 (2015).

    CAS  Google Scholar 

  103. Muschiolik, G. Multiple emulsions for food use. Curr. Opin. Colloid Interface Sci. 12, 213–220 (2007).

    CAS  Google Scholar 

  104. Sapei, L., Naqvi, M. A. & Rousseau, D. Stability and release properties of double emulsions for food applications. Food Hydrocoll. 27, 316–323 (2012).

    CAS  Google Scholar 

  105. Kawasaki, J., Kosuge, H., Egashira, R. & Asawa, T. Mechanical entrainment in W/O/W emulsion liquid membrane. Sep. Sci. Technol. 44, 151–168 (2009).

    CAS  Google Scholar 

  106. Chakraborty, M. & Bart, H.-J. Emulsion liquid membranes: role of internal droplet size distribution on toluene/n-heptane separation. Colloids Surf. A 272, 15–21 (2006).

    CAS  Google Scholar 

  107. Gupta, S., Chakraborty, M. & Murthy, Z. V. P. Removal of mercury by emulsion liquid membranes: studies on emulsion stability and scale up. J. Dispers. Sci. Technol. 34, 1733–1741 (2013).

    CAS  Google Scholar 

  108. Hamidi, M., Azadi, A. & Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliv. Rev. 60, 1638–1649 (2008).

    CAS  Google Scholar 

  109. Gawande, M. B. et al. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015).

    CAS  Google Scholar 

  110. Schleich, N. et al. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm. 447, 94–101 (2013).

    CAS  Google Scholar 

  111. Matsushita, H. et al. Multifunctional core–shell silica nanoparticles for highly sensitive 19F magnetic resonance imaging. Angew. Chem. Int. Ed. 53, 1008–1011 (2014).

    CAS  Google Scholar 

  112. Schwarz, J. C. et al. Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Int. J. Pharm. 435, 69–75 (2012).

    CAS  Google Scholar 

  113. Helgeson, M. E., Moran, S. E., An, H. Z. & Doyle, P. S. Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nat. Mater. 11, 344–352 (2012).

    CAS  Google Scholar 

  114. An, H. Z., Helgeson, M. E. & Doyle, P. S. Nanoemulsion composite microgels for orthogonal encapsulation and release. Adv. Mater. 24, 3838–3844 (2012).

    CAS  Google Scholar 

  115. Anton, N., Mojzisova, H., Porcher, E., Benoit, J. & Saulnier, P. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials. Int. J. Pharm. 398, 204–209 (2010).

    CAS  Google Scholar 

  116. Vilanova, N., Kolen’ko, Y. V., Solans, C. & Rodríguez-Abreu, C. Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles. J. Colloid Interface Sci. 437, 235–243 (2015).

    CAS  Google Scholar 

  117. Arriaga, L. R., Amstad, E. & Weitz, D. A. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells. Lab Chip 15, 3335–3340 (2015).

    CAS  Google Scholar 

  118. Abbaspourrad, A., Carroll, N. J., Kim, S.-H. & Weitz, D. A. Polymer microcapsules with programmable active release. J. Am. Chem. Soc. 135, 7744–7750 (2013).

    CAS  Google Scholar 

  119. Kim, S.-H. et al. Formation of polymersomes with double bilayers templated by quadruple emulsions. Lab Chip 13, 1351–1356 (2013).

    CAS  Google Scholar 

  120. Hwang, T.-L., Fang, C.-L., Chen, C.-H. & Fang, J.-Y. Permeation enhancer-containing water-in-oil nanoemulsions as carriers for intravesical cisplatin delivery. Pharm. Res. 26, 2314–2323 (2009).

    CAS  Google Scholar 

  121. de Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011).

    Google Scholar 

  122. Evans, J. E., Jungjohann, K. L., Browning, N. D. & Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).

    CAS  Google Scholar 

  123. Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

    CAS  Google Scholar 

  124. Shum, H. C. et al. Droplet microfluidics for fabrication of non-spherical particles. Macromol. Rapid Commun. 31, 108–118 (2010).

    CAS  Google Scholar 

  125. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Google Scholar 

Download references

Acknowledgements

T.P. was financially supported by the California Research Alliance by BASF. T.S. and M.E.H. were financially supported by the National Science Foundation under award no. CBET 1351371.

Author information

Authors and Affiliations

Authors

Contributions

T.P. researched and prepared the sections on nanoemulsions and multiple nanoemulsions. T.S. researched and prepared the sections on characterizing structure and stability. S.S. researched and prepared the section on applications. M.E.H. prepared the outlook section. All authors revised the manuscript.

Corresponding author

Correspondence to Matthew E. Helgeson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheth, T., Seshadri, S., Prileszky, T. et al. Multiple nanoemulsions. Nat Rev Mater 5, 214–228 (2020). https://doi.org/10.1038/s41578-019-0161-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0161-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing