Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials for oral delivery of proteins and peptides

This article has been updated

Abstract

Throughout history, oral administration has been regarded as the most convenient mode of drug delivery, as it requires minimal expertise and invasiveness. Although oral delivery works well for small-molecule drugs, oral delivery of macromolecules (particularly proteins and peptides) has been limited by acidic conditions in the stomach and low permeability across the intestinal epithelium. Accordingly, the large numbers of biologic drugs that have become available in the past 10 years typically require administration by injection or infusion. As such, a renewed emphasis has been placed on the development of novel materials that overcome the physiological challenges of oral delivery for macromolecular agents. This Review provides an overview of physiological barriers to the oral delivery of biologics and highlights the advances made in materials across various length scales, from small molecules to macroscopic devices. This Review also describes the current status of materials for oral delivery of protein and peptide drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key technological advances towards the oral delivery of proteins and peptides.
Fig. 2: Physiological barriers to oral protein and peptide delivery.
Fig. 3: Mechanisms of action of materials used for oral drug delivery.
Fig. 4: Materials used for oral protein and peptide delivery as a function of length scale.

Similar content being viewed by others

Change history

  • 08 January 2020

    The originally published article contained a typographical error in the final text box of Figure 1, which has been corrected in the HTML and PDF versions of the manuscript.

References

  1. US Food and Drug Administration. Novel drug approvals for 2018. FDA https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2018 (2018).

  2. Toutain, P. L. & Bousquet-Mélou, A. Bioavailability and its assessment. J. Vet. Pharmacol. Ther. 27, 455–466 (2004).

    CAS  Google Scholar 

  3. Bardal, S. K., Waechter, J. E. & Martin, D. S. Applied Pharmacology 17–34 (Elsevier Saunders, 2011).

  4. Shone, A., Burnside, J., Chipchase, S., Game, F. & Jeffcoate, W. Probing the validity of the probe-to-bone test in the diagnosis of osteomyelitis of the foot in diabetes. Diabetes Care 29, 945 (2006).

    Google Scholar 

  5. Thomaidou, E. & Ramot, Y. Injection site reactions with the use of biological agents. Dermatol. Ther. 32, e12817 (2019).

    Google Scholar 

  6. Hilhorst, N., Spanoudi-Kitrimi, I., Goemans, N. & Morren, M. A. Injection site reactions after long-term subcutaneous delivery of drisapersen: a retrospective study. Eur. J. Pediatr. 178, 253–258 (2018).

    Google Scholar 

  7. Messer, L. H., Berget, C., Beatson, C., Polsky, S. & Forlenza, G. P. Preserving skin integrity with chronic device use in diabetes. Diabetes Technol. Ther. 20, S254–S264 (2018).

    Google Scholar 

  8. Richardson, T. & Kerr, D. Skin-related complications of insulin therapy: epidemiology and emerging management strategies. Am. J. Clin. Dermatol. 4, 661–667 (2003).

    Google Scholar 

  9. Kerbleski, J. F. & Gottlieb, A. B. Dermatological complications and safety of anti-TNF treatments. Gut 58, 1033–1039 (2009).

    CAS  Google Scholar 

  10. Liu, N. F. et al. Stigma in people with type 1 or type 2 diabetes. Clin. Diabetes 35, 27–34 (2017).

    Google Scholar 

  11. Spain, C. V., Wright, J. J., Hahn, R. M., Wivel, A. & Martin, A. A. Self-reported barriers to adherence and persistence to treatment with injectable medications for type 2 diabetes. Clin. Ther. 38, 1653–1664.e1 (2016).

    Google Scholar 

  12. Crawford, A., Jewell, S., Mara, H., McCatty, L. & Pelfrey, R. Managing treatment fatigue in patients with multiple sclerosis on long-term therapy: the role of multiple sclerosis nurses. Patient Prefer. Adherence 8, 1093–1099 (2014).

    Google Scholar 

  13. Zhong, W. et al. Age and sex patterns of drug prescribing in a defined American population. Mayo Clin. Proc. 88, 697–707 (2013).

    Google Scholar 

  14. Zelikin, A. N., Ehrhardt, C. & Healy, A. M. Materials and methods for delivery of biological drugs. Nat. Chem. 8, 997–1007 (2016).

    CAS  Google Scholar 

  15. Antosova, Z., Mackova, M., Kral, V. & Macek, T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 27, 628–635 (2009).

    CAS  Google Scholar 

  16. Roger, E., Lagarce, F., Garcion, E. & Benoit, J. P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine 5, 287–306 (2010).

    CAS  Google Scholar 

  17. Zhou, X. H. & Po, A. L. W. Peptide and protein drugs: II. Non-parenteral routes of delivery. Int. J. Pharm. 75, 117–130 (1991).

    CAS  Google Scholar 

  18. Fjellestad-Paulsen, A., Hoglund, P., Lundin, S. & Paulsen, O. Pharmacokinetics of 1-deamino-8-D-arginine vasopressin after various routes of administration in healthy volunteers. Clin. Endocrinol. 38, 177–182 (1993). Reports the oral bioavailability (0.1%) of one of the first oral formulations of the synthetic hormone desmopressin.

    CAS  Google Scholar 

  19. Fábián, T. K., Hermann, P., Beck, A., Fejérdy, P. & Fábián, G. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int. J. Mol. Sci. 13, 4295–4320 (2012).

    Google Scholar 

  20. Allen, A. & Carroll, N. J. Adherent and soluble mucus in the stomach and duodenum. Dig. Dis. Sci. 30, 55S–62S (1985).

    CAS  Google Scholar 

  21. Allen, A., Flemstrom, G., Garner, A. & Kivilaakso, E. Gastroduodenal mucosal protection. Physiol. Rev. 73, 823–857 (1993).

    CAS  Google Scholar 

  22. Whitcomb, D. C. & Lowe, M. E. Human pancreatic digestive enzymes. Dig. Dis. Sci. 52, 1–17 (2007).

    CAS  Google Scholar 

  23. Masaoka, Y., Tanaka, Y., Kataoka, M., Sakuma, S. & Yamashita, S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur. J. Pharm. Sci. 29, 240–250 (2006).

    CAS  Google Scholar 

  24. Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16, 351–380 (1995).

    CAS  Google Scholar 

  25. Daugherty, A. L. & Mrsny, R. J. Transcellular uptake mechanisms of the intestinal epithelial barrier Part one. Pharm. Sci. Technol. Today 2, 144–151 (1999).

    CAS  Google Scholar 

  26. Golub, A. L., Frost, R. W., Betlach, C. J. & Gonzalez, M. A. Physiologic considerations in drug absorption from the gastrointestinal tract. J. Allergy Clin. Immunol. 78, 689–694 (1986).

    CAS  Google Scholar 

  27. Perez-Vilar, J. & Hill, R. L. The structure and assembly of secreted mucins. J. Biol. Chem. 274, 31751–31754 (1999).

    CAS  Google Scholar 

  28. Murgia, X., Loretz, B., Hartwig, O., Hittinger, M. & Lehr, C. M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 124, 82–97 (2018).

    CAS  Google Scholar 

  29. Ensign, L. M., Cone, R. & Hanes, J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64, 557–570 (2012). Outlines key features of the mucus barriers that can impede oral delivery.

    CAS  Google Scholar 

  30. Lai, S. K., Wang, Y. Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    CAS  Google Scholar 

  31. Yildiz, H. M., McKelvey, C. A., Marsac, P. J. & Carrier, R. L. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. J. Drug Target. 23, 768–774 (2015).

    CAS  Google Scholar 

  32. Maisel, K., Ensign, L., Reddy, M., Cone, R. & Hanes, J. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J. Control. Release 197, 48–57 (2015).

    CAS  Google Scholar 

  33. Carlson, T. L., Lock, J. Y. & Carrier, R. L. Engineering the mucus barrier. Annu. Rev. Biomed. Eng. 20, 197–220 (2018).

    CAS  Google Scholar 

  34. Ducheˇne, D., Touchard, F. & Peppas, N. A. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev. Ind. Pharm. 14, 283–318 (1988).

    Google Scholar 

  35. Ch’Ng, H. S., Park, H., Kelly, P. & Robinson, J. R. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers. J. Pharm. Sci. 74, 399–405 (1985).

    Google Scholar 

  36. Pullan, R. D. et al. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35, 353–359 (1994).

    CAS  Google Scholar 

  37. Elderman, M. et al. The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLOS One 12, e0184274 (2017).

    Google Scholar 

  38. Bahari, H. M., Ross, I. N. & Turnberg, L. A. Demonstration of a pH gradient across the mucus layer on the surface of human gastric mucosa in vitro. Gut 23, 513–516 (1982).

    CAS  Google Scholar 

  39. Mayhew, T. M., Myklebust, R., Whybrow, A. & Jenkins, R. Epithelial integrity, cell death and cell loss in mammalian small intestine. Histol. Histopathol. 14, 257–267 (1999).

    CAS  Google Scholar 

  40. Middleton, C. Crypts, villi and microvilli in the small intestine of the rat. A stereological study of their variability within and between animals. J. Anat. 141, 1–17 (1985).

    Google Scholar 

  41. Salim, S. Y. & Söderholm, J. D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 362–381 (2011).

    Google Scholar 

  42. Allaire, J. M. et al. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39, 677–696 (2018). Provides a thorough overview of the intestinal epithelium and surrounding environment.

    CAS  Google Scholar 

  43. Mace, O. J., Tehan, B. & Marshall, F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol. Res. Perspect. 3, e00155 (2015).

    CAS  Google Scholar 

  44. Denker, B. M. & Nigam, S. K. Molecular structure and assembly of the tight junction. Am. J. Physiol. 274, F1–F9 (1998).

    CAS  Google Scholar 

  45. Fine, K. D., Santa Ana, C. A., Porter, J. L. & Fordtran, J. S. Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology 108, 983–989 (1995).

    CAS  Google Scholar 

  46. Linnankoski, J. et al. Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. J. Pharm. Sci. 99, 2166–2175 (2010).

    CAS  Google Scholar 

  47. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS  Google Scholar 

  48. Amin, M. L. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7, 27–34 (2013).

    Google Scholar 

  49. Sjöstedt, N., Holvikari, K., Tammela, P. & Kidron, H. Inhibition of breast cancer resistance protein and multidrug resistance associated protein 2 by natural compounds and their derivatives. Mol. Pharm. 14, 135–146 (2017).

    Google Scholar 

  50. Lea, T. in The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models (eds Verhoeckx, K. et al.) 95–102 (Springer International, 2015).

  51. Karasov, W. H. Integrative physiology of transcellular and paracellular intestinal absorption. J. Exp. Biol. 220, 2495–2501(2017).

    Google Scholar 

  52. Pereira de Sousa, I. & Bernkop-Schnürch, A. Pre-systemic metabolism of orally administered drugs and strategies to overcome it. J. Control. Release 192, 301–309 (2014).

    CAS  Google Scholar 

  53. Goldberg, M. & Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov. 2, 289–295 (2003).

    CAS  Google Scholar 

  54. Bittner, B. et al. Erratum: development of a subcutaneous formulation for trastuzumab — nonclinical and clinical bridging approach to the approved intravenous dosing regimen. Drug Res 63, 602 (2013).

    CAS  Google Scholar 

  55. Pivot, X. et al. Preference for subcutaneous or intravenous administration of trastuzumab in patients with HER2-positive early breast cancer (PrefHer): an open-label randomised study. Lancet Oncol. 14, 962–970 (2013).

    CAS  Google Scholar 

  56. Hourcade-Potelleret, F. et al. Use of a population pharmacokinetic approach for the clinical development of a fixed-dose subcutaneous formulation of trastuzumab. CPT Pharmacometrics Syst. Pharmacol. 3, e87 (2014).

    CAS  Google Scholar 

  57. Shah, R. B., Patel, M., Maahs, D. M. & Shah, V. N. Insulin delivery methods: Past, present and future. Int. J. Pharm. Investig. 6, 1–9 (2016). Outlines key ways in which insulin has been attempted to be delivered throughout history.

    Google Scholar 

  58. US Food and Drug Administration. FDA approves first oral GLP-1 treatment for type 2 diabetes. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-first-oral-glp-1-treatment-type-2-diabetes (2019). This is the first FDA-approved oral biologic for type 2 diabetes mellitus.

  59. Winstanley, P. A. & Orme, M. L. The effects of food on drug bioavailability. Br. J. Clin. Pharmacol. 28, 621–628 (1989).

    CAS  Google Scholar 

  60. Melander, A. Influence of food on the bioavailability of drugs. Clin. Pharmacokinet. 3, 337–351 (1978).

    CAS  Google Scholar 

  61. Karsdal, M. A. et al. Influence of food intake on the bioavailability and efficacy of oral calcitonin. Br. J. Clin. Pharmacol. 67, 413–420 (2009).

    CAS  Google Scholar 

  62. Yasuji, T., Kondo, H. & Sako, K. The effect of food on the oral bioavailability of drugs: a review of current developments and pharmaceutical technologies for pharmacokinetic control. Ther. Deliv. 3, 81–90 (2012).

    CAS  Google Scholar 

  63. Hoppu, K. Prehepatic metabolism of drugs — a mechanism for low and variable oral bioavailability. Pediatr. Nephrol. 13, 85–89 (1999).

    CAS  Google Scholar 

  64. Agrawal, S. & Panchagnula, R. Implication of biopharmaceutics and pharmacokinetics of rifampicin in variable bioavailability from solid oral dosage form. Biopharm. Drug Dispos. 26, 321–334 (2005).

    CAS  Google Scholar 

  65. El-Kattan, A. & Varma, M. in Topics on Drug Metabolism Ch. 1 (ed Paxton, J.) (IntechOpen, 2012).

  66. Lamson, N. L., Berger, A., Fein, K. C., & Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-019-0465-5 (2019).

    Article  Google Scholar 

  67. Bernkop-Schnürch, A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J. Control. Release 52, 1–16 (1998).

    Google Scholar 

  68. Bernkop-Schnürch, A. & Marschütz, M. K. Development and in vitro evaluation of systems to protect peptide drugs from aminopeptidase N. Pharm. Res. 14, 181–185 (1997).

    Google Scholar 

  69. Hastewell, J., Antonin, K. H., Fox, R. & Mackay, M. The colonic absorption of human calcitonin: the effects of increasing local concentration and co-administration with a protease inhibitor. Int. J. Pharm. 126, 245–251 (1995).

    CAS  Google Scholar 

  70. Yamamoto, A. et al. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm. Res. 11, 1496–1500 (1994).

    CAS  Google Scholar 

  71. Otsuki, M., Ohki, A., Okabayashi, Y., Suehiro, I. & Baba, S. Effect of synthetic protease inhibitor camostate on pancreatic exocrine function in rats. Pancreas 2, 164–169 (1987).

    CAS  Google Scholar 

  72. Melmed, R. N., El-Aaser, A. A. A. & Holt, S. J. Hypertrophy and hyperplasia of the neonatal rat exocrine pancreas induced by orally administered soybean trypsin inhibitor. Biochim. Biophys. Acta 421, 280–288 (1976).

    CAS  Google Scholar 

  73. Kunin, C. M. Nephrotoxicity of antibiotics. JAMA 202, 204–208 (1967).

    CAS  Google Scholar 

  74. Friess, H., Kleeff, J., Isenmann, R., Malfertheiner, P. & Büchler, M. W. Adaptation of the human pancreas to inhibition of luminal proteolytic activity. Gastroenterology 115, 388–396 (1998).

    CAS  Google Scholar 

  75. Binkley, N. et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial. J. Bone Miner. Res. 27, 1821–1829 (2012).

    CAS  Google Scholar 

  76. Tomita, M., Hayashi, M. & Awazu, S. Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J. Pharm. Sci. 85, 608–611 (1996).

    CAS  Google Scholar 

  77. Welling, S. H. et al. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition. Eur. J. Pharm. Biopharm. 86, 544–551 (2014).

    CAS  Google Scholar 

  78. Bolourchian, N. & Dadashzadeh, S. pH-independent release of propranolol hydrochloride from HPMC-based matrices using organic acids. Daru 16, 136–142 (2008).

    CAS  Google Scholar 

  79. Dvorˇácˇková, K. et al. The effect of acid pH modifiers on the release characteristics of weakly basic drug from hydrophlilic–lipophilic matrices. AAPS PharmSciTech 14, 1341–1348 (2013).

    Google Scholar 

  80. Noach, A. B. J., Kurosaki, Y., Blom-Roosemalen, M. C. M., de Boer, A. G. & Breimer, D. D. Cell-polarity dependent effect of chelation on the paracellular permeability of confluent Caco-2 cell monolayers. Int. J. Pharm. 90, 229–237 (1993).

    CAS  Google Scholar 

  81. Shen, L., Zhao, H. Y., Du, J. & Wang, F. Anti-tumor activities of four chelating agents against human neuroblastoma cells. In Vivo 19, 233–236 (2005).

    CAS  Google Scholar 

  82. Collares-Buzato, C. B., McEwan, G. T. A., Jepson, M. A., Simmons, N. L. & Hirst, B. H. Paracellular barrier and junctional protein distribution depend on basolateral extracellular Ca2+ in cultured epithelia. Biochim. Biophys. Acta 1222, 147–158 (1994).

    CAS  Google Scholar 

  83. Lueßen, H. L. et al. Mucoadhesive polymers in peroral peptide drug delivery. I. Influence of mucoadhesive excipients on the proteolytic activity of intestinal enzymes. Eur. J. Pharm. Sci. 4, 117–128 (1996).

    Google Scholar 

  84. Lindahl, A., Ungell, A.-L., Knutson, L. & Lennernäs, H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm. Res. 14, 497–502 (1997).

    CAS  Google Scholar 

  85. Bernkop-Schnürch, A. & Krajicek, M. E. Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: synthesis and evaluation of different chitosan-EDTA conjugates. J. Control. Release 50, 215–223 (1998).

    Google Scholar 

  86. Lannigan, R. S. & Yamarik, T. A. Final report on the safety assessment of EDTA, calcium disodium EDTA, diammonium EDTA, dipotassium EDTA, disodium EDTA, TEA-EDTA, tetrasodium EDTA, tripotassium EDTA, trisodium EDTA, HEDTA and trisodium HEDTA. Int. J. Toxicol. 21, 95–142 (2002).

    Google Scholar 

  87. Ilbäck, N. G., Stålhandske, T. & Lindh, U. Effects of EDTA on trace elements and cardiovascular function in the anesthetised rabbit. Biol. Trace Elem. Res. 76, 133–148 (2000).

    Google Scholar 

  88. Lee, H. J., McAuley, A., Schilke, K. F. & McGuire, J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv. Drug Deliv. Rev. 63, 1160–1171 (2011).

    CAS  Google Scholar 

  89. Jones, L. S., Bam, N. B. & Randolph, T. W. in Therapeutic Protein and Peptide Formulation and Delivery Ch. 12 (eds Shahrokh, Z., Sluzky, V., Cleland, J. L., Shire, S. J. & Randolph, T. W.) 206–222 (American Chemical Society, 1997).

  90. Shao, Z., Li, Y., Krishnamoorthy, R., Chermak, T. & Mitra, A. K. Differential effects of anionic, cationic, nonionic, and physiologic surfactants on the dissociation, α-chymotryptic degradation, and enteral absorption of insulin hexamers. Pharm. Res. 10, 243–251 (1993).

    CAS  Google Scholar 

  91. Gupta, S., Kesarla, R. & Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013, 848043 (2013).

    Google Scholar 

  92. Dahlgren, D. et al. Effect of absorption-modifying excipients, hypotonicity, and enteric neural activity in an in vivo model for small intestinal transport. Int. J. Pharm. 549, 239–248 (2018).

    CAS  Google Scholar 

  93. Elsayed, A. et al. Chitosan–sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin. AAPS PharmSciTech 12, 958–964 (2011).

    CAS  Google Scholar 

  94. Lo, Y. L. Relationships between the hydrophilic–lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J. Control. Release 90, 37–48 (2003).

    CAS  Google Scholar 

  95. Sugibayashi, K., Onuki, Y. & Takayama, K. Displacement of tight junction proteins from detergent-resistant membrane domains by treatment with sodium caprate. Eur. J. Pharm. Sci. 36, 246–253 (2009).

    CAS  Google Scholar 

  96. Kurasawa, M. et al. Regulation of tight junction permeability by sodium caprate in human keratinocytes and reconstructed epidermis. Biochem. Biophys. Res. Commun. 381, 171–175 (2009).

    CAS  Google Scholar 

  97. Maher, S., Leonard, T. W., Jacobsen, J. & Brayden, D. J. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv. Drug Deliv. Rev. 61, 1427–1449 (2009).

    CAS  Google Scholar 

  98. Heade, J., Maher, S., Bleiel, S. B. & Brayden, D. J. Labrasol and salts of medium-chain fatty acids can be combined in low concentrations to increase the permeability of a macromolecule marker across isolated rat intestinal mucosae. J. Pharm. Sci. 107, 1648–1655 (2018).

    CAS  Google Scholar 

  99. Keown, A. Merrion Pharma looks to wind up operations, announces liquidation plans. BioSpace https://www.biospace.com/article/merrion-pharma-looks-to-wind-up-operations-announces-liquidation-plans-/ (2016).

  100. Leonard, T. W., Lynch, J., McKenna, M. J. & Brayden, D. J. Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET. Expert Opin. Drug Deliv. 3, 685–692 (2006).

    CAS  Google Scholar 

  101. Tucker, M. E. Oral basal insulin shows promise in type 2 diabetes. Medscape Medical News https://www.medscape.com/viewarticle/882211 (2017).

  102. Halberg, I. B. et al. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 7, 179–188 (2019).

    Google Scholar 

  103. Muranushi, N., Mack, E. & Kim, S. W. The effects of fatty acids and their derivatives on the intestinal absorption of insulin in rat. Drug Dev. Ind. Pharm. 19, 929–941 (1993).

    CAS  Google Scholar 

  104. Chiasma. Chiasma Provides Update On Ongoing Mycapssa Phase 3 Clinical Trials. Chiasma http://ir.chiasmapharma.com/news-releases/news-release-details/chiasma-provides-update-ongoing-mycapssar-phase-3-clinical (2019).

  105. Sharma, P., Varma, M. V. S., Chawla, H. P. S. & Panchagnula, R. Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Farmaco 60, 884–893 (2005).

    CAS  Google Scholar 

  106. Malkov, D. et al. Oral delivery of insulin with the Eligen technology: mechanistic studies. Curr. Drug Deliv. 2, 191–197 (2005).

    CAS  Google Scholar 

  107. Castelli, M. C. et al. Comparing the efficacy and tolerability of a new daily oral vitamin B12 formulation and intermittent intramuscular vitamin B12 in normalizing low cobalamin levels: a randomized, open-label, parallel-group study. Clin. Ther. 33, 358–371.e2 (2011).

    CAS  Google Scholar 

  108. Emisphere. Improved oral delivery with Eligen. Emisphere http://www.emisphere.com/improved-oral-delivery-eligen/ (2019).

  109. Novo Nordisk. Company announcement: Novo Nordisk files for EU regulatory approval of oral semaglutide for the treatment of type 2 diabetes. Novo Nordisk http://hugin.info/2013/R/2242550/885282.pdf (2019).

  110. Novo Nordisk. Novo Nordisk files for US FDA approval of oral semaglutide for blood sugar control and cardiovascular risk reduction in adults with type 2 diabetes. Novo Nordisk https://www.novonordisk-us.com/media/news-releases.html?122958 (2019).

  111. Buckley, S. T. et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10, eaar7047 (2018). A report indicating that oral delivery of semaglutide using SNAC takes place in the stomach and is confined to tablet vicinity.

    Google Scholar 

  112. Twarog, C. et al. Intestinal permeation enhancers for oral delivery of macromolecules: a comparison between salcaprozate sodium (SNAC) and sodium caprate (C10). Pharmaceutics 11, E78 (2019). In-depth analysis of SNAC and C10 as permeation enhancers for oral delivery.

    Google Scholar 

  113. Gonze, M. D. et al. Orally administered heparin for preventing deep venous thrombosis. Am. J. Surg. 176, 176–178 (1998).

    CAS  Google Scholar 

  114. Pratley, R. et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 394, 39–50 (2019).

    CAS  Google Scholar 

  115. Tarasenko, T. N., Cusmano-Ozog, K. & McGuire, P. J. Tissue acylcarnitine status in a mouse model of mitochondrial β-oxidation deficiency during metabolic decompensation due to influenza virus infection. Mol. Genet. Metab. 125, 144–152 (2018).

    CAS  Google Scholar 

  116. Gilligan, J. P., Maurer, G. R., Railkar, A. M., Daggs, T. A. & Shields, P. P. Room temperature stable oral calcitonin formulation. Patent application WO2018026993A1 (2018).

  117. Doi, N., Tomita, M. & Hayashi, M. Absorption enhancement effect of acylcarnitines through changes in tight junction protein in Caco-2 cell monolayers. Drug Metab. Pharmacokinet. 26, 162–170 (2010).

    Google Scholar 

  118. Whitehead, K. & Mitragotri, S. Mechanistic analysis of chemical permeation enhancers for oral drug delivery. Pharm. Res. 25, 1412–1419 (2008).

    CAS  Google Scholar 

  119. Gupta, V., Hwang, B. H., Doshi, N. & Mitragotri, S. A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. J. Control. Release 172, 541–549 (2013).

    CAS  Google Scholar 

  120. Sakai, M., Imai, T., Ohtake, H., Azuma, H. & Otagiri, M. Simultaneous use of sodium deoxycholate and dipotassium glycyrrhizinate enhances the cellular transport of poorly absorbed compounds across Caco-2 cell monolayers. J. Pharm. Pharmacol. 51, 27–33 (2003).

    Google Scholar 

  121. Qiao, J. et al. Oral bioavailability and lymphatic transport of pueraria flavone-loaded self-emulsifying drug-delivery systems containing sodium taurocholate in rats. Pharmaceutics 10, 147 (2018).

    CAS  Google Scholar 

  122. Song, K. H., Chung, S. J. & Shim, C. K. Enhanced intestinal absorption of salmon calcitonin (sCT) from proliposomes containing bile salts. J. Control. Release 106, 298–308 (2005).

    CAS  Google Scholar 

  123. Lundin, S., Pantzar, N., Hedin, L. & Weström, B. R. Intestinal absorption enhancement by sodium taurodihydrofusidate of a peptide hormone analogue (dDAVP) and a macromolecule (BSA) in vitro and in vivo. Int. J. Pharm. 59, 263–269 (1990).

    CAS  Google Scholar 

  124. Moghimipour, E., Ameri, A. & Handali, S. Absorption-enhancing effects of bile salts. Molecules 20, 14451–14473 (2015).

    CAS  Google Scholar 

  125. Moghimipour, E., Jalali, A., Sajjadi Tabassi, S. A. & Löbenberg, R. The enhancing effect of sodium glycocholate and sodium salicylate on rats gastro-intestinal permeability to insulin. Iran. J. Pharm. Res. 3, 87–91 (2004).

    Google Scholar 

  126. Gordon, G. S., Moses, A. C., Silver, R. D., Flier, J. S. & Carey, M. C. Nasal absorption of insulin: enhancement by hydrophobic bile salts. Proc. Natl Acad. Sci. USA 82, 7419–7423 (2006).

    Google Scholar 

  127. Bowe, C. L. et al. Design of compounds that increase the absorption of polar molecules. Proc. Natl Acad. Sci. USA 94, 12218–12223 (2002).

    Google Scholar 

  128. Greenwood, J., Adu, J., Davey, A. J., Abbott, N. J. & Bradbury, M. W. B. The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted, rat blood–brain barrier. J. Cereb. Blood Flow Metab. 11, 644–654 (1991).

    CAS  Google Scholar 

  129. New, R. R. C. Dissolution aids for oral peptide delivery comprising a biguanide. Patent application WO2007093806A1 (2007).

  130. Diabetology, Technology. Axcess oral delivery system. Diabetology http://www.diabetology.co.uk/technology/ (2019).

  131. Diabetology, Projects. Capsulin, Combulin, Oral GLP-1. Broad product pipeline. Diabetology http://www.diabetology.co.uk/projects/ (2019).

  132. Proxima Concepts. Group development & licensee companies. Proxima Concepts http://www.oralcalcitonin.com/group.htm (2019).

  133. Williams, G. M., Iatropoulos, M. J. & Whysner, J. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food Chem. Toxicol. 37, 1027–1038 (1999).

    CAS  Google Scholar 

  134. Whitehead, K., Karr, N. & Mitragotri, S. Safe and effective permeation enhancers for oral drug delivery. Pharm. Res. 25, 1782–1788 (2008).

    CAS  Google Scholar 

  135. Bzik, V. A. & Brayden, D. J. An assessment of the permeation enhancer, 1-phenyl-piperazine (PPZ), on paracellular flux across rat intestinal mucosae in Ussing chambers. Pharm. Res. 33, 2506–2516 (2016).

    CAS  Google Scholar 

  136. Lamson, N. G., Cusimano, G., Suri, K., Zhang, A. & Whitehead, K. A. The pH of piperazine derivative solutions predicts their utility as transepithelial permeation enhancers. Mol. Pharm. 13, 578–585 (2016).

    CAS  Google Scholar 

  137. Fein, K. C., Lamson, N. G. & Whitehead, K. A. Structure–function analysis of phenylpiperazine derivatives as intestinal permeation enhancers. Pharm. Res. 34, 1320–1329 (2017).

    CAS  Google Scholar 

  138. Dickson, A. J., Vorce, S. P., Holler, J. M. & Lyons, T. P. Detection of 1-benzylpiperazine, 1-(3-trifluoromethylphenyl)-piperazine, and 1-(3-chlorophenyl)-piperazine in 3,4-methylenedioxymethamphetamine-positive urine samples. J. Anal. Toxicol. 34, 464–469 (2010).

    CAS  Google Scholar 

  139. Cummings, C. S. et al. ATRP-grown protein–polymer conjugates containing phenylpiperazine selectively enhance transepithelial protein transport. J. Control. Release 255, 270–278 (2017).

    CAS  Google Scholar 

  140. Egorova, K. S. & Ananikov, V. P. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7, 336–360 (2014).

    CAS  Google Scholar 

  141. Egorova, K. S., Gordeev, E. G. & Ananikov, V. P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev. 117, 7132–7189 (2017).

    CAS  Google Scholar 

  142. Banerjee, A. et al. Ionic liquids for oral insulin delivery. Proc. Natl Acad. Sci. USA 115, 7296–7301 (2018).

    CAS  Google Scholar 

  143. Petkovic, M. et al. Novel biocompatible cholinium-based ionic liquids — toxicity and biodegradability. Green Chem. 12, 643–649 (2010).

    CAS  Google Scholar 

  144. Williams, H. D. et al. Ionic liquids provide unique opportunities for oral drug delivery: structure optimization and in vivo evidence of utility. Chem. Commun. 50, 1688–1690 (2014).

    CAS  Google Scholar 

  145. Ma, C., Laaksonen, A., Liu, C., Lu, X. & Ji, X. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem. Soc. Rev. 47, 8685–8720 (2018).

    CAS  Google Scholar 

  146. McQueen, L. & Lai, D. Ionic liquid aqueous two-phase systems from a pharmaceutical perspective. Front. Chem. 7, 135 (2019).

    CAS  Google Scholar 

  147. Kaper, J. B., Morris, J. G. Jr & Levine, M. M. Cholera. Clin. Microbiol. Rev. 8, 48–86 (1995).

    CAS  Google Scholar 

  148. Uzzau, S., Cappuccinelli, P. & Fasano, A. Expression of Vibrio cholerae zonula occludens toxin and analysis of its subcellular localization. Microb. Pathog. 27, 377–385 (1999).

    CAS  Google Scholar 

  149. Fasano, A. & Uzzau, S. Modulation of intestinal tight junctions by zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J. Clin. Invest. 99, 1158–1164 (1997). One of the first reports to use zonula occludens toxin to deliver biologic drugs via enteral administration.

    CAS  Google Scholar 

  150. Goldblum, S. E. et al. The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J. 25, 144–158 (2011).

    CAS  Google Scholar 

  151. Takahashi, A. et al. Mutated C-terminal fragments of Clostridium perfringens enterotoxin have increased affinity to claudin-4 and reversibly modulate tight junctions in vitro. Biochem. Biophys. Res. Commun. 410, 466–470 (2011).

    CAS  Google Scholar 

  152. Maher, S., Wang, X., Bzik, V., McClean, S. & Brayden, D. J. Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. Eur. J. Pharm. Sci. 38, 301–311 (2009).

    CAS  Google Scholar 

  153. Applied Molecular Transport. Platform technology. Applied Molecular Transport https://www.appliedmt.com/platform-technology/ (2019).

  154. Bai, J. P. F., Chang, L. L. & Guo, J. H. Effects of polyacrylic polymers on the degradation of insulin and peptide drugs by chymotrypsin and trypsin. J. Pharm. Pharmacol. 48, 17–21 (1996).

    CAS  Google Scholar 

  155. Roy, S., Pal, K., Anis, A., Pramanik, K. & Prabhakar, B. Polymers in mucoadhesive drug-delivery systems: a brief note. Des. Monomers Polym. 12, 483–495 (2009).

    CAS  Google Scholar 

  156. Alexander, A., Ajazuddin, M., Swarna, M., Sharma, M. & Tripathi, D. Polymers and permeation enhancers: specialized components of mucoadhesives. Stamford J. Pharm. Sci. 4, 91–95 (2011).

    CAS  Google Scholar 

  157. Marvola, M., Nykänen, P., Rautio, S., Isonen, N. & Autere, A. M. Enteric polymers as binders and coating materials in multiple-unit site-specific drug delivery systems. Eur. J. Pharm. Sci. 7, 259–267 (1999).

    CAS  Google Scholar 

  158. Fang, Y. et al. Eudragit L/HPMCAS blend enteric-coated lansoprazole pellets: enhanced drug stability and oral bioavailability. AAPS PharmSciTech 15, 513–521 (2014).

    CAS  Google Scholar 

  159. Bando, H. & McGinity, J. W. Relationship between drug dissolution and leaching of plasticizer for pellets coated with an aqueous Eudragit S100:L100 dispersion. Int. J. Pharm. 323, 11–17 (2006).

    CAS  Google Scholar 

  160. Liu, F., Merchant, H. A., Kulkarni, R. P., Alkademi, M. & Basit, A. W. Evolution of a physiological pH 6.8 bicarbonate buffer system: application to the dissolution testing of enteric coated products. Eur. J. Pharm. Biopharm. 78, 151–157 (2011).

    CAS  Google Scholar 

  161. Siepmann, F., Siepmann, J., Walther, M., MacRae, R. & Bodmeier, R. Aqueous HPMCAS coatings: effects of formulation and processing parameters on drug release and mass transport mechanisms. Eur. J. Pharm. Biopharm. 63, 262–269 (2006).

    CAS  Google Scholar 

  162. Kamei, N., Aoyama, Y., Khafagy, E. S., Henmi, M. & Takeda-Morishita, M. Effect of different intestinal conditions on the intermolecular interaction between insulin and cell-penetrating peptide penetratin and on its contribution to stimulation of permeation through intestinal epithelium. Eur. J. Pharm. Biopharm. 94, 42–51 (2015).

    CAS  Google Scholar 

  163. Kamei, N. et al. Applicability and limitations of cell-penetrating peptides in noncovalent mucosal drug or carrier delivery systems. J. Pharm. Sci. 105, 747–753 (2016).

    CAS  Google Scholar 

  164. Kamei, N., Shigei, C., Hasegawa, R. & Takeda-Morishita, M. Exploration of the key factors for optimizing the in vivo oral delivery of insulin by using a noncovalent strategy with cell-penetrating peptides. Biol. Pharm. Bull. 41, 239–246 (2018).

    CAS  Google Scholar 

  165. Garcia, J., Fernández-Blanco, Á., Teixidó, M., Sánchez-Navarro, M. & Giralt, E. D-polyarginine lipopeptides as intestinal permeation enhancers. ChemMedChem 13, 2045–2052 (2018).

    CAS  Google Scholar 

  166. Zhang, D., Wang, J. & Xu, D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J. Control. Release 229, 130–139 (2016).

    CAS  Google Scholar 

  167. Khafagy, E. S. et al. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins. Int. J. Pharm. 381, 49–55 (2009).

    CAS  Google Scholar 

  168. Ways, T. M. M., Lau, W. M. & Khutoryanskiy, V. V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers. 10, E267 (2018).

    Google Scholar 

  169. Agulló, E., Rodríguez, M. S., Ramos, V. & Albertengo, L. Present and future role of chitin and chitosan in food. Macromol. Biosci. 3, 521–530 (2003).

    Google Scholar 

  170. Sogias, I. A., Williams, A. C. & Khutoryanskiy, V. V. Why is chitosan mucoadhesive? Biomacromolecules 9, 1837–1842 (2008).

    CAS  Google Scholar 

  171. Thanou, M. M. et al. Effects of N-trimethyl chitosan chloride, a novel absorption enhancer, on Caco-2 intestinal epithelia and the ciliary beat frequency of chicken embryo trachea. Int. J. Pharm. 185, 73–82 (1999).

    CAS  Google Scholar 

  172. Thanou, M., Verhoef, J. C., Marbach, P. & Junginger, H. E. Intestinal absorption of octreotide N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J. Pharm. Sci. 89, 951–957 (2000).

    CAS  Google Scholar 

  173. Shitrit, Y. & Bianco-Peled, H. Acrylated chitosan for mucoadhesive drug delivery systems. Int. J. Pharm. 517, 247–255 (2017).

    CAS  Google Scholar 

  174. Thanou, M., Nihot, M. T., Jansen, M., Verhoef, J. C. & Junginger, H. E. Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J. Pharm. Sci. 90, 38–46 (2001).

    CAS  Google Scholar 

  175. Kast, C. E. & Bernkop-Schnürch, A. Thiolated polymers — thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates. Biomaterials 22, 2345–2352 (2001).

    CAS  Google Scholar 

  176. Bernkop-Schnürch, A. Thiomers: a new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev. 57, 1569–1582 (2005).

    Google Scholar 

  177. Bernkop-Schnürch, A., Kast, C. E. & Guggi, D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J. Control. Release 93, 95–103 (2003).

    Google Scholar 

  178. Hanif, M., Zaman, M. & Qureshi, S. Thiomers: a blessing to evaluating era of pharmaceuticals. Int. J. Polym. Sci. 2015, 146329 (2015).

    Google Scholar 

  179. Iqbal, J. et al. Preactivated thiomers as mucoadhesive polymers for drug delivery. Biomaterials 33, 1528–1535 (2012).

    CAS  Google Scholar 

  180. Iqbal, J., Sakloetsakun, D. & Bernkop-Schnürch, A. Thiomers: inhibition of cytochrome P450 activity. Eur. J. Pharm. Biopharm. 78, 361–365 (2011).

    CAS  Google Scholar 

  181. Wang, X., Iqbal, J., Rahmat, D. & Bernkop-Schnürch, A. Preactivated thiomers: permeation enhancing properties. Int. J. Pharm. 438, 217–224 (2012).

    CAS  Google Scholar 

  182. Ijaz, M. & Bernkop-Schnürch, A. Preactivated thiomers: their role in drug delivery. Expert Opin. Drug Deliv. 12, 1269–1281 (2015).

    CAS  Google Scholar 

  183. Date, A. A., Hanes, J. & Ensign, L. M. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J. Control. Release 240, 504–526 (2016).

    CAS  Google Scholar 

  184. Houchin, M. L. & Topp, E. M. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J. Pharm. Sci. 97, 2395–2404 (2008).

    CAS  Google Scholar 

  185. Vaishya, R. D., Mandal, A., Gokulgandhi, M., Patel, S. & Mitra, A. K. Reversible hydrophobic ion-paring complex strategy to minimize acylation of octreotide during long-term delivery from PLGA microparticles. Int. J. Pharm. 489, 237–245 (2015).

    CAS  Google Scholar 

  186. Vila, A., Sánchez, A., Tobío, M., Calvo, P. & Alonso, M. J. Design of biodegradable particles for protein delivery. J. Control. Release 78, 15–24 (2002).

    CAS  Google Scholar 

  187. He, P. et al. Poly(ester amide) blend microspheres for oral insulin delivery. Int. J. Pharm. 455, 259–266 (2013).

    CAS  Google Scholar 

  188. Damgé, C., Socha, M., Ubrich, N. & Maincent, P. Poly(ε-caprolactone)/Eudragit nanoparticles for oral delivery of aspart-insulin in the treatment of diabetes. J. Pharm. Sci. 99, 879–889 (2010).

    Google Scholar 

  189. Mathiowitz, E. et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386, 410–414 (1997).

    CAS  Google Scholar 

  190. Geary, R. S. & Wade Schlameus, H. Vancomycin and insulin used as models for oral delivery of peptides. J. Control. Release 23, 65–74 (1993).

    CAS  Google Scholar 

  191. Allémann, E., Leroux, J.-C. & Gurny, R. Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv. Drug Deliv. Rev. 34, 171–189 (1998).

    Google Scholar 

  192. Kumari, A., Yadav, S. K. & Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 75, 1–18 (2010).

    CAS  Google Scholar 

  193. van de Weert, M., Hennink, W. E. & Jiskoot, W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17, 1159–1167 (2000).

    Google Scholar 

  194. Kapoor, S., Hegde, R. & Bhattacharyya, A. J. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J. Control. Release 140, 34–39 (2009).

    CAS  Google Scholar 

  195. Amirthalingam, E. et al. Macrocyclic imidazolium-based amphiphiles for the synthesis of gold nanoparticles and delivery of anionic drugs. J. Colloid Interface Sci. 437, 132–139 (2015).

    CAS  Google Scholar 

  196. Joshi, H. M., Bhumkar, D. R., Joshi, K., Pokharkar, V. & Sastry, M. Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22, 300–305 (2006).

    CAS  Google Scholar 

  197. Bhumkar, D. R., Joshi, H. M., Sastry, M. & Pokharkar, V. B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 24, 1415–1426 (2007).

    CAS  Google Scholar 

  198. Deng, W., Wang, H., Wu, B. & Zhang, X. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm. Sin. B 9, 74–86 (2019).

    Google Scholar 

  199. Deng, W. et al. Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism. Nanomedicine 13, 1965–1974 (2017).

    CAS  Google Scholar 

  200. Florek, J., Caillard, R. & Kleitz, F. Evaluation of mesoporous silica nanoparticles for oral drug delivery—current status and perspective of MSNs drug carriers. Nanoscale 9, 15252–15277 (2017).

    CAS  Google Scholar 

  201. Diaz, A. et al. Nanoencapsulation of insulin into zirconium phosphate for oral delivery applications. Biomacromolecules 11, 2465–2470 (2010).

    CAS  Google Scholar 

  202. Safari, M., Kamari, Y., Ghiaci, M., Sadeghi-aliabadi, H. & Mirian, M. Synthesis and characterization of insulin/zirconium phosphate@TiO2hybrid composites for enhanced oral insulin delivery applications. Drug Dev. Ind. Pharm. 43, 862–870 (2017).

    CAS  Google Scholar 

  203. Han, L. et al. Synthesis and performance of functionalized α-zirconium phosphate modified with octadecyl isocyanate. J. Nanomater. 2018, 5873871 (2018).

    Google Scholar 

  204. Rachmiel, M. et al. OR14-1 pharmacodynamics, safety, tolerability, and efficacy of oral insulin formulation (Oshadi Icp) among young adults with type 1 diabetes: a summary of clinical studies phases I, Ib, and Ii. J. Endocr. Soc. 3, OR14–1 (2019).

    Google Scholar 

  205. Kulthe, S. S., Choudhari, Y. M., Inamdar, N. N. & Mourya, V. Polymeric micelles: authoritative aspects for drug delivery. Des. Monomers Polym. 15, 465–521 (2012).

    CAS  Google Scholar 

  206. Sadoqi, M., Lau-Cam, C. A. & Wu, S. H. Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry. J. Colloid Interface Sci. 333, 585–589 (2009).

    CAS  Google Scholar 

  207. Xie, S. et al. Targeted folate-conjugated pluronic P85/poly(lactide-co-glycolide) polymersome for the oral delivery of insulin. Nanomedicine 13, 2527–2544 (2018).

    CAS  Google Scholar 

  208. Batrakova, E. V. & Kabanov, A. V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 130, 98–106 (2008).

    CAS  Google Scholar 

  209. Yang, H. et al. Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter 9, 8589–8599 (2013).

    CAS  Google Scholar 

  210. Zhang, Z. H. et al. N-octyl-N-arginine chitosan micelles as an oral delivery system of insulin. J. Biomed. Nanotechnol. 9, 601–609 (2013).

    CAS  Google Scholar 

  211. Akbarzadeh, A. et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102 (2013).

    Google Scholar 

  212. Attama, A. A., Momoh, M. A. & Builders, P. F. in Recent Advances in Novel Drug Carrier Systems Ch. 5 (ed Sezer, A. D.) (IntechOpen, 2012).

  213. Johnston, M. J. W. et al. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim. Biophys. Acta 1768, 1121–1127 (2007).

    CAS  Google Scholar 

  214. Wagner, A. & Vorauer-Uhl, K. Liposome technology for industrial purposes. J. Drug Deliv. 2011, 591325 (2011).

    Google Scholar 

  215. Nisini, R., Poerio, N., Mariotti, S., De Santis, F. & Fraziano, M. The multirole of liposomes in therapy and prevention of infectious diseases. Front. Immunol. 9, 155 (2018).

    Google Scholar 

  216. Ball, R. L., Bajaj, P. & Whitehead, K. A. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. Sci. Rep. 8, 2178 (2018).

    Google Scholar 

  217. Almeida, A. J. & Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 59, 478–490 (2007).

    CAS  Google Scholar 

  218. Sharma, A. & Sharma, U. S. Liposomes in drug delivery: progress and limitations. Int. J. Pharm. 154, 123–140 (1997).

    CAS  Google Scholar 

  219. Ahn, H. & Park, J. H. Liposomal delivery systems for intestinal lymphatic drug transport. Biomater. Res. 20, 36 (2016).

    Google Scholar 

  220. Goodman, B. E. Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ. 34, 44–53 (2010).

    Google Scholar 

  221. He, H. et al. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 9, 36–48 (2019).

    Google Scholar 

  222. Edgar, J. R. Q&A: What are exosomes, exactly? BMC Biol. 14, 46 (2016).

    Google Scholar 

  223. Hessvik, N. P. & Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75, 193–208 (2018).

    CAS  Google Scholar 

  224. Kaparakis-Liaskos, M. & Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15, 375–387 (2015).

    CAS  Google Scholar 

  225. Goes, A. & Fuhrmann, G. Biogenic and biomimetic carriers as versatile transporters to treat infections. ACS Infect. Dis. 4, 881–892 (2018).

    CAS  Google Scholar 

  226. Betker, J. L., Angle, B. M., Graner, M. W. & Anchordoquy, T. J. The potential of exosomes from cow milk for oral delivery. J. Pharm. Sci. 108, 1496–1505 (2019). Highlights the potential of exosomes for oral delivery and that they are absorbed in the gastrointestinal tract via neonatal Fc receptors.

    CAS  Google Scholar 

  227. Munagala, R., Aqil, F., Jeyabalan, J. & Gupta, R. C. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 371, 48–61 (2016).

    CAS  Google Scholar 

  228. Manca, S. et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci. Rep. 8, 11321 (2018).

    Google Scholar 

  229. Yang, M. X. et al. Crystalline monoclonal antibodies for subcutaneous delivery. Proc. Natl Acad. Sci. USA 100, 6934–6939 (2003).

    CAS  Google Scholar 

  230. Halban, P. A., Mutkoski, R., Dodson, G. & Orci, L. Resistance of the insulin crystal to lysosomal proteases: implications for pancreatic B-cell crinophagy. Diabetologia 30, 348–353 (1987).

    CAS  Google Scholar 

  231. Margolin, A. L. Novel crystalline catalysts. Trends Biotechnol. 14, 223–230 (1996).

    CAS  Google Scholar 

  232. Margolin, A. L. & Navia, M. A. Protein crystals as novel catalytic materials. Angew. Chem. Int. Ed. Engl. 40, 2204–2222 (2001).

    CAS  Google Scholar 

  233. Mass High Tech Staff, Boston Business Journal. Calif. biotech takes over now-defunct Altus’ IP, assets. The Business Journals https://www.bizjournals.com/boston/blog/mass-high-tech/2010/05/calif-biotech-takes-over-now-defunct-altus.html (2010).

  234. Ajinomoto Althea, Inc. Ajinomoto Co., Inc. Completes Acquisition of Althea Technologies, Inc. Cision PR Newswire https://www.prnewswire.com/news-releases/ajinomoto-co-inc-completes-acquisition-of-althea-technologies-inc-201549041.html (2013).

  235. Hetrick, E. M., Sperry, D. C., Nguyen, H. K. & Strege, M. A. Characterization of a novel cross-linked lipase: impact of cross-linking on solubility and release from drug product. Mol. Pharm. 11, 1189–1200 (2014).

    CAS  Google Scholar 

  236. Ignatious, F., Sun, L., Lee, C. P. & Baldoni, J. Electrospun nanofibers in oral drug delivery. Pharm. Res. 27, 576–588 (2010).

    CAS  Google Scholar 

  237. Wang, J. et al. Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer 55, 673–685 (2014).

    CAS  Google Scholar 

  238. Li, D. & Xia, Y. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004).

    CAS  Google Scholar 

  239. Xie, J. et al. Mussel inspired protein-mediated surface modification to electrospun fibers and their potential biomedical applications. J. Biomed. Mater. Res. A 100, 929–938 (2012).

    Google Scholar 

  240. Jaiturong, P. et al. Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian J. Pharm. Sci. 13, 239–247 (2018).

    Google Scholar 

  241. Stephansen, K., García-Díaz, M., Jessen, F., Chronakis, I. S. & Nielsen, H. M. Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein. Int. J. Pharm. 495, 58–66 (2015).

    CAS  Google Scholar 

  242. Bhujbal, S. & Dash, A. K. Metformin-loaded hyaluronic acid nanostructure for oral delivery. AAPS PharmSciTech 19, 2543–2553 (2018).

    CAS  Google Scholar 

  243. Teutonico, D. & Ponchel, G. Patches for improving gastrointestinal absorption: an overview. Drug Discov. Today 16, 991–997 (2011).

    CAS  Google Scholar 

  244. Gupta, V. et al. Delivery of exenatide and insulin using mucoadhesive intestinal devices. Ann. Biomed. Eng. 44, 1993–2007 (2016).

    Google Scholar 

  245. Banerjee, A., Lee, J. & Mitragotri, S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng. Transl. Med. 1, 338–346 (2016).

    CAS  Google Scholar 

  246. Grabovac, V., Föger, F. & Bernkop-Schnürch, A. Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers. Int. J. Pharm. 348, 169–174 (2008).

    CAS  Google Scholar 

  247. Banerjee, A., Wong, J., Gogoi, R., Brown, T. & Mitragotri, S. Intestinal micropatches for oral insulin delivery. J. Drug Target. 25, 608–615 (2017).

    CAS  Google Scholar 

  248. Whitehead, K., Shen, Z. & Mitragotri, S. Oral delivery of macromolecules using intestinal patches: applications for insulin delivery. J. Control. Release 98, 37–45 (2004).

    CAS  Google Scholar 

  249. Gupta, V. et al. Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. J. Control. Release 172, 753–762 (2013).

    CAS  Google Scholar 

  250. Ito, Y. et al. Absorption of interferon α from patches in rats. J. Drug Target. 13, 383–390 (2005).

    CAS  Google Scholar 

  251. Venkatesan, N. et al. Gastro-intestinal patch system for the delivery of erythropoietin. J. Control. Release 111, 19–26 (2006).

    CAS  Google Scholar 

  252. Eiamtrakarn, S. et al. Gastrointestinal mucoadhesive patch system (GI-MAPS) for oral administration of G-CSF, a model protein. Biomaterials 23, 145–152 (2002).

    CAS  Google Scholar 

  253. Shen, Z. & Mitragotri, S. Intestinal patches for oral drug delivery. Pharm. Res. 19, 391–395 (2002).

    CAS  Google Scholar 

  254. Banerjee, A., Chen, R., Arafin, S. & Mitragotri, S. Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. J. Control. Release 297, 71–78 (2019).

    CAS  Google Scholar 

  255. Rzhevskiy, A. S., Singh, T. R. R., Donnelly, R. F. & Anissimov, Y. G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release 270, 184–202 (2018). Highlights the use of microneedles for drug delivery enhancement.

    CAS  Google Scholar 

  256. Furness, G. Interview: Mir Imran, Rani Therapeutics. ONdrugDelivery Magazine 59, 32–35 (July 2015).

    Google Scholar 

  257. Hale, C. Rani Therapeutics completes first-in-human safety study of its robotic biologic pill. FierceBiotech https://www.fiercebiotech.com/medtech/rani-therapeutics-completes-first-human-safety-study-its-robotic-biologic-pill (2019).

  258. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019). Reports the ultra-long-lasting oral delivery of molecules using a polymeric scaffold.

    CAS  Google Scholar 

  259. Bellinger, A. M. et al. Oral, ultra-long-lasting drug delivery: Application toward malaria elimination goals. Sci. Transl. Med. 8, 365ra157 (2016).

    Google Scholar 

  260. Kirtane, A. R. et al. Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy. Nat. Commun. 9, 2 (2018).

    Google Scholar 

  261. Kanasty, R. et al. A pharmaceutical answer to nonadherence: once weekly oral memantine for Alzheimer’s disease. J. Control. Release 303, 34–41 (2019).

    CAS  Google Scholar 

  262. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    CAS  Google Scholar 

  263. Peppas, N. A., Wood, K. M. & Blanchette, J. O. Hydrogels for oral delivery of therapeutic proteins. Expert Opin. Biol. Ther. 4, 881–887 (2004).

    CAS  Google Scholar 

  264. Ichikawa, H. & Peppas, N. A. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers. J. Biomed. Mater. Res. A 67, 609–617 (2003).

    Google Scholar 

  265. Kamei, N. et al. Complexation hydrogels for intestinal delivery of interferon β and calcitonin. J. Control. Release 134, 98–102 (2009).

    CAS  Google Scholar 

  266. Edelman, E. R., Nathan, A., Katada, M., Gates, J. & Karnovsky, M. J. Perivascular graft heparin delivery using biodegradable polymer wraps. Biomaterials 21, 2279–2286 (2000).

    CAS  Google Scholar 

  267. Li, Z. et al. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release. Acta Pharm. Sin. B 6, 344–351 (2016).

    Google Scholar 

  268. Bai, X. et al. Chitosan-based thermo/pH double sensitive hydrogel for controlled drug delivery. Macromol. Biosci. 18, 1700305 (2018).

    Google Scholar 

  269. Slaughter, B. V., Blanchard, A. T., Maass, K. F. & Peppas, N. A. Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH. J. Appl. Polym. Sci. 132, 42076 (2015).

    Google Scholar 

  270. Basan, H., Gümüşderelioğlu, M. & Tevfik Orbey, M. Release characteristics of salmon calcitonin from dextran hydrogels for colon-specific delivery. Eur. J. Pharm. Biopharm. 65, 39–46 (2007).

    CAS  Google Scholar 

  271. Ainslie, K. M., Kraning, C. M. & Desai, T. A. Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. Lab Chip 8, 1042–1047 (2008).

    CAS  Google Scholar 

  272. Nielsen, L. H., Keller, S. S. & Boisen, A. Microfabricated devices for oral drug delivery. Lab Chip 18, 2348–2358 (2018).

    CAS  Google Scholar 

  273. Mazzoni, C. et al. Polymeric lids for microcontainers for oral protein delivery. Macromol. Biosci. 19, e1900004 (2019).

    Google Scholar 

  274. Jørgensen, J. et al. Microcontainers for oral insulin delivery – in vitro studies of permeation enhancement. Eur. J. Pharm. Biopharm. 143, 98–105 (2019).

    Google Scholar 

  275. von Halling Laier, C. et al. Microcontainers for protection of oral vaccines, in vitro and in vivo evaluation. J. Control. Release 294, 91–101 (2019).

    Google Scholar 

  276. Aran, K. et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl. Med. 9, eaaf6413 (2017).

    Google Scholar 

  277. Fox, C. B. et al. Fabrication of sealed nanostraw microdevices for oral drug delivery. ACS Nano 10, 5873–5881 (2016).

    CAS  Google Scholar 

  278. Kam, K. R. et al. Nanostructure-mediated transport of biologics across epithelial tissue: enhancing permeability via nanotopography. Nano Lett. 13, 164–171 (2013). One of the first reports using surface roughness (texture) with microfabricated devices to improve transport of biologics.

    CAS  Google Scholar 

  279. Stewart, T. et al. Calibrated flux measurements reveal a nanostructure-stimulated transcytotic pathway. Exp. Cell Res. 355, 153–161 (2017).

    CAS  Google Scholar 

  280. Nemeth, C. L., Lykins, W. R., Tran, H., ElSayed, M. E. H. & Desai, T. A. Bottom-up fabrication of multilayer enteric devices for the oral delivery of peptides. Pharm. Res. 36, 89 (2019).

  281. Abramson, A., Halperin, F., Kim, J. & Traverso, G. Quantifying the value of orally delivered biologic therapies: a cost-effectiveness analysis of oral semaglutide. J. Pharm. Sci. 108, 3138–3145 (2019). Highlights the economics of delivering biologics orally.

    CAS  Google Scholar 

  282. Garcia-Castillo, M. D. et al. Mucosal absorption of therapeutic peptides by harnessing the endogenous sorting of glycosphingolipids. eLife 7, e34469 (2018).

    Google Scholar 

  283. Liu, Y. et al. Trehalose glycopolymer enhances both solution stability and pharmacokinetics of a therapeutic protein. Bioconjug. Chem. 28, 836–845 (2017).

    Google Scholar 

  284. Alam, F. et al. Oral delivery of a potent anti-angiogenic heparin conjugate by chemical conjugation and physical complexation using deoxycholic acid. Biomaterials 35, 6543–6552 (2014).

    CAS  Google Scholar 

  285. Behrens, C. R. & Liu, B. Methods for site-specific drug conjugation to antibodies. MAbs 6, 46–53 (2014).

    Google Scholar 

  286. Knudsen, L. B. & Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 10, 155 (2019).

    Google Scholar 

  287. Sarkissian, C. N. et al. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc. Natl Acad. Sci. USA 105, 20894–20899 (2008).

    CAS  Google Scholar 

  288. Cummings, C. S. et al. Design of stomach acid-stable and mucin-binding enzyme polymer conjugates. Biomacromolecules 18, 576–586 (2017).

    CAS  Google Scholar 

  289. Fuhrmann, K. & Fuhrmann, G. Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr. Opin. Colloid Interface Sci. 31, 67–74 (2017).

    CAS  Google Scholar 

  290. US Food and Drug Administration. Generally recognized as safe (GRAS). FDA https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (2018). A useful database of FDA-approved ingredients with generally recognized as safe (GRAS) designation.

  291. Strohl, W. R. & Strohl, L. M. Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area in the Pharmaceutical Industry 1–13 (Woodhead, 2012).

  292. Harloff-Helleberg, S., Nielsen, L. H. & Nielsen, H. M. Animal models for evaluation of oral delivery of biopharmaceuticals. J. Control. Release 268, 57–71 (2017).

    CAS  Google Scholar 

  293. von Klein, C. H. The medical features of the Papyrus Ebers. JAMA 45, 1928–1935 (1905).

    Google Scholar 

  294. Sonnedecker, G. & Griffenhagen, G. A history of sugar-coated pills and tablets. J. Am. Pharm. Assoc. 18, 486–488 (1957).

    Google Scholar 

  295. Baldwin, E. A., Hagenmaier, R. & Bai, J. Edible Coatings and Films to Improve Food Quality 2nd edn (CRC, 2002).

  296. Karamitsos, D. T. The story of insulin discovery. Diabetes Res. Clin. Pract. 93, S2–S8 (2011).

    CAS  Google Scholar 

  297. Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12, 141–146 (1922).

    CAS  Google Scholar 

  298. Scherer, R. P. Method of and machine for making capsules. US Patent US1970396A (1934).

  299. Evonik. Precision medication Eudragit. Evonik https://history.evonik.com/sites/geschichte/en/inventions/eudragit/ (2019).

  300. Sun, Y. The creation of synthetic crystalline bovine insulin. Protein Cell 6, 781–783 (2015).

    Google Scholar 

  301. Bangham, A. D., Standish, M. M. & Watkins, J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965).

    CAS  Google Scholar 

  302. Abuchowski, A., van Es, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    CAS  Google Scholar 

  303. Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T. & Davis, F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977).

    CAS  Google Scholar 

  304. Itakura, K. et al. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198, 1056–1063 (1977).

    CAS  Google Scholar 

  305. US Food and Drug Administration. Drugs@FDA: FDA approved drug products. Original new drug application (NDA and BLA) approvals October 1982. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=reportsSearch.process&rptName=2&reportSelectMonth=10&reportSelectYear=1982&nav (2019).

  306. Gasco, M. R. Method for producing solid lipid microspheres having a narrow size distribution. US Patent US5250236A (1993).

  307. Kim, Y.-C., Park, J.-H. & Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012).

    CAS  Google Scholar 

  308. US Food and Drug Administration. Drugs@FDA: FDA approved drug products. Cyclosporine. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050715 (2019).

  309. US Food and Drug Administration. Drugs@FDA: FDA approved drug products. Desmopressin acetate. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=019955 (2019).

  310. US Food and Drug Administration. Drugs@FDA: FDA approved drug products. Exenatide Synthetic. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021773 (2019).

  311. US Securities and Exchange Commission. Emisphere reports first quarter 2015 financial results. US Securities and Exchange Commission https://www.sec.gov/Archives/edgar/data/805326/000119312515190200/d925281dex991.htm (2015).

  312. US Food and Drug Administration. Drugs@FDA: FDA approved drug products Semaglutide. FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=213051 (2019).

  313. Chiasma. Press release: Chiasma completes enrollment of CHIASMA OPTIMAL phase 3 clinical trial of octreotide capsules in patients with acromegaly. Chiasma http://ir.chiasmapharma.com/news-releases/news-release-details/chiasma-completes-enrollment-chiasma-optimal-phase-3-clinical?ID=2369676 (2018).

  314. Oramed Pharmaceuticals, Inc. Press releases: Oramed provides clinical update with meaningful data expected by year-end. Oramed https://www.oramed.com/oramed-provides-clinical-update-with-meaningful-data-expected-by-year-end/ (2019).

  315. Enteris BioPharma. Pipeline: Ovarest. Enteris BioPharma https://enterisbiopharma.com/pipeline/ovarest/ (2019).

  316. Rosenstock, J. et al. Effect of additional oral semaglutide vs sitagliptin on glycated hemoglobin in adults with type 2 diabetes uncontrolled with metformin alone or with sulfonylurea : the PIONEER 3 randomized clinical trial. JAMA 321, 1466–1480 (2019).

    CAS  Google Scholar 

  317. Yamamoto, A. et al. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm. Res. 11, 1496–1500 (1994).

    CAS  Google Scholar 

  318. Morishita, M., Morishita, I., Takayama, K., Machida, Y. & Nagai, T. Novel oral microspheres of insulin with protease inhibitor protecting from enzymatic degradation. Int. J. Pharm. 78, 1–7 (1992).

    CAS  Google Scholar 

  319. Morishita, I., Morishita, M., Takayama, K., Machida, Y. & Nagai, T. Hypoglycemic effect of novel oral microspheres of insulin with protease inhibitor in normal and diabetic rats. Int. J. Pharm. 78, 9–16 (1992).

    CAS  Google Scholar 

  320. Geho, W. B., Geho, H. C., Lau, J. R. & Gana, T. J. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation. J. Diabetes Sci. Technol. 3, 1451–1459 (2009).

    Google Scholar 

Download references

Acknowledgements

S.M. acknowledges funding from Blavatnik Biomedical Accelerator of Harvard University. T.D.B. acknowledges funding from the National Science Foundation (NSF) Graduate Research Fellowship (DGE-1745303). K.A.W. was supported by NSF grant number 1807983.

Author information

Authors and Affiliations

Authors

Contributions

S.M., T.D.B. and K.A.W. contributed to discussions of the article content, writing and review or editing of the manuscript before submission. T.D.B. additionally researched data for the article.

Corresponding author

Correspondence to Samir Mitragotri.

Ethics declarations

Competing interests

S.M. declares that he is a shareholder and director of i2O Therapeutics, which is developing oral-drug-delivery products based on ionic liquids, and acts as a consultant and as a member of the advisory board of Entrega Bio. T.D.B. declares that he is a shareholder and employee of i2O Therapeutics. K.A.W. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, T.D., Whitehead, K.A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat Rev Mater 5, 127–148 (2020). https://doi.org/10.1038/s41578-019-0156-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0156-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research