Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perovskite-related ReO3-type structures

Abstract

Materials with the perovskite ABX3 structure play a major role across materials chemistry and physics as a consequence of their ubiquity and wide range of useful properties. ReO3-type structures can be described as ABX3 perovskites in which the A-cation site is unoccupied, giving rise to the general composition BX3, where B is typically a cation and X is a bridging anion. The chemical diversity of such structures is extensive, ranging from simple oxides and fluorides, such as WO3 and AlF3, to complex structures in which the bridging anion is polyatomic, such as in the Prussian blue-related cyanides Fe(CN)3 and CoPt(CN)6. The same ReO3-type structure is found in metal–organic frameworks, for example, In(im)3 (im = imidazolate) and the well-known MOF-5 structure, where the B-site cation is polyatomic. The extended 3D connectivity and openness of this structure type leads to compounds with interesting and often unusual properties. Notable among these properties are negative thermal expansion (for example, ScF3), photocatalysis (for example, CoSn(OH)6), thermoelectricity (for example, CoAs3) and superconductivity in a phase that is controversially described as SH3 with a doubly interpenetrating ReO3 structure. We present an account of this exciting family of materials and discuss future opportunities in the area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General structures of perovskites and ReO3.
Fig. 2: Timeline of ReO3-type materials.
Fig. 3: Electronic structures of inverse perovskite nitrides.
Fig. 4: Lattice constant as a function of temperature.
Fig. 5: Structural similarities between In(OH)3 and CoAs3.
Fig. 6: Prussian blue analogue materials.
Fig. 7: ReO3-type compounds with polyatomic linkers on the X-site.
Fig. 8: Metal–organic framework with interpenetrating structure.
Fig. 9: MOFs with polyatomic B-site cations.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  2. von Hippel, A. Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22, 221–237 (1950).

    Google Scholar 

  3. Callaghan, A., Moeller, C. W. & Ward, R. Magnetic interactions in ternary ruthenium oxides. Inorg. Chem. 5, 1572–1576 (1966).

    CAS  Google Scholar 

  4. Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

    CAS  Google Scholar 

  5. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. & Samwer, K. Giant negative magnetoresistance in perovskite-like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993).

    Google Scholar 

  6. Moreira dos Santos, A. et al. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 122, 49–52 (2002).

    CAS  Google Scholar 

  7. Cheetham, A. K. et al. Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 131, 13625–13627 (2009).

    Google Scholar 

  8. Ye, H.-Y. et al. Metal-free three-dimensional perovskite ferroelectrics. Science 361, 151–155 (2018).

    CAS  Google Scholar 

  9. Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Google Scholar 

  10. Woodward, P. M. Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B 53, 44–66 (1997).

    Google Scholar 

  11. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28, 3384–3392 (1972).

    CAS  Google Scholar 

  12. Woodward, P. M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 53, 32–43 (1997).

    Google Scholar 

  13. Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B 54, 782–789 (1998).

    Google Scholar 

  14. Duyker, S. G., Hill, J. A., Howard, C. J. & Goodwin, A. L. Guest-activated forbidden tilts in a molecular perovskite analogue. J. Am. Chem. Soc. 138, 11121–11123 (2016).

    CAS  Google Scholar 

  15. Boström, H. L. B., Hill, J. A. & Goodwin, A. L. Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites. Phys. Chem. Chem. Phys. 18, 31881–31894 (2016).

    Google Scholar 

  16. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    CAS  Google Scholar 

  17. Zheng, H. et al. Nanostructured tungsten oxide—properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011).

    CAS  Google Scholar 

  18. Ferretti, A., Rogers, D. B. & Goodenough, J. B. The relation of the electrical conductivity in single crystals of rhenium trioxide to the conductivities of Sr2MgReO6 and NaxWO3. J. Phys. Chem. Solids 26, 2007–2011 (1965).

    CAS  Google Scholar 

  19. Mattheiss, L. F. Band structure and Fermi surface of ReO3. Phys. Rev. 181, 987–1000 (1969).

    CAS  Google Scholar 

  20. Tanisaki, S. Crystal structure of monoclinic tungsten trioxide at room temperature. J. Phys. Soc. Jpn 15, 573–581 (1960).

    CAS  Google Scholar 

  21. Honig, J. M., Dimmock, J. O. & Kleiner, W. H. ReO3 band structure in the tight-binding approximation. J. Chem. Phys. 50, 5232–5242 (1969).

    CAS  Google Scholar 

  22. Sleight, A. & Gillson, J. Preparation and properties of alkali rhenium bronzes and a WO3–ReO3 solid solution. Solid State Commun. 4, 601–602 (1966).

    CAS  Google Scholar 

  23. Chatterji, T., Hansen, T. C., Brunelli, M. & Henry, P. F. Negative thermal expansion of ReO3 in the extended temperature range. Appl. Phys. Lett. 94, 241902 (2009).

    Google Scholar 

  24. Purans, J. et al. X-ray absorption spectroscopy study of local dynamics and thermal expansion in ReO3. Phys. Rev. B 92, 014302 (2015).

    Google Scholar 

  25. Takenaka, K. Negative thermal expansion materials: technological key for control of thermal expansion. Sci. Technol. Adv. Mater. 13, 013001 (2012).

    Google Scholar 

  26. Rodriguez, E. E. et al. The role of static disorder in negative thermal expansion in ReO3. J. Appl. Phys. 105, 114901 (2009).

    Google Scholar 

  27. Lind, C. Two decades of negative thermal expansion research: where do we stand? Materials 5, 1125–1154 (2012).

    CAS  Google Scholar 

  28. Corà, F., Stachiotti, M. G., Catlow, C. R. A. & Rodriguez, C. O. Transition metal oxide chemistry: electronic structure study of WO3, ReO3, and NaWO3. J. Chem. Phys. B 101, 3945–3952 (1997).

    Google Scholar 

  29. Bozin, E. S., Chatterji, T. & Billinge, S. J. L. Local structure of ReO3 at ambient pressure from neutron total-scattering study. Phys. Rev. B 86, 3–6 (2012).

    Google Scholar 

  30. Jorgensen, J.-E., Jorgensen, J. D., Batlogg, B., Remeika, J. P. & Axe, J. D. Order parameter and critical exponent for the pressure-induced phase transitions in ReO3. Phys. Rev. B 33, 4793–4798 (1986).

    CAS  Google Scholar 

  31. Schirber, J. E. & Morosin, B. “Compressibility collapse” transition in ReO3. Phys. Rev. Lett. 42, 1485–1487 (1979).

    CAS  Google Scholar 

  32. Biswas, K. et al. Pressure-induced phase transitions in nanocrystalline ReO3. J. Phys. Condens. Matter. 19, 436214 (2007).

    Google Scholar 

  33. Muthu, D. V. S. et al. Pressure-induced structural phase transitions and phonon anomalies in ReO3: Raman and first-principles study. Phys. Rev. B 91, 224308 (2015).

    Google Scholar 

  34. Cava, R., Santoro, A., Murphy, D., Zahurak, S. & Roth, R. The structures of lithium-inserted metal oxides: LiReO3 and Li2ReO3. J. Solid State Chem. 42, 251–262 (1982).

    CAS  Google Scholar 

  35. Cava, R., Santoro, A., Murphy, D., Zahurak, S. & Roth, R. The structures of the lithium inserted metal oxides Li0.2ReO3 and Li0.36WO3. J. Solid State Chem. 50, 121–128 (1983).

    CAS  Google Scholar 

  36. Bashian, N. H. et al. Correlated polyhedral rotations in the absence of polarons during electrochemical insertion of lithium in ReO3. ACS Energy Lett. 3, 2513–2519 (2018).

    CAS  Google Scholar 

  37. Santato, C., Odziemkowski, M., Ulmann, M. & Augustynski, J. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639–10649 (2001).

    CAS  Google Scholar 

  38. Cronin, J., Tarico, D., Tonazzi, J., Agrawal, A. & Kennedy, S. Microstructure and properties of sol–gel deposited WO3 coatings for large area electrochromic windows. Sol. Energy Mater. Sol. Cell 29, 371–386 (1993).

    Google Scholar 

  39. Sun, M., Xu, N., Cao, Y. W., Yao, J. N. & Wang, E. G. Nanocrystalline tungsten oxide thin film: preparation, microstructure, and photochromic behavior. J. Mater. Sci. 15, 927–933 (2000).

    CAS  Google Scholar 

  40. Lee, S.-H. et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763–766 (2006).

    CAS  Google Scholar 

  41. Baeck, S.-H., Choi, K.-S., Jaramillo, T., Stucky, G. & McFarland, E. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15, 1269–1273 (2003).

    CAS  Google Scholar 

  42. Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: experimental evidence of. J. Phys. Condens. Matter. 10, L377–L380 (1998).

    CAS  Google Scholar 

  43. Wang, L., Teleki, A., Pratsinis, S. E. & Gouma, P. I. Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008).

    CAS  Google Scholar 

  44. Antonik, M. et al. Microstructural effects in WO3 gas-sensing films. Thin Solid Films 256, 247–252 (1995).

    CAS  Google Scholar 

  45. Galatsis, K., Li, Y., Wlodarski, W. & Kalantar-zadeh, K. Sol–gel prepared MoO3–WO3 thin-films for O2 gas sensing. Sens. Actuat. B Chem. 77, 478–483 (2001).

    CAS  Google Scholar 

  46. Li, X.-L., Lou, T.-J., Sun, X.-M. & Li, Y.-D. Highly sensitive WO3 hollow-sphere gas sensors. Inorg. Chem. 43, 5442–5449 (2004).

    CAS  Google Scholar 

  47. Ponzoni, A., Comini, E., Ferroni, M. & Sberveglieri, G. Nanostructured WO3 deposited by modified thermal evaporation for gas-sensing applications. Thin Solid Films 490, 81–85 (2005).

    CAS  Google Scholar 

  48. Ma, M. et al. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew. Chem. Int. Ed. 55, 11819–11823 (2016).

    CAS  Google Scholar 

  49. Zhang, J., Liu, Z. & Liu, Z. Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 8, 9684–9691 (2016).

    CAS  Google Scholar 

  50. Li, W. et al. WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 8, 11770–11777 (2014).

    CAS  Google Scholar 

  51. Hou, Y., Zuo, F., Dagg, A. P., Liu, J. & Feng, P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26, 5043–5049 (2014).

    CAS  Google Scholar 

  52. Su, J., Feng, X., Sloppy, J. D., Guo, L. & Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 11, 203–208 (2011).

    CAS  Google Scholar 

  53. Li, N. et al. Aqueous synthesis and visible-light photochromism of metastable h-WO3 hierarchical nanostructures. Eur. J. Inorg. Chem. 2015, 2804–2812 (2015).

    CAS  Google Scholar 

  54. Chen, Z. et al. Hierarchical nanostructured WO3 with biomimetic proton channels and mixed ionic–electronic conductivity for electrochemical energy storage. Nano Lett. 15, 6802–6808 (2015).

    CAS  Google Scholar 

  55. Yoon, S. et al. Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Phys. Chem. Chem. Phys. 13, 11060 (2011).

    CAS  Google Scholar 

  56. Girish Kumar, S. & Koteswara Rao, K. Tungsten-based nanomaterials (WO3 & Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl. Surf. Sci. 355, 939–958 (2015).

    CAS  Google Scholar 

  57. Kida, T. et al. WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30, 2571–2579 (2014).

    CAS  Google Scholar 

  58. Amano, F., Ishinaga, E. & Yamakata, A. Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. J. Phys. Chem. C 117, 22584–22590 (2013).

    CAS  Google Scholar 

  59. Chen, D. & Ye, J. Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 18, 1922–1928 (2008).

    CAS  Google Scholar 

  60. Wang, H., Dong, X., Peng, S., Dong, L. & Wang, Y. Improvement of thermoelectric properties of WO3 ceramics by ZnO addition. J. Alloy. Compd 527, 204–209 (2012).

    CAS  Google Scholar 

  61. Kieslich, G. et al. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722. Phys. Chem. Chem. Phys. 15, 15399 (2013).

    CAS  Google Scholar 

  62. Kim, S.-J. et al. Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10, 5891–5899 (2016).

    CAS  Google Scholar 

  63. Shendage, S. et al. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B 240, 426–433 (2017).

    CAS  Google Scholar 

  64. Rao, P. M. et al. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014).

    CAS  Google Scholar 

  65. Tordjman, M., Weinfeld, K. & Kalish, R. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3. Appl. Phys. Lett. 111, 111601 (2017).

    Google Scholar 

  66. Juza, R. & Hahn, H. Über die Kristallstrukturen von Cu3N, GaN und InN Metallamide und Metallnitride. Z. Anorg. Allg. Chem. 239, 282–287 (1938).

    CAS  Google Scholar 

  67. Paniconi, G. et al. Structural chemistry of Cu3N powders obtained by ammonolysis reactions. Solid State Sci. 9, 907–913 (2007).

    CAS  Google Scholar 

  68. Zhao, J., You, S., Yang, L. & Jin, C. Structural phase transition of Cu3N under high pressure. Solid State Commun. 150, 1521–1524 (2010).

    CAS  Google Scholar 

  69. Birkett, M. et al. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu3N. Phys. Rev. B 95, 115201 (2017).

    Google Scholar 

  70. Terada, S., Tanaka, H. & Kubota, K. Heteroepitaxial growth of Cu3N thin films. J. Cryst. Growth 94, 567–568 (1989).

    CAS  Google Scholar 

  71. Asano, M., Umeda, K. & Tasaki, A. Cu3N thin film for a new light recording media. Jpn J. Appl. Phys. 29, 1985–1986 (1990).

    CAS  Google Scholar 

  72. Juza, R. & Hahn, H. Kupfernitrid metallamide und metallnitride. VII. Z. Anorg. Allg. Chem. 241, 172–178 (1939).

    CAS  Google Scholar 

  73. Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).

    CAS  Google Scholar 

  74. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Google Scholar 

  75. Pereira, N., Dupont, L., Tarascon, J. M., Klein, L. C. & Amatucci, G. G. Electrochemistry of Cu3N with lithium. J. Electrochem. Soc. 150, A1273 (2003).

    CAS  Google Scholar 

  76. Wu, H. & Chen, W. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 133, 15236–15239 (2011).

    CAS  Google Scholar 

  77. Fischer, D. & Jansen, M. Synthesis and structure of Na3N. Angew. Chem. Int. Ed. 41, 1755–1756 (2002).

    CAS  Google Scholar 

  78. Vajenine, G. V. Plasma-assisted synthesis and properties of Na3N. Inorg. Chem. 46, 5146–5148 (2007).

    CAS  Google Scholar 

  79. Vajenine, G. V., Hoch, C., Dinnebier, R. E., Senyshyn, A. & Niewa, R. A temperature-dependent structural study of anti-ReO3-type Na3N: to distort or not to distort? Z. Anorg. Allg. Chem. 636, 94–99 (2010).

    CAS  Google Scholar 

  80. Kim, D. et al. Type-II Dirac line node in strained Na3N. Phys. Rev. Mater. 2, 104203 (2018).

    CAS  Google Scholar 

  81. Zintl, E. & Brauer, G. Konstitution des Lithiumnitrids. Z. Elektrochem. 41, 102–107 (1935).

    CAS  Google Scholar 

  82. Fischer, D., Cancarevic, Z., Schön, J. C. & Jansen, M. Zur synthese und struktur von K3N. Z Anorg. Allg. Chem. 630, 156–160 (2004).

    CAS  Google Scholar 

  83. Greve, B. K. et al. Pronounced negative thermal expansion from a simple structure: cubic ScF3. J. Am. Chem. Soc. 132, 15496–15498 (2010).

    CAS  Google Scholar 

  84. Groult, H. et al. Nano-CoF3 prepared by direct fluorination with F2 gas: application as electrode material in Li-ion battery. J. Fluor. Chem. 196, 117–127 (2017).

    CAS  Google Scholar 

  85. Chaudhuri, S., Chupas, P. J., Wilson, M., Madden, P. & Grey, C. P. Study of the nature and mechanism of the rhombohedral-to-cubic phase transition in α-AlF3 with molecular dynamics simulations. J. Phys. Chem. B 108, 3437–3445 (2004).

    CAS  Google Scholar 

  86. Hepworth, M. A., Jack, K. H., Peacock, R. D. & Westland, G. J. The crystal structures of the trifluorides of iron, cobalt, ruthenium, rhodium, palladium and iridium. Acta Crystallogr. 10, 63–69 (2002).

    Google Scholar 

  87. Daniel, P., Bulou, A., Leblanc, M., Rousseau, M. & Nouet, J. Structural and vibrational study of VF3. Mater. Res. Bull. 25, 413–420 (1990).

    CAS  Google Scholar 

  88. Siegel, S. The structure of TiF3. Acta Crystallogr. 9, 684–684 (1956).

    CAS  Google Scholar 

  89. Shannon, R. D. T. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1969).

    CAS  Google Scholar 

  90. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Google Scholar 

  91. Hu, L. et al. New insights into the negative thermal expansion: direct experimental evidence for the “guitar-string” effect in cubic ScF3. J. Am. Chem. Soc. 138, 8320–8323 (2016).

    CAS  Google Scholar 

  92. Piskunov, S. et al. Interpretation of unexpected behavior of infrared absorption spectra of ReO3 beyond the quasiharmonic approximation. Phys. Rev. B 93, 214101 (2016).

    Google Scholar 

  93. Bhandia, R., Siegrist, T., Besara, T. & Schmiedeshoff, G. M. Grüneisen divergence near the structural quantum phase transition in ScF3. Philos. Mag. 99, 631–643 (2019).

    CAS  Google Scholar 

  94. Yang, C. et al. Size effects on negative thermal expansion in cubic ScF3. Appl. Phys. Lett. 109, 023110 (2016).

    Google Scholar 

  95. Hu, L. et al. Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks. J. Am. Chem. Soc. 140, 4477–4480 (2018).

    CAS  Google Scholar 

  96. Wang, T. et al. Tunable thermal expansion and magnetism in Zr-doped ScF3. Appl. Phys. Lett. 109, 181901 (2016).

    Google Scholar 

  97. Chen, J. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 8, 14441 (2017).

    CAS  Google Scholar 

  98. Goodwin, A. L., Chapman, K. W. & Kepert, C. J. Guest-dependent negative thermal expansion in nanoporous Prussian blue analogues MIIPtIV(CN)6·xH2O (0 ≤ x ≤ 2; M = Zn, Cd). J. Am. Chem. Soc. 127, 17980–17981 (2005).

    CAS  Google Scholar 

  99. Duan, N., Kameswari, U. & Sleight, A. W. Further contraction of ZrW2O8. J. Am. Chem. Soc. 121, 10432–10433 (2002).

    Google Scholar 

  100. Phillips, A. E., Goodwin, A. L., Halder, G. J., Southon, P. D. & Kepert, C. J. Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. Angew. Chem. Inter. Ed. 47, 1396–1399 (2008).

    CAS  Google Scholar 

  101. Phillips, A. E., Halder, G. J., Chapman, K. W., Goodwin, A. L. & Kepert, C. J. Zero thermal expansion in a flexible, stable framework: tetramethylammonium copper(I) zinc(II) cyanide. J. Am. Chem. Soc. 132, 10–11 (2010).

    CAS  Google Scholar 

  102. Carey, T., Tang, C. C., Hriljac, J. A. & Anderson, P. A. Chemical control of thermal expansion in cation-exchanged zeolite A. Chem. Mater. 26, 1561–1566 (2014).

    CAS  Google Scholar 

  103. Arai, H., Okada, S., Sakurai, Y. & Yamaki, J. I. Cathode performance and voltage estimation of metal trihalides. J. Power Sources 68, 716–719 (1997).

    CAS  Google Scholar 

  104. Nishijima, M. et al. Cathode properties of metal trifluorides in Li and Na secondary batteries. J. Power Sources 190, 558–562 (2009).

    CAS  Google Scholar 

  105. Zhou, M., Zhao, L., Doi, T., Okada, S. & Yamaki, J. I. Thermal stability of FeF3 cathode for Li-ion batteries. J. Power Sources 195, 4952–4956 (2010).

    CAS  Google Scholar 

  106. Takami, T. et al. Role of the particle size of Fe nanoparticles in the capacity of FeF3 batteries. AIP Adv. 9, 045301 (2019).

    Google Scholar 

  107. Yang, Z. et al. Atomistic insights into FeF3 nanosheet: an ultrahigh-rate and long-life cathode material for Li-ion batteries. ACS Appl. Mater. Interfaces 10, 3142–3151 (2018).

    CAS  Google Scholar 

  108. Jiang, J., Li, L., Xu, M., Zhu, J. & Li, C. M. FeF3 thin nickel ammine nitrate matrix: smart configurations and applications as superior cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 16240–16247 (2016).

    CAS  Google Scholar 

  109. Kim, T. et al. A cathode material for lithium-ion batteries based on graphitized carbon-wrapped FeF3 nanoparticles prepared by facile polymerization. J. Mater. Chem. 4, 14857–14864 (2016).

    CAS  Google Scholar 

  110. Li, C., Gu, L., Tsukimoto, S., van Aken, P. A. & Maier, J. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv. Mater. 22, 3650–3654 (2010).

    CAS  Google Scholar 

  111. Yang, Z., Pei, Y., Wang, X., Liu, L. & Su, X. First principles study on the structural, magnetic and electronic properties of Co-doped FeF3. Comput. Theor. Chem. 980, 44–48 (2012).

    CAS  Google Scholar 

  112. Liu, L. et al. Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries. J. Mater. Chem. 22, 17539 (2012).

    CAS  Google Scholar 

  113. Liu, L. et al. A comparison among FeF3·3H2O, FeF3·0.33H2O and FeF3 cathode materials for lithium ion batteries: structural, electrochemical, and mechanism studies. J. Power Sources 238, 501–515 (2013).

    CAS  Google Scholar 

  114. Kitajou, A. et al. Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for sodium-ion battery. J. Power Sources 198, 389–392 (2012).

    CAS  Google Scholar 

  115. Ruchaud, N., Mirambet, C., Fournes, L., Grannec, J. & Soubeyroux, J. L. Determination of the cationic arrangement in Sn2F6 from neutron powder diffraction. Z. Anorg. Allg. Chem. 590, 173–180 (1990).

    CAS  Google Scholar 

  116. Köhl, P., Reinen, D., Decher, G. & Wanklyn, B. Strukturelle Modifikationen von FeZrF6. Z. Kristallogr. Cryst. Mater. 153, 211–220 (1980).

    Google Scholar 

  117. Mayer, H., Reinen, D. & Heger, G. Struktur und Bindung in Übergangsmetall-fluoriden MIIMeIVF6. J. Solid. State Chem. 50, 213–224 (1983).

    CAS  Google Scholar 

  118. Bachmann, B. & Müller, B. G. Zur synthese und kristallstruktur von LiPdAlF6 und PdZrF6. Z. Anorg. Allg. Chem. 619, 189–192 (1993).

    CAS  Google Scholar 

  119. Rodriguez, V. & Couzi, M. Structural phase transition in the ordered fluorides M IIZrF6 (M II = Co, Zn). III. Landau theory. J. Phys. Condens. Matter 2, 7395–7406 (1990).

    CAS  Google Scholar 

  120. Gerasimenko, A. V., Gaivoronskaya, K. A., Slobodyuk, A. B. & Didenko, N. A. Magnesium hexafluoridozirconates MgZrF6·5H2O, MgZrF6·2H2O, and MgZrF6: structures, phase transitions, and internal mobility of water molecules. Z. Anorg. Allg. Chem. 643, 1785–1792 (2017).

    CAS  Google Scholar 

  121. Friebel, C., Pebler, J., Steffens, F., Weber, M. & Reinen, D. Phase transitions in CuZrF6 and CrZrF6: a Mössbauer and EPR study of local and cooperative Jahn–Teller distortions. J. Solid State Chem. 46, 253–264 (1983).

    CAS  Google Scholar 

  122. Schmidt, R., Kraus, M. & Müller, B. G. Neue fluorozirconate und -hafnate mit V2+ und Ti2+. Z. Anorg. Allg. Chem. 627, 2344–2350 (2001).

    CAS  Google Scholar 

  123. Le Mercier, T., Chassaing, J., Bizot, D. & Quarton, M. Structural, spectroscopic and magnetic studies of VIIMIVF6 compounds with MIV = Zr, Nb. Mater. Res. Bull. 27, 259–267 (1992).

    Google Scholar 

  124. Hester, B. R., dos Santos, A. M., Molaison, J. J., Hancock, J. C. & Wilkinson, A. P. Synthesis of defect perovskites (He2−xϒx)(CaZr)F6 by inserting helium into the negative thermal expansion material CaZrF6. J. Am. Chem. Soc. 139, 13284–13287 (2017).

    CAS  Google Scholar 

  125. De, I., Desai, V. P. & Chakravarty, A. S. Magnetic properties of some complexes of Mo5+. Phys. Rev. B 8, 3769–3772 (1973).

    CAS  Google Scholar 

  126. Llorente, S. et al. Synthesis and crystal structure of CuIIMoIVF6 and CrIINbIVF6 (LT form). Z. Anorg. Allg. Chem. 624, 1538–1542 (1998).

    CAS  Google Scholar 

  127. Goubard, F. et al. Fluorocomplexes of niobium IV: the magnetic structure of VNbF6. J. Magn. Magn. Mater. 146, 129–132 (1995).

    CAS  Google Scholar 

  128. Yang, C. et al. Large positive thermal expansion and small band gap in double-ReO3-type compound NaSbF6. Inorg. Chem. 56, 4990–4995 (2017).

    CAS  Google Scholar 

  129. Gupta, M. K., Singh, B., Mittal, R. & Chaplot, S. L. Negative thermal expansion behavior in ReO3. Phys. Rev. B 98, 014301 (2018).

    CAS  Google Scholar 

  130. Hancock, J. C. et al. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AIIBIVF6: CaZrF6 and CaHfF6. Chem. Mater. 27, 3912–3918 (2015).

    CAS  Google Scholar 

  131. Ticknor, J. O. et al. Zero thermal expansion and abrupt amorphization on compression in anion excess ReO3-type cubic YbZrF7. Chem. Mater. 30, 3071–3077 (2018).

    CAS  Google Scholar 

  132. Baxter, S. J., Hester, B. R., Wright, B. R. & Wilkinson, A. P. Controlling the negative thermal expansion and response to pressure in ReO3-type fluorides by the deliberate introduction of excess fluoride: Mg1−xZr1+xF6+2x, x = 0.15, 0.30, 0.40, and 0.50. Chem. Mater. 31, 3440–3448 (2019).

    CAS  Google Scholar 

  133. Reddy, M., Madhavi, S., Subba Rao, G. & Chowdari, B. Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries. J. Power Sources 162, 1312–1321 (2006).

    CAS  Google Scholar 

  134. Pérez-Flores, J. C. et al. VO2F: a new transition metal oxyfluoride with high specific capacity for Li ion batteries. J. Mater. Chem. A 3, 20508–20515 (2015).

    Google Scholar 

  135. Frevel, L. K. & Rinn, H. W. The crystal structure of NbO2F and TaO2F. Acta Crystallogr. 9, 626–627 (1956).

    CAS  Google Scholar 

  136. Poulain, M., Lucas, J. & Tilley, R. J. A structural study of a nonstoichiometric niobium–zirconium oxyfluoride with the ReO3 type structure. J. Solid State Chem. 17, 331–337 (1976).

    CAS  Google Scholar 

  137. Pierce, J. W. & Vlasse, M. The crystal structures of two oxyfluorides of molybdenum. Acta Crystallogr. B 27, 158–163 (1971).

    CAS  Google Scholar 

  138. Nakhal, S. & Lerch, M. New transition metal oxide fluorides with ReO3-type structure. Z. Naturforsch. B Chem. Sci. 71, 457–461 (2016).

    CAS  Google Scholar 

  139. Nakhal, S., Bredow, T. & Lerch, M. Syntheses and crystal structures of New ReO3 type-derived transition metal oxide fluorides. Z. Anorg. Allg. Chem. 641, 1036–1042 (2015).

    CAS  Google Scholar 

  140. Dabachi, J., Body, M., Galven, C., Boucher, F. & Legein, C. Preparation-dependent composition and O/F ordering in NbO2F and TaO2F. Inorg. Chem. 56, 5219–5232 (2017).

    CAS  Google Scholar 

  141. Liu, K., Li, K., Peng, Q. & Zhang, C. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 14, 47–64 (2019).

    Google Scholar 

  142. Cambaz, M. A. et al. Vanadium oxyfluoride/few-layer graphene composite as a high-performance cathode material for lithium batteries. Inorg. Chem. 55, 3789–3796 (2016).

    CAS  Google Scholar 

  143. Chen, R. et al. Lithiation-driven structural transition of VO2F into disordered rock-salt LixVO2F. RSC Adv. 6, 65112–65118 (2016).

    CAS  Google Scholar 

  144. Wang, X. et al. Structural changes in a high-energy density VO2F cathode upon heating and Li cycling. ACS Appl. Mater. Interfaces 1, 4514–4521 (2018).

    CAS  Google Scholar 

  145. Mitchell, R. H., Welch, M. D. & Chakhmouradian, A. R. Nomenclature of the perovskite supergroup: a hierarchical system of classification based on crystal structure and composition. Mineral. Mag. 81, 411–461 (2017).

    CAS  Google Scholar 

  146. Xue, X. & Kanzaki, M. High-pressure δ-Al(OH)3 and δ-AlOOH phases and isostructural hydroxides/oxyhydroxides: new structural insights from high-resolution 1H and 27Al NMR. J. Phys. Chem. B 111, 13156–13166 (2007).

    CAS  Google Scholar 

  147. Welch, M. D. & Kleppe, A. K. Polymorphism of the hydroxide perovskite Ga(OH)3 and possible proton-driven transformational behaviour. Phys. Chem. Miner. 43, 515–526 (2016).

    CAS  Google Scholar 

  148. Au-Yeung, S. C. F., Denes, G., Greedan, J. E., Eaton, D. R. & Birchall, T. A novel synthetic route to “iron trihydroxide, Fe(OH)3”: characterization and magnetic properties. Inorg. Chem. 23, 1513–1517 (1984).

    CAS  Google Scholar 

  149. Au-Yeung, S. C. F. et al. The preparation and characterization of iron trihydroxide, Fe(OH)3. Can. J. Chem. 63, 3378–3385 (1985).

    CAS  Google Scholar 

  150. Schubert, K. & Seitz, A. Kristallstruktur von Sc(OH)3 und In(OH)3. Z. Anorg. Allg. Chem. 256, 226–238 (1948).

    CAS  Google Scholar 

  151. Mullica, D., Beall, G., Milligan, W., Korp, J. & Bernal, I. The crystal structure of cubic In(OH)3 by X-ray and neutron diffraction methods. J. Inorg. Nucl. Chem. Lett. 41, 277–282 (1979).

    CAS  Google Scholar 

  152. Mullica, D. & Milligan, W. Structural refinement of cubic Lu(OH)3. J. Inorg. Nucl. Chem. 42, 223–227 (1980).

    CAS  Google Scholar 

  153. Mullica, D., Sappenfield, E., Gable, D. & Tims, T. Crystal structural analyses of 1:3 (Lu, In)(OH)3 and 1:3 (Yb, In)(OH)3. J. Less-Common Met. 152, 157–163 (1989).

    CAS  Google Scholar 

  154. Birch, W. D., Pring, A., Reller, A. & Schmalle, H. Bernalite: a new ferric hydroxide with perovskite structure. Naturwissenschaften 79, 509–511 (1992).

    CAS  Google Scholar 

  155. Li, B. et al. In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 22, 9380–9385 (2006).

    CAS  Google Scholar 

  156. Morgenstern-Badarau, I. Effet Jahn–Teller et structure cristalline de l’hydroxyde CuSn(OH)6. J. Solid State Chem. 17, 399–406 (1976).

    CAS  Google Scholar 

  157. Neilson, J. R., Kurzman, J. A., Seshadri, R. & Morse, D. E. Ordering double perovskite hydroxides by kinetically controlled aqueous hydrolysis. Inorg. Chem. 50, 3003–3009 (2011).

    CAS  Google Scholar 

  158. Mizoguchi, H., Bhuvanesh, N. S. P., Kim, Y.-I., Ohara, S. & Woodward, P. M. Hydrothermal crystal growth and structure determination of double hydroxides LiSb(OH)6, BaSn(OH)6, and SrSn(OH)6. Inorg. Chem. 53, 10570–10577 (2014).

    CAS  Google Scholar 

  159. Nakayama, N., Kosuge, K., Kachi, S., Shinjo, T. & Takada, T. Magnetic properties of FeSn(OH)6 and its oxidation product, FeSnO(OH)5. Mater. Res. Bull. 13, 17–22 (1978).

    CAS  Google Scholar 

  160. Xu, R., Deng, B., Min, L., Xu, H. & Zhong, S. CuSn(OH)6 submicrospheres: room-temperature synthesis and weak antiferromagnetic behavior. Mater. Lett. 65, 733–735 (2010).

    Google Scholar 

  161. Wu, J. M. & Chen, Y. N. The surface plasmon resonance effect on the enhancement of photodegradation activity by Au/ZnSn(OH)6 nanocubes. Dalton Trans. 44, 16294–16303 (2015).

    CAS  Google Scholar 

  162. Wang, L. et al. Single-crystalline ZnSn(OH)6 hollow cubes via self-templated synthesis at room temperature and their photocatalytic properties. J. Mater. Chem. 21, 4352 (2011).

    CAS  Google Scholar 

  163. Gao, Y. et al. Perovskite hydroxide CoSn(OH)6 nanocubes for efficient photoreduction of CO2 to CO. ACS Sustain. Chem. Eng. 6, 781–786 (2018).

    CAS  Google Scholar 

  164. Chen, D. et al. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 57, 8691–8696 (2018).

    CAS  Google Scholar 

  165. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    Google Scholar 

  166. Li, B.-Q. et al. Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation. Nat. Commun. 8, 934 (2017).

    Google Scholar 

  167. Welch, M. D., Crichton, W. A. & Ross, N. L. Compression of the perovskite-related mineral bernalite Fe(OH)3 to 9 GPa and a reappraisal of its structure. Mineral. Mag. 69, 309–315 (2005).

    CAS  Google Scholar 

  168. Oftedal, I. Die Kristallstruktur von Skutterudit und Speiskobalt-chloanthit. Z. Kristallogr. Cryst. Mater. 66, 517–546 (1928).

    CAS  Google Scholar 

  169. Mandel, N. & Donohue, J. The refinement of the crystal structure of skutterudite, CoAs3. Acta Crystallogr. B 27, 2288–2289 (1971).

    CAS  Google Scholar 

  170. von Schnering, H. G. Homoatomic bonding of main group elements. Angew. Chem. Int. Ed. 20, 33–51 (1981).

    Google Scholar 

  171. Jeitschko, W. & Braun, D. LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid–transition metal polyphosphides. Acta Crystallogr. B 33, 3401–3406 (1977).

    Google Scholar 

  172. Meisner, G. Superconductivity and magnetic order in ternary rare earth transition metal phosphides. Phys. C. 108, 763–764 (1981).

    CAS  Google Scholar 

  173. Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996).

    CAS  Google Scholar 

  174. Caillat, T., Borshchevsky, A. & Fleurial, J. Properties of single crystalline semiconducting CoSb3. J. Appl. Phys. 80, 4442–4449 (1996).

    CAS  Google Scholar 

  175. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    CAS  Google Scholar 

  176. Gaultois, M. W. et al. Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater. 25, 2911–2920 (2013).

    CAS  Google Scholar 

  177. Shi, X. et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011).

    CAS  Google Scholar 

  178. Khan, A. U. et al. Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy 31, 152–159 (2017).

    CAS  Google Scholar 

  179. Buser, H. J., Schwarzenbach, D., Petter, W. & Ludi, A. The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 16, 2704–2710 (1977).

    CAS  Google Scholar 

  180. Chapman, K. W., Chupas, P. J. & Kepert, C. J. Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). J. Am. Chem. Soc. 128, 7009–7014 (2006).

    CAS  Google Scholar 

  181. Gao, Q. et al. Low-frequency phonon driven negative thermal expansion in cubic GaFe(CN)6 Prussian blue analogues. Inorg. Chem. 57, 10918–10924 (2018).

    CAS  Google Scholar 

  182. Behera, J. N., D’Alessandro, D. M., Soheilnia, N. & Long, J. R. Synthesis and characterization of ruthenium and iron–ruthenium Prussian blue analogues. Chem. Mater. 21, 1922–1926 (2009).

    CAS  Google Scholar 

  183. Williams, D., Pleune, B., Leinenweber, K. & Kouvetakis, J. Synthesis and structural properties of the binary framework C–N compounds of Be, Mg, Al, and Tl. J. Solid State Chem. 159, 244–250 (2001).

    CAS  Google Scholar 

  184. Brousseau, L. C., Kouvetakis, W. D. & O’Keeffe, M. Synthetic routes to Ga(CN)3 and MGa(CN)4 (M = Li, Cu) framework structures. J. Am. Chem. Soc. 119, 6292–6296 (1997).

    CAS  Google Scholar 

  185. Williams, D. J., Partin, D. E., Lincoln, F. J., Kouvetakis, J. & O’Keeffe, M. The disordered crystal structures of Zn(CN)2 and Ga(CN)3. J. Solid State Chem. 134, 164–169 (1997).

    CAS  Google Scholar 

  186. Williams, D., Kouvetakis, J. & O’Keeffe, M. Synthesis of nanoporous cubic In(CN)3 and In1–xGax(CN)3 and corresponding inclusion compounds. Inorg. Chem. 37, 4617–4620 (1998).

    CAS  Google Scholar 

  187. Shi, N. et al. Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues. Dalton Trans. 48, 3658–3663 (2019).

    CAS  Google Scholar 

  188. Yang, J., Wang, H., Lu, L., Shi, W. & Zhang, H. Large-scale synthesis of Berlin green Fe[Fe(CN)6] microcubic crystals. Cryst. Growth Des. 6, 2438–2440 (2006).

    CAS  Google Scholar 

  189. Gao, Q. et al. Switching between giant positive and negative thermal expansions of a YFe(CN)6-based Prussian blue analogue induced by guest species. Angew. Chem. Int. Ed. 56, 9023–9028 (2017).

    CAS  Google Scholar 

  190. Kumar, A., Yusuf, S. M. & Keller, L. Structural and magnetic properties of Fe[Fe(CN)6]·4H2O. Phys. Rev. B 71, 054414 (2005).

    Google Scholar 

  191. Ohba, M. & Oˉkawa, H. Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies. Coordin. Chem. Rev. 198, 313–328 (2000).

    CAS  Google Scholar 

  192. Ferlay, S., Mallah, T., Ouahe`s, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    CAS  Google Scholar 

  193. Ohkoshi, S. I., Arai, K. I., Sato, Y. & Hashimoto, K. Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly. Nat. Mater. 3, 857–861 (2004).

    CAS  Google Scholar 

  194. Lu, Y., Wang, L., Cheng, J. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544 (2012).

    CAS  Google Scholar 

  195. Zhang, J. et al. FeFe(CN)6 nanocubes as a bipolar electrode material in aqueous symmetric sodium-ion batteries. Chem. Plus. Chem. 82, 1170–1173 (2017).

    CAS  Google Scholar 

  196. Wu, X. et al. Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1, 10130 (2013).

    CAS  Google Scholar 

  197. Wu, X. et al. Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 8, 23706–23712 (2016).

    CAS  Google Scholar 

  198. Shadike, Z. et al. Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery. J. Mater. Chem. A 5, 6393–6398 (2017).

    CAS  Google Scholar 

  199. Cliffe, M. J. et al. Strongly coloured thiocyanate frameworks with perovskite-analogue structures. Chem. Sci. 10, 793–801 (2019).

    CAS  Google Scholar 

  200. Ravnsbæk, D. B. et al. Thermal polymorphism and decomposition of Y(BH4)3. Inorg. Chem. 49, 3801–3809 (2010).

    Google Scholar 

  201. Ley, M. B. et al. Complex hydrides for hydrogen storage-new perspectives. Mater. Today 17, 122–128 (2014).

    CAS  Google Scholar 

  202. Mohtadi, R. & Orimo, S.-i. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2, 16091 (2017).

    Google Scholar 

  203. Yan, Y. et al. Dehydriding and rehydriding properties of yttrium borohydride Y(BH4)3 prepared by liquid-phase synthesis. Int. J. Hydrog. Energy 34, 5732–5736 (2009).

    CAS  Google Scholar 

  204. Olsen, J. E. et al. Structure and thermal properties of composites with RE-borohydrides (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb or Lu) and LiBH4. RSC Adv. 4, 1570–1582 (2014).

    CAS  Google Scholar 

  205. Ley, M. B., Jørgensen, M., Cˇerný, R., Filinchuk, Y. & Jensen, T. R. From M(BH4)3 (M = La, Ce) borohydride frameworks to controllable synthesis of porous hydrides and ion conductors. Inorg. Chem. 55, 9748–9756 (2016).

    CAS  Google Scholar 

  206. GharibDoust, S. P. et al. Synthesis, structure, and polymorphic transitions of praseodymium(III) and neodymium(III) borohydride, Pr(BH4)3 and Nd(BH4)3. Dalton Trans. 47, 8307–8319 (2018).

    Google Scholar 

  207. Grinderslev, J. B., Møller, K. T., Bremholm, M. & Jensen, T. R. Trends in synthesis, crystal structure, and thermal and magnetic properties of rare-earth metal borohydrides. Inorg. Chem. 58, 5503–5517 (2019).

    CAS  Google Scholar 

  208. Ley, M. B. et al. LiCe(BH4)3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters. Chem. Mater. 24, 1654–1663 (2012).

    CAS  Google Scholar 

  209. Latroche, M. et al. Full-cell hydride-based solid-state Li batteries for energy storage. Int. J. Hydrog. Energy 44, 7875–7887 (2019).

    CAS  Google Scholar 

  210. Maouel, H. A., Alonzo, V., Roisnel, T., Rebbah, H. & Le Fur, E. The first three-dimensional vanadium hypophosphite. Acta Crystallogr. A 65, i36–i38 (2009).

    CAS  Google Scholar 

  211. Evans, H. A. et al. Polymorphism in M(H2PO2)3 (M = V, Al, Ga) compounds with the perovskite-related ReO3 structure. Chem. Commun. 55, 2964–2967 (2019).

    CAS  Google Scholar 

  212. Yang, W. et al. Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: thermal degradation, flame retardancy and mechanical properties. RSC Adv. 5, 105869–105879 (2015).

    CAS  Google Scholar 

  213. Bermúdez-García, J. M. et al. Giant barocaloric effect in the ferroic organic–inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017).

    Google Scholar 

  214. Jain, P., Dalal, N. S., Toby, B. H., Kroto, H. W. & Cheetham, A. K. Order–disorder antiferroelectric phase transition in a hybrid inorganic–organic framework with the perovskite architecture. J. Am. Chem. Soc. 130, 10450–10451 (2008).

    CAS  Google Scholar 

  215. Jain, P. et al. Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 131, 13625–13627 (2009).

    CAS  Google Scholar 

  216. Wang, Z., Hu, K., Gao, S. & Kobayashi, H. Formate-based magnetic metal–organic frameworks templated by protonated amines. Adv. Mater. 22, 1526–1533 (2010).

    CAS  Google Scholar 

  217. Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    CAS  Google Scholar 

  218. Kieslich, G., Sun, S. & Cheetham, A. K. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014).

    CAS  Google Scholar 

  219. Kieslich, G., Sun, S. & Cheetham, A. K. An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015).

    CAS  Google Scholar 

  220. Seifert, H. On the existence of a vanadium (IV) formate. J. Inorg. Nucl. Chem. 27, 1269–1270 (1965).

    CAS  Google Scholar 

  221. Tian, Y.-Q., Zhao, Y.-M., Xu, H.-J. & Chi, C.-Y. CO2 template synthesis of metal formates with a ReO3 net. Inorg. Chem. 46, 1612–1616 (2007).

    CAS  Google Scholar 

  222. Paredes-García, V. et al. Structural and magnetic characterization of the tridimensional network [Fe(HCO2)3nHCO2H. New J. Chem. 37, 2120 (2013).

    Google Scholar 

  223. Görne, A. L. et al. Ammonothermal synthesis, crystal structure, and properties of the ytterbium(II) and ytterbium(III) amides and the first two rare-earth-metal guanidinates, YbC(NH)3 and Yb(CN3H4)3. Inorg. Chem. 55, 6161–6168 (2016).

    Google Scholar 

  224. Hu, K.-L., Kurmoo, M., Wang, Z. & Gao, S. Metal–organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][MII(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium). Chem. Eur. J. 15, 12050–12064 (2009).

    CAS  Google Scholar 

  225. Evans, H. A. et al. Hydrogen bonding controls the structural evolution in perovskite-related hybrid platinum(IV) iodides. Inorg. Chem. 57, 10375–10382 (2018).

    CAS  Google Scholar 

  226. Müller-Buschbaum, K. & Mokaddem, Y. Three-dimensional networks of lanthanide 1,2,4-triazolates: [Yb(Tz)3] and [Eu2(Tz)5(TzH)2], the first 4f networks with complete nitrogen coordination. Chem. Commun. 2006, 2060–2062 (2006).

    Google Scholar 

  227. Rybak, J.-C., Rekawka, A. & Müller-Buschbaum, K. Utilizing a metal melt of gallium for the synthesis of the homoleptic 1,2,4-triazolate dense framework [Ga(Tz)3]. Z. Anorg. Allg. Chem. 639, 2382–2385 (2013).

    CAS  Google Scholar 

  228. Schweinefuß, M. E. et al. Indium imidazolate frameworks with differently distorted ReO3-type structures: syntheses, structures, phase transitions, and crystallization studies. Cryst. Growth Des. 14, 4664–4673 (2014).

    Google Scholar 

  229. Matsumoto, K. et al. A peanut-shaped polyaromatic capsule: solvent-dependent transformation and electronic properties of a non-contacted fullerene dimer. Angew. Chem. Inter. Ed. 58, 8463–8467 (2019).

    CAS  Google Scholar 

  230. Abrahams, B. F., Hoskins, B. F., Robson, R. & Slizys, D. A. α-Polonium coordination networks constructed from bis(imidazole) ligands. CrystEngComm 4, 478–482 (2002).

    CAS  Google Scholar 

  231. Eddaoudi, M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Google Scholar 

  232. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Google Scholar 

  233. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Google Scholar 

  234. Lock, N. et al. Elucidating negative thermal expansion in MOF-5. J. Phys. Chem. C 114, 16181–16186 (2010).

    CAS  Google Scholar 

  235. Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    CAS  Google Scholar 

  236. Kong, X. et al. Mapping of functional groups in metal–organic frameworks. Science 341, 882–885 (2013).

    CAS  Google Scholar 

  237. Perry, J. J. IV, Perman, J. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400 (2009).

    CAS  Google Scholar 

  238. Li, J.-R., Timmons, D. J. & Zhou, H.-C. Interconversion between molecular polyhedra and metal–organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009).

    CAS  Google Scholar 

  239. Biswas, S. et al. A cubic coordination framework constructed from benzobistrazolate ligands and zinc ions having selective gas sorption properties. Dalton Trans. 33, 6487–6495 (2009).

    Google Scholar 

  240. Go´mez-Gualdro´n, D. A., Wilmer, C. E., Farha, O. K., Hupp, J. T. & Snurr, R. Q. Exploring the limits of methane storage and delivery in nanoporous materials. J. Phys. Chem. C 118, 6941–6951 (2014).

    Google Scholar 

  241. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012).

    CAS  Google Scholar 

  242. He, J., Yu, J., Zhang, Y., Pan, Q. & Xu, R. Synthesis, structure, and luminescent property of a heterometallic metal–organic framework constructed from rod-shaped secondary building blocks. Inorg. Chem. 44, 9279–9282 (2005).

    CAS  Google Scholar 

  243. Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. Directing the breathing behavior of pillared-layered metal–organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134, 9464–9474 (2012).

    CAS  Google Scholar 

  244. Zhu, A.-X. et al. Coordination network that reversibly switches between two nonporous polymorphs and a high surface area porous phase. J. Am. Chem. Soc. 140, 15572–15576 (2018).

    CAS  Google Scholar 

  245. Tan, J. C. & Cheetham, A. K. Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chem. Soc. Rev. 40, 1059–1080 (2011).

    CAS  Google Scholar 

  246. Nowacki, W. Die Kristallstruktur von ScF3. Z. Kristallogr. Cryst. Mater. 101, 273–283 (1939).

    CAS  Google Scholar 

  247. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    CAS  Google Scholar 

  248. Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

    CAS  Google Scholar 

  249. Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

    CAS  Google Scholar 

  250. Gordon, E. E. et al. Structure and composition of the 200 K-superconducting phase of H2S at ultrahigh pressure: the perovskite (SH)(H3S+). Angew. Chem. Int. Ed. 55, 3682–3684 (2016).

    CAS  Google Scholar 

  251. Majumdar, A., Tse, J. S. & Yao, Y. Mechanism for the structural transformation to the modulated superconducting phase of compressed hydrogen sulfide. Sci. Rep. 9, 5023 (2019).

    Google Scholar 

  252. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Google Scholar 

  253. Rosi, N. L., Eddaoudi, M., Kim, J., O’Keeffe, M. & Yaghi, O. M. Advances in the chemistry of metal–organic frameworks. CrystEngComm 4, 401–404 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

H.A.E. thanks the National Research Council (USA) for financial support through the Research Associate Program. A.K.C. thanks the Ras al Khaimah Centre for Advanced Materials for financial support. H.A.E and R.S. at UC Santa Barbara were supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award number DE-SC-0012541.

Author information

Authors and Affiliations

Authors

Contributions

H.A.E. wrote most of the Inorganic systems section. A.K.C. mapped out the original concept of the article and wrote the Introduction and most of the Metal–organic frameworks section. Y.W. contributed significantly to the Metal–organic frameworks section. R.S. worked extensively on the figures and captions, and provided input throughout the review.

Corresponding authors

Correspondence to Hayden A. Evans or Anthony K. Cheetham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, H.A., Wu, Y., Seshadri, R. et al. Perovskite-related ReO3-type structures. Nat Rev Mater 5, 196–213 (2020). https://doi.org/10.1038/s41578-019-0160-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0160-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing