Resistive switching materials for information processing

Abstract

The rapid increase in information in the big-data era calls for changes to information-processing paradigms, which, in turn, demand new circuit-building blocks to overcome the decreasing cost-effectiveness of transistor scaling and the intrinsic inefficiency of using transistors in non-von Neumann computing architectures. Accordingly, resistive switching materials (RSMs) based on different physical principles have emerged for memories that could enable energy-efficient and area-efficient in-memory computing. In this Review, we survey the four physical mechanisms that lead to such resistive switching: redox reactions, phase transitions, spin-polarized tunnelling and ferroelectric polarization. We discuss how these mechanisms equip RSMs with desirable properties for representation capability, switching speed and energy, reliability and device density. These properties are the key enablers of processing-in-memory platforms, with applications ranging from neuromorphic computing and general-purpose memcomputing to cybersecurity. Finally, we examine the device requirements for such systems based on RSMs and provide suggestions to address challenges in materials engineering, device optimization, system integration and algorithm design.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Redox RSMs.
Fig. 2: Phase-change RSMs.
Fig. 3: Magnetic-tunnelling RSMs.
Fig. 4: Ferroelectric RSMs.
Fig. 5: Properties of RSMs and application requirements.
Fig. 6: RSM neuromorphic computing applications.
Fig. 7: RSM memcomputing applications.
Fig. 8: RSM cybersecurity applications.

References

  1. 1.

    Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

  2. 2.

    Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).

  3. 3.

    Chi, P. et al. PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. Proc. 43rd Int. Symp. Computer Architecture 27–39 (IEEE, 2016).

  4. 4.

    Pawlowski, J. T. Hybrid memory cube (HMC). 2011 IEEE Hot Chips 23 Symp. (HCS) 1–24 https://doi.org/10.1109/HOTCHIPS.2011.7477494 (IEEE, 2011).

  5. 5.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

  6. 6.

    Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

  7. 7.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

  8. 8.

    Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

  9. 9.

    Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

  10. 10.

    Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

  11. 11.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

  12. 12.

    Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014).

  13. 13.

    Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

  14. 14.

    Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

  15. 15.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

  16. 16.

    Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008).

  17. 17.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

  18. 18.

    Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2016).

  19. 19.

    Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

  20. 20.

    Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M. & Burr, G. W. Recent progress in analog memory-based accelerators for deep learning. J. Phys. D. Appl. Phys. 51, 283001 (2018).

  21. 21.

    Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018).

  22. 22.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

  23. 23.

    Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

  24. 24.

    Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

  25. 25.

    Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotechnol. 12, 784–789 (2017). The first large-scale redox-RSM crossbar implementation of the locally competitive algorithm for sparse coding.

  26. 26.

    Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

  27. 27.

    Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018). The first large-scale phase-change RSM-based linear system solver.

  28. 28.

    Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).

  29. 29.

    Nili, H. et al. Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nat. Electron. 1, 197–202 (2018). The first large-scale redox-RSM-crossbar-based PUF using variations in IV nonlinearity.

  30. 30.

    Jiang, H. et al. A provable key destruction scheme based on memristive crossbar arrays. Nat. Electron. 1, 548–554 (2018).

  31. 31.

    Hickmott, T. W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

  32. 32.

    Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008).

  33. 33.

    Akinaga, H. & Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237–2251 (2010).

  34. 34.

    Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

  35. 35.

    Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

  36. 36.

    Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

  37. 37.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

  38. 38.

    Goldfarb, I. et al. Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior. Appl. Phys. A 107, 1–11 (2012).

  39. 39.

    Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006).

  40. 40.

    Kwon, D.-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010).

  41. 41.

    Yang, J. J. et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).

  42. 42.

    Strachan, J. P. et al. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010).

  43. 43.

    Baeumer, C. et al. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nat. Commun. 7, 12398 (2016).

  44. 44.

    Nallagatla, V. R. et al. Topotactic phase transition driving memristive behavior. Adv. Mater. 31, 1903391 (2019).

  45. 45.

    Kumar, S. et al. Conduction channel formation and dissolution due to oxygen thermophoresis/diffusion in hafnium oxide memristors. ACS Nano 10, 11205–11210 (2016).

  46. 46.

    Kumar, S. et al. Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors. Adv. Mater. 28, 2772–2776 (2016).

  47. 47.

    Li, C. et al. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 29, 1602976 (2017).

  48. 48.

    Yang, Y. et al. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017).

  49. 49.

    Cooper, D. et al. Anomalous resistance hysteresis in oxide ReRAM: oxygen evolution and reincorporation revealed by in situ TEM. Adv. Mater. 29, 1700212 (2017).

  50. 50.

    Du, H. et al. Nanosized conducting filaments formed by atomic-scale defects in redox-based resistive switching memories. Chem. Mater. 29, 3164–3173 (2017).

  51. 51.

    Park, G.-S. et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure. Nat. Commun. 4, 2382 (2013).

  52. 52.

    Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011).

  53. 53.

    Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014).

  54. 54.

    Hirose, Y. & Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3films. J. Appl. Phys. 47, 2767–2772 (1976).

  55. 55.

    Guo, X., Schindler, C., Menzel, S. & Waser, R. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007).

  56. 56.

    Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

  57. 57.

    Xu, Z., Bando, Y., Wang, W., Bai, X. & Golberg, D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010).

  58. 58.

    Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012).

  59. 59.

    Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

  60. 60.

    Valov, I. et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11, 530–535 (2012).

  61. 61.

    Hubbard, W. A. et al. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15, 3983–3987 (2015).

  62. 62.

    Yuan, F. et al. Real-time observation of the electrode-size-dependent evolution dynamics of the conducting filaments in a SiO2 layer. ACS Nano 11, 4097–4104 (2017).

  63. 63.

    Wang, W. et al. Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nat. Commun. 10, 81 (2019).

  64. 64.

    Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).

  65. 65.

    Onofrio, N., Guzman, D. & Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14, 440–446 (2015).

  66. 66.

    Tian, X. et al. Bipolar electrochemical mechanism for mass transfer in nanoionic resistive memories. Adv. Mater. 26, 3649–3654 (2014).

  67. 67.

    Chae, B. G. et al. Nanometer-scale phase transformation determines threshold and memory switching mechanism. Adv. Mater. 29, 1701752 (2017).

  68. 68.

    Wedig, A. et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat. Nanotechnol. 11, 67–74 (2016).

  69. 69.

    Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88, 232112 (2006).

  70. 70.

    Kim, K. M. et al. A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22, 254010 (2011).

  71. 71.

    Baikalov, A. et al. Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83, 957–959 (2003).

  72. 72.

    Herpers, A. et al. Spectroscopic proof of the correlation between redox-state and charge-carrier transport at the interface of resistively switching Ti/PCMO devices. Adv. Mater. 26, 2730–2735 (2014).

  73. 73.

    Baek, K. et al. In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9, 582–593 (2017).

  74. 74.

    Wang, Y. et al. Mott-transition-based RRAM. Mater. Today 28, 63–80 (2019).

  75. 75.

    Mott, N. F. & Davis, E. A. Electronic Processes in Non-Crystalline Materials 2nd edn (Clarendon Press, 2012).

  76. 76.

    Szot, K., Bihlmayer, G. & Speier, W. Nature of the resistive switching phenomena in TiO2 and SrTiO3: origin of the reversible insulator–metal transition. Solid State Phys. 65, 353–559 (2014).

  77. 77.

    Raoux, S. et al. Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52, 465–479 (2008).

  78. 78.

    Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010).

  79. 79.

    Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

  80. 80.

    Waldecker, L. et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 14, 991–995 (2015).

  81. 81.

    Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Collective structural relaxation in phase-change memory devices. Adv. Electron. Mater. 4, 1700627 (2018).

  82. 82.

    Sebastian, A., Le Gallo, M. & Krebs, D. Crystal growth within a phase change memory cell. Nat. Commun. 5, 4314 (2014).

  83. 83.

    Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).

  84. 84.

    Nirschl, T. et al. Write strategies for 2 and 4-bit multi-level phase-change memory. 2007 IEEE Int. Electron Devices Meeting 461–464 (IEEE, 2007).

  85. 85.

    Papandreou, N. et al. Programming algorithms for multilevel phase-change memory. 2011 IEEE Int. Symp. Circuits and Systems (ISCAS) 329-332 (IEEE, 2011).

  86. 86.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015). The first in situ training of a large-scale, fully connected ANN based on a phase-change RSM for MNIST classification.

  87. 87.

    Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nat. Commun. 8, 1115 (2017).

  88. 88.

    Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

  89. 89.

    Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011).

  90. 90.

    Zhang, W. et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012).

  91. 91.

    Zhang, W. et al. Density-functional theory guided advances in phase-change materials and memories. MRS Bull. 40, 856–869 (2015).

  92. 92.

    Nardone, M., Simon, M., Karpov, I. V. & Karpov, V. G. Electrical conduction in chalcogenide glasses of phase change memory. J. Appl. Phys. 112, 071101 (2012).

  93. 93.

    Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C. & Raty, J. Y. Incipient metals: functional materials with a unique bonding mechanism. Adv. Mater. 30, 1803777 (2018).

  94. 94.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

  95. 95.

    Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

  96. 96.

    Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

  97. 97.

    Baibich, M. N. et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

  98. 98.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

  99. 99.

    Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

  100. 100.

    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

  101. 101.

    Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

  102. 102.

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

  103. 103.

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

  104. 104.

    Golonzka, O. et al. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. 2018 IEEE Int. Electron Devices Meeting (IEDM) 18-1 (2018).

  105. 105.

    Lee, K. et al. 22-nm FD-SOI embedded MRAM technology for low-power automotive-grade-l MCU applications. 2018 IEEE Int. Electron Devices Meeting (IEDM) 27-1 (2018).

  106. 106.

    Song, Y. J. et al. Demonstration of highly manufacturable STT-MRAM embedded in 28nm logic. 2018 IEEE Int. Electron Devices Meeting (IEDM) 18-2 (2018).

  107. 107.

    Duan, C.-G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

  108. 108.

    Grezes, C. et al. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108, 012403 (2016).

  109. 109.

    Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2011).

  110. 110.

    Nozaki, T. et al. Large voltage-induced changes in the perpendicular magnetic anisotropy of an MgO-based tunnel junction with an ultrathin Fe layer. Phys. Rev. Appl. 5, 044006 (2016).

  111. 111.

    Li, X. et al. Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB| MgO interface. Appl. Phys. Lett. 110, 052401 (2017).

  112. 112.

    Liu, T., Zhang, Y., Cai, J. W. & Pan, H. Y. Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Sci. Rep. 4, 5895 (2014).

  113. 113.

    Wang, M. et al. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nat. Commun. 9, 671 (2018).

  114. 114.

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

  115. 115.

    Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

  116. 116.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  117. 117.

    Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

  118. 118.

    Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

  119. 119.

    Hoffmann, M. et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).

  120. 120.

    Scott, J. F. Ferroelectric Memories Vol. 3 (Springer, 2013).

  121. 121.

    McAdams, H. P. et al. A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid-State Circuits 39, 667–677 (2004).

  122. 122.

    Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

  123. 123.

    Müller, J. et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).

  124. 124.

    Mueller, S. et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).

  125. 125.

    Park, M. H. et al. Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. Appl. Phys. Lett. 105, 072902 (2014).

  126. 126.

    Esaki, A. L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 114–116 (1971).

  127. 127.

    Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

  128. 128.

    Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

  129. 129.

    Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

  130. 130.

    Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).

  131. 131.

    Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018).

  132. 132.

    Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018).

  133. 133.

    Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

  134. 134.

    Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal-oxide interfaces. Nat. Mater. 8, 392–397 (2009).

  135. 135.

    Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

  136. 136.

    Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).

  137. 137.

    Palai, R. et al. β phase and γβ metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008).

  138. 138.

    Jiang, A.-Q., Lee, H. J., Hwang, C. S. & Tang, T.-A. Resolving the Landauer paradox in ferroelectric switching by high-field charge injection. Phys. Rev. B 80, 024119 (2009).

  139. 139.

    Ducharme, S. et al. Intrinsic ferroelectric coercive field. Phys. Rev. Lett. 84, 175–178 (2000).

  140. 140.

    Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).

  141. 141.

    Jia, C.-L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

  142. 142.

    Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

  143. 143.

    Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2011).

  144. 144.

    Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

  145. 145.

    Yoong, H. Y. et al. Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing. Adv. Funct. Mater. 28, 1806037 (2018).

  146. 146.

    Chen, L. et al. Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications. Nanoscale 10, 15826–15833 (2018).

  147. 147.

    Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first principles. Nature 534, 360–363 (2016).

  148. 148.

    Meyer, R., Contreras, J. R., Petraru, A. & Kohlstedt, H. On a novel ferro resistive random access memory (FRRAM): basic model and first experiments. Integr. Ferroelectr. 64, 77–88 (2004).

  149. 149.

    Black, C. T. & Welser, J. J. Electric-field penetration into metals: consequences for high-dielectric-constant capacitors. IEEE Trans. Electron Devices 46, 776–780 (1999).

  150. 150.

    Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617–621 (2013).

  151. 151.

    Yamada, H. et al. Ferroelectric control of a Mott insulator. Sci. Rep. 3, 2834 (2013).

  152. 152.

    Kohlstedt, H., Pertsev, N., Contreras, J. R. & Waser, R. Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

  153. 153.

    Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).

  154. 154.

    Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366, 210–215 (2019).

  155. 155.

    Shiota, Y. et al. Reduction in write error rate of voltage-driven dynamic magnetization switching by improving thermal stability factor. Appl. Phys. Lett. 111, 022408 (2017).

  156. 156.

    Cheng, C.-H., Tsai, C., Chin, A. & Yeh, F. High performance ultra-low energy RRAM with good retention and endurance. 2010 Int. Electron Devices Meeting 19-4 (IEEE, 2010).

  157. 157.

    Strachan, J. P., Torrezan, A. C., Medeiros-Ribeiro, G. & Williams, R. S. Measuring the switching dynamics and energy efficiency of tantalum oxide memristors. Nanotechnology 22, 505402 (2011).

  158. 158.

    Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

  159. 159.

    Liang, J., Jeyasingh, R. G. D., Chen, H.-Y. & Wong, H.-S. P. A 1.4 µA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application. 2011 Symp. VLSI Technology-Digest of Technical Papers 100–101 (IEEE, 2011).

  160. 160.

    Choi, B. J. et al. High-speed and low-energy nitride memristors. Adv. Funct. Mater. 26, 5290–5296 (2016).

  161. 161.

    Rao, F. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358, 1423–1427 (2017).

  162. 162.

    Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

  163. 163.

    Thomas, L. et al. STT-MRAM devices with low damping and moment optimized for LLC applications at 0x nodes. 2018 IEEE Int. Electron Devices Meeting (IEDM) 27.3.1–27.3.4 (2018).

  164. 164.

    Zhao, H. et al. Sub-200 ps spin transfer torque switching in in-plane magnetic tunnel junctions with interface perpendicular anisotropy. J. Phys. D. 45, 025001 (2011).

  165. 165.

    Jiang, H. et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6, 28525 (2016).

  166. 166.

    Navarro, G. et al. Trade-off between SET and data retention performance thanks to innovative materials for phase-change memory. 2013 IEEE Int. Electron Devices Meeting 21-5 (IEEE, 2013).

  167. 167.

    Lee, Y. K. et al. Embedded STT-MRAM in 28-nm FDSOI logic process for industrial MCU/IoT application. 2018 IEEE Symp. VLSI Technology 181–182 (2018).

  168. 168.

    Yamada, H. et al. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7, 5385–5390 (2013).

  169. 169.

    Chen, B. et al. Physical mechanisms of endurance degradation in TMO-RRAM. 2011 Int. Electron Devices Meeting 12-3 (IEEE, 2011).

  170. 170.

    Lee, M. J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures. Nat. Mater. 10, 625–630 (2011).

  171. 171.

    Padilla, A. et al. Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices. J. Appl. Phys. 110, 054501 (2011).

  172. 172.

    Raoux, S. et al. Phase change materials and their application to random access memory technology. Microelectron. Eng. 85, 2330–2333 (2008).

  173. 173.

    Pedersen, T. P. L. et al. Mechanical stresses upon crystallization in phase change materials. Appl. Phys. Lett. 79, 3597–3599 (2001).

  174. 174.

    Kim, I. et al. High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications. 2010 Symp. VLSI Technology 203–204 (IEEE, 2010).

  175. 175.

    Sato, H. et al. 14ns write speed 128Mb density embedded STT-MRAM with endurance>1010 and 10yrs retention@85°C using novel low damage MTJ integration process. 2018 IEEE Int. Electron Devices Meeting (IEDM) 27-2 (2018).

  176. 176.

    Shiokawa, Y. et al. High write endurance up to 1012 cycles in a spin current-type magnetic memory array. AIP Adv. 9, 035236 (2019).

  177. 177.

    Boyn, S. et al. High-performance ferroelectric memory based on fully patterned tunnel junctions. Appl. Phys. Lett. 104, 052909 (2014).

  178. 178.

    Govoreanu, B. et al. 10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. 2011 Int. Electron Devices Meeting 31-6 (IEEE, 2011).

  179. 179.

    Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14, 35–39 (2019).

  180. 180.

    Golonzka, O. et al. Non-volatile RRAM embedded into 22FFL FinFET technology. 2019 Symp. VLSI Technology T230–T231 (2019).

  181. 181.

    Choi, Y. et al. A 20nm 1.8 V 8Gb PRAM with 40MB/s program bandwidth. 2012 IEEE Int. Solid-State Circuits Conf. 46–48 (IEEE, 2012).

  182. 182.

    Luo, Q. et al. 8-Layers 3D vertical RRAM with excellent scalability towards storage class memory applications. 2017 IEEE Int. Electron Devices Meeting (IEDM) 2–7 (IEEE, 2017).

  183. 183.

    Yoon, K. J., Kim, Y. & Hwang, C. S. What will come after V-NAND—vertical resistive switching memory? Adv. Electron. Mater. 5, 1800914 (2019).

  184. 184.

    Park, C. et al. Low RA magnetic tunnel junction arrays in conjunction with low switching current and high breakdown voltage for STT-MRAM at 10 nm and beyond. 2018 IEEE Symp. VLSI Technology 185–186 (2018).

  185. 185.

    Sakhare, S. et al. Enablement of STT-MRAM as last level cache for the high performance computing domain at the 5nm node. 2018 IEEE Int. Electron Devices Meeting (IEDM) 18-3 (2018).

  186. 186.

    Gao, X. S., Liu, J. M., Au, K. & Dai, J. Y. Nanoscale ferroelectric tunnel junctions based on ultrathin BaTiO3 film and Ag nanoelectrodes. Appl. Phys. Lett. 101, 142905 (2012).

  187. 187.

    Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

  188. 188.

    Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

  189. 189.

    Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H. S. P. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Elect. Dev. 58, 2729–2737 (2011).

  190. 190.

    Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H.-S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).

  191. 191.

    Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

  192. 192.

    Vincent, A. F. et al. Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems. IEEE Trans. Biomed. Circuits Syst. 9, 166–174 (2015).

  193. 193.

    Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 25, 4290–4299 (2015).

  194. 194.

    Suri, M. et al. Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction. 2011 IEEE Int. Electron Devices Meeting (IEDM) 4-4 (IEEE, 2011).

  195. 195.

    Srinivasan, G., Sengupta, A. & Roy, K. Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning. Sci. Rep. 6, 29545 (2016).

  196. 196.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

  197. 197.

    Lee, D. et al. Various threshold switching devices for integrate and fire neuron applications. Adv. Electron. Mater. 5, 1800866 (2019).

  198. 198.

    Cai, J. et al. Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junction. Phys. Rev. Appl. 11, 034015 (2019).

  199. 199.

    Wu, M.-H. et al. Extremely compact integrate-and-fire STT-MRAM neuron: a pathway toward all-spin artificial deep neural network. 2019 Symp. VLSI Technology T34-T35 (IEEE, 2019).

  200. 200.

    Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

  201. 201.

    Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

  202. 202.

    Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

  203. 203.

    Lim, H. et al. Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. Nanoscale 8, 9629–9640 (2016).

  204. 204.

    Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

  205. 205.

    Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

  206. 206.

    Hu, M. et al. Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

  207. 207.

    Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013).

  208. 208.

    Park, S. et al. Electronic system with memristive synapses for pattern recognition. Sci. Rep. 5, 10123 (2015).

  209. 209.

    Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

  210. 210.

    Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).

  211. 211.

    Mochida, R. et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neural-network processor with cell current controlled writing and flexible network architecture. 2018 IEEE Symp. VLSI Technology 175-176 (IEEE, 2018).

  212. 212.

    Cai, F. et al. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2, 290–299 (2019).

  213. 213.

    Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018).

  214. 214.

    Yu, S. et al. Binary neural network with 16 Mb RRAM macro chip for classification and online training. 2016 IEEE Int. Electron Devices Meeting (IEDM) 16-2 (IEEE, 2016).

  215. 215.

    Sanger, T. D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2, 459–473 (1989).

  216. 216.

    Choi, S., Shin, J. H., Lee, J., Sheridan, P. & Lu, W. D. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano Lett. 17, 3113–3118 (2017).

  217. 217.

    Wang, Z. et al. Reinforcement learning with analogue memristor arrays. Nat. Electron. 2, 115–124 (2019).

  218. 218.

    Berdan, R. et al. In-memory reinforcement learning with moderately-stochastic conductance switching of ferroelectric tunnel junctions. 2019 Symp. VLSI Technology T22-T23 (2019).

  219. 219.

    Lin, Y. et al. Demonstration of generative adversarial network by intrinsic random noises of analog RRAM devices. 2018 IEEE Int. Electron Devices Meeting (IEDM) 3–4 (IEEE, 2018).

  220. 220.

    Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019).

  221. 221.

    Serb, A. et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).

  222. 222.

    Shi, Y. et al. Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays. Nat. Commun. 9, 5312 (2018).

  223. 223.

    Kim, S. et al. NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning. 2015 IEEE Int. Electron Devices Meeting (IEDM) 17–1 (IEEE, 2015).

  224. 224.

    Pantazi, A., Wozniak, S., Tuma, T. & Eleftheriou, E. All-memristive neuromorphic computing with level-tuned neurons. Nanotechnology 27, 355205 (2016).

  225. 225.

    Wang, W. et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci. Adv. 4, eaat4752 (2018).

  226. 226.

    Wang, Z. et al. In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell. 1, 434–442 (2019). The first in situ training of a large-scale redox-RSM-based convolutional ANN and convolutional recurrent ANN for pattern and video classifications, respectively.

  227. 227.

    Chen, W.-H. et al. CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors. Nat. Electron. 2, 420–428 (2019).

  228. 228.

    Xue, C.-X. et al. A 1Mb multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC computing time for CNN based AI edge processors. 2019 IEEE Int. Solid-State Circuits Conf. (ISSCC). 388–390 (IEEE, 2019). One of the highest energy efficiencies reported to date for a convolutional ANN implemented by an integrated chip of redox-RSM crossbars and peripheral circuits for CIFAR-10 classification.

  229. 229.

    Li, C. et al. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019). The first in situ training of a large-scale redox-RSM-based recurrent ANN for walking gait classification.

  230. 230.

    Tsai, H. et al. Inference of long-short term memory networks at software-equivalent accuracy using 2.5 M analog phase change memory devices. 2019 Symp. VLSI Technology. T82-T83 (2019).

  231. 231.

    Hu, S. G. et al. Associative memory realized by a reconfigurable memristive Hopfield neural network. Nat. Commun. 6, 7522 (2015).

  232. 232.

    Zhou, Y. et al. Associative memory for image recovery with a high-performance memristor array. Adv. Funct. Mater. 29, 1900155 (2019).

  233. 233.

    Yan, B. et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation. 2019 Symp. VLSI Technology T86–T87 (2019). The first large-scale redox-RSM-based SNN for CIFAR-10 classification.

  234. 234.

    Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

  235. 235.

    Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

  236. 236.

    Midya, R. et al. Reservoir computing using diffusive memristors. Adv. Intell. Syst. 1, 1900084 (2019).

  237. 237.

    Sun, Z. et al. Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl Acad. Sci. USA 116, 4123–4128 (2019).

  238. 238.

    Jeong, Y., Lee, J., Moon, J., Shin, J. H. & Lu, W. D. K-means data clustering with memristor networks. Nano Lett. 18, 4447–4453 (2018).

  239. 239.

    Shin, J. H., Jeong, Y. J., Zidan, M. A., Wang, Q. & Lu, W. D. Hardware acceleration of simulated annealing of spin glass by RRAM crossbar array. 2018 IEEE Int. Electron Devices Meeting (IEDM) 3-3 (IEEE, 2018).

  240. 240.

    Cassinerio, M., Ciocchini, N. & Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 25, 5975–5980 (2013).

  241. 241.

    Huang, P. et al. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv. Mater. 28, 9758–9764 (2016).

  242. 242.

    Sun, Z., Ambrosi, E., Bricalli, A. & Ielmini, D. Logic computing with stateful neural networks of resistive switches. Adv. Mater. 30, 1802554 (2018).

  243. 243.

    Liu, R., Wu, H., Pang, Y., Qian, H. & Yu, S. A highly reliable and tamper-resistant RRAM PUF: Design and experimental validation. 2016 IEEE Int. Symp. Hardware Oriented Security Trust (HOST) 13–18 (IEEE, 2016).

  244. 244.

    Zhang, R. et al. Nanoscale diffusive memristor crossbars as physical unclonable functions. Nanoscale 10, 2721–2726 (2018).

  245. 245.

    Mazady, A., Rahman, M. T., Forte, D. & Anwar, M. Memristor PUF—a security primitive: theory and experiment. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 222–229 (2015).

  246. 246.

    Gao, L., Chen, P.-Y., Liu, R. & Yu, S. Physical unclonable function exploiting sneak paths in resistive cross-point array. IEEE Trans. Electron Devices 63, 3109–3115 (2016).

  247. 247.

    Kim, J. et al. A physical unclonable function with redox-based nanoionic resistive memory. IEEE Trans. Inf. Forensics Secur. 13, 437–448 (2018).

  248. 248.

    Huang, C.-Y., Shen, W. C., Tseng, Y.-H., King, Y.-C. & Lin, C.-J. A contact-resistive random-access-memory-based true random number generator. IEEE Electron Device Lett. 33, 1108–1110 (2012).

  249. 249.

    Balatti, S., Ambrogio, S., Wang, Z. & Ielmini, D. True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 5, 214–221 (2015).

  250. 250.

    Balatti, S. et al. Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63, 2029–2035 (2016).

  251. 251.

    Gallo, M. L., Tuma, T., Zipoli, F., Sebastian, A. & Eleftheriou, E. Inherent stochasticity in phase-change memory devices. 2016 46th European Solid-State Device Research Conf. (ESSDERC) 373–376 (2016).

  252. 252.

    Jiang, H. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).

  253. 253.

    Zalden, P. et al. Femtosecond x-ray diffraction reveals a liquid–liquid phase transition in phase-change materials. Science 364, 1062–1067 (2019).

  254. 254.

    Milano, G. et al. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Nat. Commun. 9, 5151 (2018).

  255. 255.

    Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2018).

  256. 256.

    Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

  257. 257.

    Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).

  258. 258.

    Cobas, E., Friedman, A. L., van’t Erve, O. M., Robinson, J. T. & Jonker, B. T. Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett. 12, 3000–3004 (2012).

  259. 259.

    Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

  260. 260.

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

  261. 261.

    Fan, Y. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 11, 352–359 (2016).

  262. 262.

    Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

  263. 263.

    Mahendra, D. C. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1−x) films. Nat. Mater. 17, 800–807 (2018).

  264. 264.

    Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

  265. 265.

    Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. 2017 IEEE Int. Electron Devices Meeting (IEDM) 6-2 (IEEE, 2017).

  266. 266.

    Danesh, C. D. et al. Synaptic resistors for concurrent inference and learning with high energy efficiency. Adv. Mater. 31, 1808032 (2019).

  267. 267.

    van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

  268. 268.

    Wang, Z. et al. Capacitive neural network with neuro-transistors. Nat. Commun. 9, 3208 (2018).

  269. 269.

    Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

  270. 270.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

  271. 271.

    Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

  272. 272.

    Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

  273. 273.

    Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

  274. 274.

    Lau, Y.-C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758–762 (2016).

  275. 275.

    Zhang, X. G. & Butler, W. H. Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions. Phys. Rev. B 70, 172407 (2004).

  276. 276.

    Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

  277. 277.

    Schleicher, F. et al. Localized states in advanced dielectrics from the vantage of spin-and symmetry-polarized tunnelling across MgO. Nat. Commun. 5, 4547 (2014).

  278. 278.

    Bean, J. J. & McKenna, K. P. Stability of point defects near MgO grain boundaries in FeCoB/MgO/FeCoB magnetic tunnel junctions. Phys. Rev. Mater. 2, 125002 (2018).

  279. 279.

    Dong, Q. et al. A 1Mb 28nm STT-MRAM with 2.8 ns read access time at 1.2 V VDD using single-cap offset-cancelled sense amplifier and in-situ self-write-termination. 2018 IEEE Int. Solid-State Circuits Conf. (ISSCC) 480–482 (2018).

  280. 280.

    Grezes, C. et al. Write error rate and read disturbance in electric-field-controlled magnetic random-access memory. IEEE Magn. Lett. 8, 3102705 (2017).

  281. 281.

    Kanai, S. et al. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104, 212406 (2014).

  282. 282.

    Van Beek, S. et al. Impact of self-heating on reliability predictions in STT-MRAM. 2018 IEEE Int. Electron Devices Meeting (IEDM) 25-2 (2018).

  283. 283.

    Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2016).

  284. 284.

    Tang, J. et al. ECRAM as scalable synaptic cell for high-speed, low-power neuromorphic computing. 2018 IEEE Int. Electron Devices Meeting (IEDM) 13–1 (IEEE, 2018).

  285. 285.

    Chen, P.-Y. et al. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. Proc. IEEE/ACM Int. Conf. Computer-Aided Design 194–199 (IEEE Press, 2015).

  286. 286.

    Kim, G. H. et al. 32 × 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory. Adv. Funct. Mater. 23, 1440–1449 (2013).

  287. 287.

    Yoon, K. J. et al. Double-layer-stacked one diode-one resistive switching memory crossbar array with an extremely high rectification ratio of 109. Adv. Electron. Mater. 3, 1700152 (2017).

  288. 288.

    Choi, B. J. et al. Trilayer tunnel selectors for memristor memory cells. Adv. Mater. 28, 356–362 (2016).

  289. 289.

    Lee, M. J. et al. A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat. Commun. 4, 2629 (2013).

  290. 290.

    Cha, E. et al. Nanoscale (~10nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode. 2013 IEEE Int. Electron Devices Meeting (IEDM) 10–5 (2013).

  291. 291.

    Luo, Q. et al. Nb1−xO2 based universal selector with ultra-high endurance (>1012), high speed (10ns) and excellent Vth stability. 2019 Symp. VLSI Technology T236-T237 (2019).

  292. 292.

    Virwani, K. et al. Sub-30nm scaling and high-speed operation of fully-confined access-devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials. 2012 IEEE Int. Electron Devices Meeting (IEDM) 2–7 (2012).

  293. 293.

    Midya, R. et al. Anatomy of Ag/hafnia-based selectors with 1010 nonlinearity. Adv. Mater. 29, 1604457 (2017).

  294. 294.

    Sun, L. et al. Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019).

  295. 295.

    Linn, E., Rosezin, R., Kugeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010).

  296. 296.

    Yang, Y., Mathew, J., Pradhan, D. K., Ottavi, M. & Pontarelli, S. Complementary resistive switch based stateful logic operations using material implication. 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) 185 (IEEE, 2014).

  297. 297.

    Kataeva, I. et al. Towards the development of analog neuromorphic chip prototype with 2.4 M integrated memristors. 2019 IEEE Int. Symp. Circuits and Systems (ISCAS) 1–5 (IEEE, 2019).

  298. 298.

    Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019).

  299. 299.

    Cheng, H. et al. A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material. 2011 Int. Electron Devices Meeting 3–4 (IEEE, 2011).

  300. 300.

    Kim, Y.-B. et al. Bi-layered RRAM with unlimited endurance and extremely uniform switching. 2011 Symp. VLSI Technology-Digest of Technical Papers 52–53 (IEEE, 2011).

Download references

Acknowledgements

The authors thank B. Gao, W. Zhang, J. Tang and S. Saveliev for fruitful discussions on the mechanisms of RSMs and thank Y. Peng, W. Song and X. Zhang for helpful discussion on RSM-based computing circuits. Z.W., Q.X. and J.J.Y. thank the US Air Force Office of Scientific Research (AFOSR) for support through the MURI program under contract number FA9550-19-1-0213.

Author information

All authors contributed to the discussion of content and reviewed and edited the manuscript prior to submission. Z.W. and J.J.Y. researched data for the article. Z.W., G.W.B., C.S.H., K.L.W., Q.X. and J.J.Y. wrote the article.

Correspondence to Qiangfei Xia or J. Joshua Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, H., Burr, G.W. et al. Resistive switching materials for information processing. Nat Rev Mater 5, 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3

Download citation