Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resistive switching materials for information processing

Abstract

The rapid increase in information in the big-data era calls for changes to information-processing paradigms, which, in turn, demand new circuit-building blocks to overcome the decreasing cost-effectiveness of transistor scaling and the intrinsic inefficiency of using transistors in non-von Neumann computing architectures. Accordingly, resistive switching materials (RSMs) based on different physical principles have emerged for memories that could enable energy-efficient and area-efficient in-memory computing. In this Review, we survey the four physical mechanisms that lead to such resistive switching: redox reactions, phase transitions, spin-polarized tunnelling and ferroelectric polarization. We discuss how these mechanisms equip RSMs with desirable properties for representation capability, switching speed and energy, reliability and device density. These properties are the key enablers of processing-in-memory platforms, with applications ranging from neuromorphic computing and general-purpose memcomputing to cybersecurity. Finally, we examine the device requirements for such systems based on RSMs and provide suggestions to address challenges in materials engineering, device optimization, system integration and algorithm design.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Redox RSMs.
Fig. 2: Phase-change RSMs.
Fig. 3: Magnetic-tunnelling RSMs.
Fig. 4: Ferroelectric RSMs.
Fig. 5: Properties of RSMs and application requirements.
Fig. 6: RSM neuromorphic computing applications.
Fig. 7: RSM memcomputing applications.
Fig. 8: RSM cybersecurity applications.

References

  1. 1.

    Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    Google Scholar 

  2. 2.

    Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).

    Google Scholar 

  3. 3.

    Chi, P. et al. PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. Proc. 43rd Int. Symp. Computer Architecture 27–39 (IEEE, 2016).

  4. 4.

    Pawlowski, J. T. Hybrid memory cube (HMC). 2011 IEEE Hot Chips 23 Symp. (HCS) 1–24 https://doi.org/10.1109/HOTCHIPS.2011.7477494 (IEEE, 2011).

  5. 5.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    CAS  Google Scholar 

  6. 6.

    Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    CAS  Google Scholar 

  7. 7.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    CAS  Google Scholar 

  8. 8.

    Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

    Google Scholar 

  9. 9.

    Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    CAS  Google Scholar 

  10. 10.

    Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    CAS  Google Scholar 

  11. 11.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    CAS  Google Scholar 

  12. 12.

    Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014).

    CAS  Google Scholar 

  13. 13.

    Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Google Scholar 

  14. 14.

    Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Google Scholar 

  15. 15.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    CAS  Google Scholar 

  16. 16.

    Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008).

    CAS  Google Scholar 

  17. 17.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    CAS  Google Scholar 

  18. 18.

    Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2016).

    Google Scholar 

  19. 19.

    Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Google Scholar 

  20. 20.

    Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M. & Burr, G. W. Recent progress in analog memory-based accelerators for deep learning. J. Phys. D. Appl. Phys. 51, 283001 (2018).

    Google Scholar 

  21. 21.

    Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).

    CAS  Google Scholar 

  22. 22.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Google Scholar 

  23. 23.

    Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

    CAS  Google Scholar 

  24. 24.

    Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    CAS  Google Scholar 

  25. 25.

    Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12, 784–789 (2017). The first large-scale redox-RSM crossbar implementation of the locally competitive algorithm for sparse coding.

    CAS  Google Scholar 

  26. 26.

    Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Google Scholar 

  27. 27.

    Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018). The first large-scale phase-change RSM-based linear system solver.

    Google Scholar 

  28. 28.

    Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).

    Google Scholar 

  29. 29.

    Nili, H. et al. Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nat. Electron. 1, 197–202 (2018). The first large-scale redox-RSM-crossbar-based PUF using variations in IV nonlinearity.

    Google Scholar 

  30. 30.

    Jiang, H. et al. A provable key destruction scheme based on memristive crossbar arrays. Nat. Electron. 1, 548–554 (2018).

    Google Scholar 

  31. 31.

    Hickmott, T. W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

    CAS  Google Scholar 

  32. 32.

    Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008).

    CAS  Google Scholar 

  33. 33.

    Akinaga, H. & Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237–2251 (2010).

    CAS  Google Scholar 

  34. 34.

    Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

    Google Scholar 

  35. 35.

    Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

    Google Scholar 

  36. 36.

    Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

    CAS  Google Scholar 

  37. 37.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    CAS  Google Scholar 

  38. 38.

    Goldfarb, I. et al. Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior. Appl. Phys. A 107, 1–11 (2012).

    CAS  Google Scholar 

  39. 39.

    Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006).

    CAS  Google Scholar 

  40. 40.

    Kwon, D.-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010).

    CAS  Google Scholar 

  41. 41.

    Yang, J. J. et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).

    Google Scholar 

  42. 42.

    Strachan, J. P. et al. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010).

    CAS  Google Scholar 

  43. 43.

    Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nat. Commun. 7, 12398 (2016).

    CAS  Google Scholar 

  44. 44.

    Nallagatla, V. R. et al. Topotactic phase transition driving memristive behavior. Adv. Mater. 31, 1903391 (2019).

    CAS  Google Scholar 

  45. 45.

    Kumar, S. et al. Conduction channel formation and dissolution due to oxygen thermophoresis/diffusion in hafnium oxide memristors. ACS Nano 10, 11205–11210 (2016).

    CAS  Google Scholar 

  46. 46.

    Kumar, S. et al. Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors. Adv. Mater. 28, 2772–2776 (2016).

    CAS  Google Scholar 

  47. 47.

    Li, C. et al. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 29, 1602976 (2017).

    Google Scholar 

  48. 48.

    Yang, Y. et al. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017).

    Google Scholar 

  49. 49.

    Cooper, D. et al. Anomalous resistance hysteresis in oxide ReRAM: oxygen evolution and reincorporation revealed by in situ TEM. Adv. Mater. 29, 1700212 (2017).

    Google Scholar 

  50. 50.

    Du, H. et al. Nanosized conducting filaments formed by atomic-scale defects in redox-based resistive switching memories. Chem. Mater. 29, 3164–3173 (2017).

    CAS  Google Scholar 

  51. 51.

    Park, G.-S. et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure. Nat. Commun. 4, 2382 (2013).

    Google Scholar 

  52. 52.

    Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011).

    CAS  Google Scholar 

  53. 53.

    Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014).

    CAS  Google Scholar 

  54. 54.

    Hirose, Y. & Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3films. J. Appl. Phys. 47, 2767–2772 (1976).

    CAS  Google Scholar 

  55. 55.

    Guo, X., Schindler, C., Menzel, S. & Waser, R. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007).

    Google Scholar 

  56. 56.

    Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    CAS  Google Scholar 

  57. 57.

    Xu, Z., Bando, Y., Wang, W., Bai, X. & Golberg, D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010).

    CAS  Google Scholar 

  58. 58.

    Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012).

    CAS  Google Scholar 

  59. 59.

    Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

    Google Scholar 

  60. 60.

    Valov, I. et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11, 530–535 (2012).

    CAS  Google Scholar 

  61. 61.

    Hubbard, W. A. et al. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15, 3983–3987 (2015).

    CAS  Google Scholar 

  62. 62.

    Yuan, F. et al. Real-time observation of the electrode-size-dependent evolution dynamics of the conducting filaments in a SiO2 layer. ACS Nano 11, 4097–4104 (2017).

    CAS  Google Scholar 

  63. 63.

    Wang, W. et al. Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nat. Commun. 10, 81 (2019).

    CAS  Google Scholar 

  64. 64.

    Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).

    CAS  Google Scholar 

  65. 65.

    Onofrio, N., Guzman, D. & Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14, 440–446 (2015).

    CAS  Google Scholar 

  66. 66.

    Tian, X. et al. Bipolar electrochemical mechanism for mass transfer in nanoionic resistive memories. Adv. Mater. 26, 3649–3654 (2014).

    CAS  Google Scholar 

  67. 67.

    Chae, B. G. et al. Nanometer-scale phase transformation determines threshold and memory switching mechanism. Adv. Mater. 29, 1701752 (2017).

    Google Scholar 

  68. 68.

    Wedig, A. et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11, 67–74 (2016).

    CAS  Google Scholar 

  69. 69.

    Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88, 232112 (2006).

    Google Scholar 

  70. 70.

    Kim, K. M. et al. A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22, 254010 (2011).

    Google Scholar 

  71. 71.

    Baikalov, A. et al. Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83, 957–959 (2003).

    CAS  Google Scholar 

  72. 72.

    Herpers, A. et al. Spectroscopic proof of the correlation between redox-state and charge-carrier transport at the interface of resistively switching Ti/PCMO devices. Adv. Mater. 26, 2730–2735 (2014).

    CAS  Google Scholar 

  73. 73.

    Baek, K. et al. In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9, 582–593 (2017).

    CAS  Google Scholar 

  74. 74.

    Wang, Y. et al. Mott-transition-based RRAM. Mater. Today 28, 63–80 (2019).

    Google Scholar 

  75. 75.

    Mott, N. F. & Davis, E. A. Electronic Processes in Non-Crystalline Materials 2nd edn (Clarendon Press, 2012).

  76. 76.

    Szot, K., Bihlmayer, G. & Speier, W. Nature of the resistive switching phenomena in TiO2 and SrTiO3: origin of the reversible insulator–metal transition. Solid State Phys. 65, 353–559 (2014).

    Google Scholar 

  77. 77.

    Raoux, S. et al. Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52, 465–479 (2008).

    CAS  Google Scholar 

  78. 78.

    Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010).

    CAS  Google Scholar 

  79. 79.

    Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

    Google Scholar 

  80. 80.

    Waldecker, L. et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 14, 991–995 (2015).

    CAS  Google Scholar 

  81. 81.

    Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Collective structural relaxation in phase-change memory devices. Adv. Electron. Mater. 4, 1700627 (2018).

    Google Scholar 

  82. 82.

    Sebastian, A., Le Gallo, M. & Krebs, D. Crystal growth within a phase change memory cell. Nat. Commun. 5, 4314 (2014).

    CAS  Google Scholar 

  83. 83.

    Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).

    Google Scholar 

  84. 84.

    Nirschl, T. et al. Write strategies for 2 and 4-bit multi-level phase-change memory. 2007 IEEE Int. Electron Devices Meeting 461–464 (IEEE, 2007).

  85. 85.

    Papandreou, N. et al. Programming algorithms for multilevel phase-change memory. 2011 IEEE Int. Symp. Circuits and Systems (ISCAS) 329-332 (IEEE, 2011).

  86. 86.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015). The first in situ training of a large-scale, fully connected ANN based on a phase-change RSM for MNIST classification.

    Google Scholar 

  87. 87.

    Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nat. Commun. 8, 1115 (2017).

    Google Scholar 

  88. 88.

    Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

    Google Scholar 

  89. 89.

    Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011).

    CAS  Google Scholar 

  90. 90.

    Zhang, W. et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012).

    CAS  Google Scholar 

  91. 91.

    Zhang, W. et al. Density-functional theory guided advances in phase-change materials and memories. MRS Bull. 40, 856–869 (2015).

    Google Scholar 

  92. 92.

    Nardone, M., Simon, M., Karpov, I. V. & Karpov, V. G. Electrical conduction in chalcogenide glasses of phase change memory. J. Appl. Phys. 112, 071101 (2012).

    Google Scholar 

  93. 93.

    Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C. & Raty, J. Y. Incipient metals: functional materials with a unique bonding mechanism. Adv. Mater. 30, 1803777 (2018).

    Google Scholar 

  94. 94.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    CAS  Google Scholar 

  95. 95.

    Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    CAS  Google Scholar 

  96. 96.

    Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    CAS  Google Scholar 

  97. 97.

    Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  Google Scholar 

  98. 98.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    CAS  Google Scholar 

  99. 99.

    Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    CAS  Google Scholar 

  100. 100.

    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    CAS  Google Scholar 

  101. 101.

    Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    CAS  Google Scholar 

  102. 102.

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Google Scholar 

  103. 103.

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Google Scholar 

  104. 104.

    Golonzka, O. et al. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. 2018 IEEE Int. Electron Devices Meeting (IEDM) 18-1 (2018).

  105. 105.

    Lee, K. et al. 22-nm FD-SOI embedded MRAM technology for low-power automotive-grade-l MCU applications. 2018 IEEE Int. Electron Devices Meeting (IEDM) 27-1 (2018).

  106. 106.

    Song, Y. J. et al. Demonstration of highly manufacturable STT-MRAM embedded in 28nm logic. 2018 IEEE Int. Electron Devices Meeting (IEDM) 18-2 (2018).

  107. 107.

    Duan, C.-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

    Google Scholar 

  108. 108.

    Grezes, C. et al. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108, 012403 (2016).

    Google Scholar 

  109. 109.

    Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2011).

    Google Scholar 

  110. 110.

    Nozaki, T. et al. Large voltage-induced changes in the perpendicular magnetic anisotropy of an MgO-based tunnel junction with an ultrathin Fe layer. Phys. Rev. Appl. 5, 044006 (2016).

    Google Scholar 

  111. 111.

    Li, X. et al. Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB| MgO interface. Appl. Phys. Lett. 110, 052401 (2017).

    Google Scholar 

  112. 112.

    Liu, T., Zhang, Y., Cai, J. W. & Pan, H. Y. Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Sci. Rep. 4, 5895 (2014).

    CAS  Google Scholar 

  113. 113.

    Wang, M. et al. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nat. Commun. 9, 671 (2018).

    Google Scholar 

  114. 114.

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    CAS  Google Scholar 

  115. 115.

    Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    CAS  Google Scholar 

  116. 116.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Google Scholar 

  117. 117.

    Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Google Scholar 

  118. 118.

    Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

    CAS  Google Scholar 

  119. 119.

    Hoffmann, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).

    CAS  Google Scholar 

  120. 120.

    Scott, J. F. Ferroelectric Memories Vol. 3 (Springer, 2013).

  121. 121.

    McAdams, H. P. et al. A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid-State Circuits 39, 667–677 (2004).

    Google Scholar 

  122. 122.

    Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Google Scholar 

  123. 123.

    Müller, J. et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).

    Google Scholar 

  124. 124.

    Mueller, S. et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).

    CAS  Google Scholar 

  125. 125.

    Park, M. H. et al. Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. Appl. Phys. Lett. 105, 072902 (2014).

    Google Scholar 

  126. 126.

    Esaki, A. L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 114–116 (1971).

    Google Scholar 

  127. 127.

    Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    CAS  Google Scholar 

  128. 128.

    Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

    CAS  Google Scholar 

  129. 129.

    Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    CAS  Google Scholar 

  130. 130.

    Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).

    Google Scholar 

  131. 131.

    Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018).

    Google Scholar 

  132. 132.

    Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018).

    CAS  Google Scholar 

  133. 133.

    Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    CAS  Google Scholar 

  134. 134.

    Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal-oxide interfaces. Nat. Mater. 8, 392–397 (2009).

    CAS  Google Scholar 

  135. 135.

    Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    CAS  Google Scholar 

  136. 136.

    Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).

    CAS  Google Scholar 

  137. 137.

    Palai, R. et al. β phase and γβ metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008).

    Google Scholar 

  138. 138.

    Jiang, A.-Q., Lee, H. J., Hwang, C. S. & Tang, T.-A. Resolving the Landauer paradox in ferroelectric switching by high-field charge injection. Phys. Rev. B 80, 024119 (2009).

    Google Scholar 

  139. 139.

    Ducharme, S. et al. Intrinsic ferroelectric coercive field. Phys. Rev. Lett. 84, 175–178 (2000).

    CAS  Google Scholar 

  140. 140.

    Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).

    CAS  Google Scholar 

  141. 141.

    Jia, C.-L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

    CAS  Google Scholar 

  142. 142.

    Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    CAS  Google Scholar 

  143. 143.

    Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2011).

    Google Scholar 

  144. 144.

    Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    CAS  Google Scholar 

  145. 145.

    Yoong, H. Y. et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing. Adv. Funct. Mater. 28, 1806037 (2018).

    Google Scholar 

  146. 146.

    Chen, L. et al. Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications. Nanoscale 10, 15826–15833 (2018).

    CAS  Google Scholar 

  147. 147.

    Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first principles. Nature 534, 360–363 (2016).

    Google Scholar 

  148. 148.

    Meyer, R., Contreras, J. R., Petraru, A. & Kohlstedt, H. On a novel ferro resistive random access memory (FRRAM): basic model and first experiments. Integr. Ferroelectr. 64, 77–88 (2004).

    CAS  Google Scholar 

  149. 149.

    Black, C. T. & Welser, J. J. Electric-field penetration into metals: consequences for high-dielectric-constant capacitors. IEEE Trans. Electron Devices 46, 776–780 (1999).

    CAS  Google Scholar 

  150. 150.

    Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).

    CAS  Google Scholar 

  151. 151.

    Yamada, H. et al. Ferroelectric control of a Mott insulator. Sci. Rep. 3, 2834 (2013).

    Google Scholar 

  152. 152.

    Kohlstedt, H., Pertsev, N., Contreras, J. R. & Waser, R. Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

    Google Scholar 

  153. 153.

    Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).

    CAS  Google Scholar 

  154. 154.

    Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366, 210–215 (2019).

    CAS  Google Scholar 

  155. 155.

    Shiota, Y. et al. Reduction in write error rate of voltage-driven dynamic magnetization switching by improving thermal stability factor. Appl. Phys. Lett. 111, 022408 (2017).

    Google Scholar 

  156. 156.

    Cheng, C.-H., Tsai, C., Chin, A. & Yeh, F. High performance ultra-low energy RRAM with good retention and endurance. 2010 Int. Electron Devices Meeting 19-4 (IEEE, 2010).

  157. 157.

    Strachan, J. P., Torrezan, A. C., Medeiros-Ribeiro, G. & Williams, R. S. Measuring the switching dynamics and energy efficiency of tantalum oxide memristors. Nanotechnology 22, 505402 (2011).

    Google Scholar 

  158. 158.

    Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

    CAS  Google Scholar 

  159. 159.

    Liang, J., Jeyasingh, R. G. D., Chen, H.-Y. & Wong, H.-S. P. A 1.4 µA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application. 2011 Symp. VLSI Technology-Digest of Technical Papers 100–101 (IEEE, 2011).

  160. 160.

    Choi, B. J. et al. High-speed and low-energy nitride memristors. Adv. Funct. Mater. 26, 5290–5296 (2016).

    CAS  Google Scholar 

  161. 161.

    Rao, F. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358, 1423–1427 (2017).

    CAS  Google Scholar 

  162. 162.

    Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    CAS  Google Scholar 

  163. 163.

    Thomas, L. et al. STT-MRAM devices with low damping and moment optimized for LLC applications at 0x nodes. 2018 IEEE Int. Electron Devices Meeting (IEDM) 27.3.1–27.3.4 (2018).

  164. 164.

    Zhao, H. et al. Sub-200 ps spin transfer torque switching in in-plane magnetic tunnel junctions with interface perpendicular anisotropy. J. Phys. D. 45, 025001 (2011).

    Google Scholar 

  165. 165.

    Jiang, H. et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016).

    Google Scholar 

  166. 166.

    Navarro, G. et al. Trade-off between SET and data retention performance thanks to innovative materials for phase-change memory. 2013 IEEE Int. Electron Devices Meeting 21-5 (IEEE, 2013).

  167. 167.

    Lee, Y. K. et al. Embedded STT-MRAM in 28-nm FDSOI logic process for industrial MCU/IoT application. 2018 IEEE Symp. VLSI Technology 181–182 (2018).

  168. 168.

    Yamada, H. et al. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7, 5385–5390 (2013).

    CAS  Google Scholar 

  169. 169.

    Chen, B. et al. Physical mechanisms of endurance degradation in TMO-RRAM. 2011 Int. Electron Devices Meeting 12-3 (IEEE, 2011).

  170. 170.

    Lee, M. J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures. Nat. Mater. 10, 625–630 (2011).

    CAS  Google Scholar 

  171. 171.

    Padilla, A. et al. Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices. J. Appl. Phys. 110, 054501 (2011).

    Google Scholar 

  172. 172.

    Raoux, S. et al. Phase change materials and their application to random access memory technology. Microelectron. Eng. 85, 2330–2333 (2008).

    CAS  Google Scholar 

  173. 173.

    Pedersen, T. P. L. et al. Mechanical stresses upon crystallization in phase change materials. Appl. Phys. Lett. 79, 3597–3599 (2001).

    CAS  Google Scholar 

  174. 174.

    Kim, I. et al. High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications. 2010 Symp. VLSI Technology 203–204 (IEEE, 2010).

  175. 175.

    Sato, H. et al. 14ns write speed 128Mb density embedded STT-MRAM with endurance>1010 and 10yrs retention@85°C using novel low damage MTJ integration process. 2018 IEEE Int. Electron Devices Meeting (IEDM) 27-2 (2018).

  176. 176.

    Shiokawa, Y. et al. High write endurance up to 1012 cycles in a spin current-type magnetic memory array. AIP Adv. 9, 035236 (2019).

    Google Scholar 

  177. 177.

    Boyn, S. et al. High-performance ferroelectric memory based on fully patterned tunnel junctions. Appl. Phys. Lett. 104, 052909 (2014).

    Google Scholar 

  178. 178.

    Govoreanu, B. et al. 10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. 2011 Int. Electron Devices Meeting 31-6 (IEEE, 2011).

  179. 179.

    Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14, 35–39 (2019).

    CAS  Google Scholar 

  180. 180.

    Golonzka, O. et al. Non-volatile RRAM embedded into 22FFL FinFET technology. 2019 Symp. VLSI Technology T230–T231 (2019).

  181. 181.

    Choi, Y. et al. A 20nm 1.8 V 8Gb PRAM with 40MB/s program bandwidth. 2012 IEEE Int. Solid-State Circuits Conf. 46–48 (IEEE, 2012).

  182. 182.

    Luo, Q. et al. 8-Layers 3D vertical RRAM with excellent scalability towards storage class memory applications. 2017 IEEE Int. Electron Devices Meeting (IEDM) 2–7 (IEEE, 2017).

  183. 183.

    Yoon, K. J., Kim, Y. & Hwang, C. S. What will come after V-NAND—vertical resistive switching memory? Adv. Electron. Mater. 5, 1800914 (2019).

    Google Scholar 

  184. 184.

    Park, C. et al. Low RA magnetic tunnel junction arrays in conjunction with low switching current and high breakdown voltage for STT-MRAM at 10 nm and beyond. 2018 IEEE Symp. VLSI Technology 185–186 (2018).

  185. 185.

    Sakhare, S. et al. Enablement of STT-MRAM as last level cache for the high performance computing domain at the 5nm node. 2018 IEEE Int. Electron Devices Meeting (IEDM) 18-3 (2018).

  186. 186.

    Gao, X. S., Liu, J. M., Au, K. & Dai, J. Y. Nanoscale ferroelectric tunnel junctions based on ultrathin BaTiO3 film and Ag nanoelectrodes. Appl. Phys. Lett. 101, 142905 (2012).

    Google Scholar 

  187. 187.

    Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    CAS  Google Scholar 

  188. 188.

    Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

    CAS  Google Scholar 

  189. 189.

    Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H. S. P. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Elect. Dev. 58, 2729–2737 (2011).

    CAS  Google Scholar 

  190. 190.

    Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H.-S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).

    CAS  Google Scholar 

  191. 191.

    Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

    CAS  Google Scholar 

  192. 192.

    Vincent, A. F. et al. Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems. IEEE Trans. Biomed. Circuits Syst. 9, 166–174 (2015).

    Google Scholar 

  193. 193.

    Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 25, 4290–4299 (2015).

    CAS  Google Scholar 

  194. 194.

    Suri, M. et al. Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction. 2011 IEEE Int. Electron Devices Meeting (IEDM) 4-4 (IEEE, 2011).

  195. 195.

    Srinivasan, G., Sengupta, A. & Roy, K. Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning. Sci. Rep. 6, 29545 (2016).

    CAS  Google Scholar 

  196. 196.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    CAS  Google Scholar 

  197. 197.

    Lee, D. et al. Various threshold switching devices for integrate and fire neuron applications. Adv. Electron. Mater. 5, 1800866 (2019).

    Google Scholar 

  198. 198.

    Cai, J. et al. Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junction. Phys. Rev. Appl. 11, 034015 (2019).

    CAS  Google Scholar 

  199. 199.

    Wu, M.-H. et al. Extremely compact integrate-and-fire STT-MRAM neuron: a pathway toward all-spin artificial deep neural network. 2019 Symp. VLSI Technology T34-T35 (IEEE, 2019).

  200. 200.

    Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

    Google Scholar 

  201. 201.

    Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

    CAS  Google Scholar 

  202. 202.

    Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    CAS  Google Scholar 

  203. 203.

    Lim, H. et al. Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. Nanoscale 8, 9629–9640 (2016).

    CAS  Google Scholar 

  204. 204.

    Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    CAS  Google Scholar 

  205. 205.

    Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Google Scholar 

  206. 206.

    Hu, M. et al. Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

    Google Scholar 

  207. 207.

    Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013).

    Google Scholar 

  208. 208.

    Park, S. et al. Electronic system with memristive synapses for pattern recognition. Sci. Rep. 5, 10123 (2015).

    CAS  Google Scholar 

  209. 209.

    Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

    Google Scholar 

  210. 210.

    Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).

    CAS  Google Scholar 

  211. 211.

    Mochida, R. et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neural-network processor with cell current controlled writing and flexible network architecture. 2018 IEEE Symp. VLSI Technology 175-176 (IEEE, 2018).

  212. 212.

    Cai, F. et al. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2, 290–299 (2019).

    CAS  Google Scholar 

  213. 213.

    Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018).

    Google Scholar 

  214. 214.

    Yu, S. et al. Binary neural network with 16 Mb RRAM macro chip for classification and online training. 2016 IEEE Int. Electron Devices Meeting (IEDM) 16-2 (IEEE, 2016).

  215. 215.

    Sanger, T. D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2, 459–473 (1989).

    Google Scholar 

  216. 216.

    Choi, S., Shin, J. H., Lee, J., Sheridan, P. & Lu, W. D. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano Lett. 17, 3113–3118 (2017).

    CAS  Google Scholar 

  217. 217.

    Wang, Z. et al. Reinforcement learning with analogue memristor arrays. Nat. Electron. 2, 115–124 (2019).

    Google Scholar 

  218. 218.

    Berdan, R. et al. In-memory reinforcement learning with moderately-stochastic conductance switching of ferroelectric tunnel junctions. 2019 Symp. VLSI Technology T22-T23 (2019).

  219. 219.

    Lin, Y. et al. Demonstration of generative adversarial network by intrinsic random noises of analog RRAM devices. 2018 IEEE Int. Electron Devices Meeting (IEDM) 3–4 (IEEE, 2018).

  220. 220.

    Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019).

    Google Scholar 

  221. 221.

    Serb, A. et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).

    CAS  Google Scholar 

  222. 222.

    Shi, Y. et al. Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays. Nat. Commun. 9, 5312 (2018).

    CAS  Google Scholar 

  223. 223.

    Kim, S. et al. NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning. 2015 IEEE Int. Electron Devices Meeting (IEDM) 17–1 (IEEE, 2015).

  224. 224.

    Pantazi, A., Wozniak, S., Tuma, T. & Eleftheriou, E. All-memristive neuromorphic computing with level-tuned neurons. Nanotechnology 27, 355205 (2016).

    Google Scholar 

  225. 225.

    Wang, W. et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci. Adv. 4, eaat4752 (2018).

    CAS  Google Scholar 

  226. 226.

    Wang, Z. et al. In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell. 1, 434–442 (2019). The first in situ training of a large-scale redox-RSM-based convolutional ANN and convolutional recurrent ANN for pattern and video classifications, respectively.

    Google Scholar 

  227. 227.

    Chen, W.-H. et al. CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors. Nat. Electron. 2, 420–428 (2019).

    CAS  Google Scholar 

  228. 228.

    Xue, C.-X. et al. A 1Mb multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC computing time for CNN based AI edge processors. 2019 IEEE Int. Solid-State Circuits Conf. (ISSCC). 388–390 (IEEE, 2019). One of the highest energy efficiencies reported to date for a convolutional ANN implemented by an integrated chip of redox-RSM crossbars and peripheral circuits for CIFAR-10 classification.

  229. 229.

    Li, C. et al. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019). The first in situ training of a large-scale redox-RSM-based recurrent ANN for walking gait classification.

    Google Scholar 

  230. 230.

    Tsai, H. et al. Inference of long-short term memory networks at software-equivalent accuracy using 2.5 M analog phase change memory devices. 2019 Symp. VLSI Technology. T82-T83 (2019).

  231. 231.

    Hu, S. G. et al. Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat. Commun. 6, 7522 (2015).

    CAS  Google Scholar 

  232. 232.

    Zhou, Y. et al. Associative memory for image recovery with a high-performance memristor array. Adv. Funct. Mater. 29, 1900155 (2019).

    Google Scholar 

  233. 233.

    Yan, B. et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation. 2019 Symp. VLSI Technology T86–T87 (2019). The first large-scale redox-RSM-based SNN for CIFAR-10 classification.

  234. 234.

    Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Google Scholar 

  235. 235.

    Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Google Scholar 

  236. 236.

    Midya, R. et al. Reservoir computing using diffusive memristors. Adv. Intell. Syst. 1, 1900084 (2019).

    Google Scholar 

  237. 237.

    Sun, Z. et al. Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl Acad. Sci. USA 116, 4123–4128 (2019).

    CAS  Google Scholar 

  238. 238.

    Jeong, Y., Lee, J., Moon, J., Shin, J. H. & Lu, W. D. K-means data clustering with memristor networks. Nano Lett. 18, 4447–4453 (2018).

    CAS  Google Scholar 

  239. 239.

    Shin, J. H., Jeong, Y. J., Zidan, M. A., Wang, Q. & Lu, W. D. Hardware acceleration of simulated annealing of spin glass by RRAM crossbar array. 2018 IEEE Int. Electron Devices Meeting (IEDM) 3-3 (IEEE, 2018).

  240. 240.

    Cassinerio, M., Ciocchini, N. & Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 25, 5975–5980 (2013).

    CAS  Google Scholar 

  241. 241.

    Huang, P. et al. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv. Mater. 28, 9758–9764 (2016).

    CAS  Google Scholar 

  242. 242.

    Sun, Z., Ambrosi, E., Bricalli, A. & Ielmini, D. Logic computing with stateful neural networks of resistive switches. Adv. Mater. 30, 1802554 (2018).

    Google Scholar 

  243. 243.

    Liu, R., Wu, H., Pang, Y., Qian, H. & Yu, S. A highly reliable and tamper-resistant RRAM PUF: Design and experimental validation. 2016 IEEE Int. Symp. Hardware Oriented Security Trust (HOST) 13–18 (IEEE, 2016).

  244. 244.

    Zhang, R. et al. Nanoscale diffusive memristor crossbars as physical unclonable functions. Nanoscale 10, 2721–2726 (2018).

    CAS  Google Scholar 

  245. 245.

    Mazady, A., Rahman, M. T., Forte, D. & Anwar, M. Memristor PUF—a security primitive: theory and experiment. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 222–229 (2015).

    Google Scholar 

  246. 246.

    Gao, L., Chen, P.-Y., Liu, R. & Yu, S. Physical unclonable function exploiting sneak paths in resistive cross-point array. IEEE Trans. Electron Devices 63, 3109–3115 (2016).

    Google Scholar 

  247. 247.

    Kim, J. et al. A physical unclonable function with redox-based nanoionic resistive memory. IEEE Trans. Inf. Forensics Secur. 13, 437–448 (2018).

    Google Scholar 

  248. 248.

    Huang, C.-Y., Shen, W. C., Tseng, Y.-H., King, Y.-C. & Lin, C.-J. A contact-resistive random-access-memory-based true random number generator. IEEE Electron Device Lett. 33, 1108–1110 (2012).

    CAS  Google Scholar 

  249. 249.

    Balatti, S., Ambrogio, S., Wang, Z. & Ielmini, D. True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 214–221 (2015).

    Google Scholar 

  250. 250.

    Balatti, S. et al. Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63, 2029–2035 (2016).

    Google Scholar 

  251. 251.

    Gallo, M. L., Tuma, T., Zipoli, F., Sebastian, A. & Eleftheriou, E. Inherent stochasticity in phase-change memory devices. 2016 46th European Solid-State Device Research Conf. (ESSDERC) 373–376 (2016).

  252. 252.

    Jiang, H. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).

    Google Scholar 

  253. 253.

    Zalden, P. et al. Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. Science 364, 1062–1067 (2019).

    CAS  Google Scholar 

  254. 254.

    Milano, G. et al. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Nat. Commun. 9, 5151 (2018).

    Google Scholar 

  255. 255.

    Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2018).

    Google Scholar 

  256. 256.

    Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

    CAS  Google Scholar 

  257. 257.

    Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).

    Google Scholar 

  258. 258.

    Cobas, E., Friedman, A. L., van’t Erve, O. M., Robinson, J. T. & Jonker, B. T. Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett. 12, 3000–3004 (2012).

    CAS  Google Scholar 

  259. 259.

    Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    CAS  Google Scholar 

  260. 260.

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    CAS  Google Scholar 

  261. 261.

    Fan, Y. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 11, 352–359 (2016).

    CAS  Google Scholar 

  262. 262.

    Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Google Scholar 

  263. 263.

    Mahendra, D. C. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1−x) films. Nat. Mater. 17, 800–807 (2018).

    Google Scholar 

  264. 264.

    Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    CAS  Google Scholar 

  265. 265.

    Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. 2017 IEEE Int. Electron Devices Meeting (IEDM) 6-2 (IEEE, 2017).

  266. 266.

    Danesh, C. D. et al. Synaptic resistors for concurrent inference and learning with high energy efficiency. Adv. Mater. 31, 1808032 (2019).

    Google Scholar 

  267. 267.

    van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Google Scholar 

  268. 268.

    Wang, Z. et al. Capacitive neural network with neuro-transistors. Nat. Commun. 9, 3208 (2018).

    Google Scholar 

  269. 269.

    Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    CAS  Google Scholar 

  270. 270.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

    Google Scholar 

  271. 271.

    Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    CAS  Google Scholar 

  272. 272.

    Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    CAS  Google Scholar 

  273. 273.

    Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    CAS  Google Scholar 

  274. 274.

    Lau, Y.-C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758–762 (2016).

    CAS  Google Scholar 

  275. 275.

    Zhang, X. G. & Butler, W. H. Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions. Phys. Rev. B 70, 172407 (2004).

    Google Scholar 

  276. 276.

    Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Google Scholar 

  277. 277.

    Schleicher, F. et al. Localized states in advanced dielectrics from the vantage of spin-and symmetry-polarized tunnelling across MgO. Nat. Commun. 5, 4547 (2014).

    CAS  Google Scholar 

  278. 278.

    Bean, J. J. & McKenna, K. P. Stability of point defects near MgO grain boundaries in FeCoB/MgO/FeCoB magnetic tunnel junctions. Phys. Rev. Mater. 2, 125002 (2018).

    CAS  Google Scholar 

  279. 279.

    Dong, Q. et al. A 1Mb 28nm STT-MRAM with 2.8 ns read access time at 1.2 V VDD using single-cap offset-cancelled sense amplifier and in-situ self-write-termination. 2018 IEEE Int. Solid-State Circuits Conf. (ISSCC) 480–482 (2018).

  280. 280.

    Grezes, C. et al. Write error rate and read disturbance in electric-field-controlled magnetic random-access memory. IEEE Magn. Lett. 8, 3102705 (2017).

    Google Scholar 

  281. 281.

    Kanai, S. et al. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104, 212406 (2014).

    Google Scholar 

  282. 282.

    Van Beek, S. et al. Impact of self-heating on reliability predictions in STT-MRAM. 2018 IEEE Int. Electron Devices Meeting (IEDM) 25-2 (2018).

  283. 283.

    Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2016).

    Google Scholar 

  284. 284.

    Tang, J. et al. ECRAM as scalable synaptic cell for high-speed, low-power neuromorphic computing. 2018 IEEE Int. Electron Devices Meeting (IEDM) 13–1 (IEEE, 2018).

  285. 285.

    Chen, P.-Y. et al. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. Proc. IEEE/ACM Int. Conf. Computer-Aided Design 194–199 (IEEE Press, 2015).

  286. 286.

    Kim, G. H. et al. 32 × 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory. Adv. Funct. Mater. 23, 1440–1449 (2013).

    CAS  Google Scholar 

  287. 287.

    Yoon, K. J. et al. Double-layer-stacked one diode-one resistive switching memory crossbar array with an extremely high rectification ratio of 109. Adv. Electron. Mater. 3, 1700152 (2017).

    Google Scholar 

  288. 288.

    Choi, B. J. et al. Trilayer tunnel selectors for memristor memory cells. Adv. Mater. 28, 356–362 (2016).

    CAS  Google Scholar 

  289. 289.

    Lee, M. J. et al. A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat. Commun. 4, 2629 (2013).

    Google Scholar 

  290. 290.

    Cha, E. et al. Nanoscale (~10nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode. 2013 IEEE Int. Electron Devices Meeting (IEDM) 10–5 (2013).

  291. 291.

    Luo, Q. et al. Nb1−xO2 based universal selector with ultra-high endurance (>1012), high speed (10ns) and excellent Vth stability. 2019 Symp. VLSI Technology T236-T237 (2019).

  292. 292.

    Virwani, K. et al. Sub-30nm scaling and high-speed operation of fully-confined access-devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials. 2012 IEEE Int. Electron Devices Meeting (IEDM) 2–7 (2012).

  293. 293.

    Midya, R. et al. Anatomy of Ag/hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017).

    Google Scholar 

  294. 294.

    Sun, L. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019).

    Google Scholar 

  295. 295.

    Linn, E., Rosezin, R., Kugeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010).

    CAS  Google Scholar 

  296. 296.

    Yang, Y., Mathew, J., Pradhan, D. K., Ottavi, M. & Pontarelli, S. Complementary resistive switch based stateful logic operations using material implication. 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) 185 (IEEE, 2014).

  297. 297.

    Kataeva, I. et al. Towards the development of analog neuromorphic chip prototype with 2.4 M integrated memristors. 2019 IEEE Int. Symp. Circuits and Systems (ISCAS) 1–5 (IEEE, 2019).

  298. 298.

    Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019).

    CAS  Google Scholar 

  299. 299.

    Cheng, H. et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. 2011 Int. Electron Devices Meeting 3–4 (IEEE, 2011).

  300. 300.

    Kim, Y.-B. et al. Bi-layered RRAM with unlimited endurance and extremely uniform switching. 2011 Symp. VLSI Technology-Digest of Technical Papers 52–53 (IEEE, 2011).

Download references

Acknowledgements

The authors thank B. Gao, W. Zhang, J. Tang and S. Saveliev for fruitful discussions on the mechanisms of RSMs and thank Y. Peng, W. Song and X. Zhang for helpful discussion on RSM-based computing circuits. Z.W., Q.X. and J.J.Y. thank the US Air Force Office of Scientific Research (AFOSR) for support through the MURI program under contract number FA9550-19-1-0213.

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion of content and reviewed and edited the manuscript prior to submission. Z.W. and J.J.Y. researched data for the article. Z.W., G.W.B., C.S.H., K.L.W., Q.X. and J.J.Y. wrote the article.

Corresponding authors

Correspondence to Qiangfei Xia or J. Joshua Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, H., Burr, G.W. et al. Resistive switching materials for information processing. Nat Rev Mater 5, 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing