Minimizing non-radiative recombination losses in perovskite solar cells

Abstract

Photovoltaic solar cells based on metal-halide perovskites have gained considerable attention over the past decade because of their potentially low production cost, earth-abundant raw materials, ease of fabrication and ever-increasing power-conversion efficiencies of up to 25.2%. This type of solar cells offers the promise of generating electricity at a more competitive unit price than traditional fossil fuels by 2035. Nevertheless, the best research-cell efficiencies are still below the theoretical limit defined by the Shockley–Queisser theory, owing to the presence of non-radiative recombination losses. In this Review, we analyse the predominant pathways that contribute to non-radiative recombination losses in perovskite solar cells and evaluate their impact on device performance. We then discuss how non-radiative recombination losses can be estimated through reliable characterization techniques and highlight some notable advances in mitigating these losses, which hint at pathways towards defect-free perovskite solar cells. Finally, we outline directions for future work that will push the efficiency of perovskite solar cells towards the radiative limit.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Perovskite solar cell configurations and record cell parameters compared to the Shockley–Queisser limit.
Fig. 2: Charge-carrier generation and recombination kinetics.
Fig. 3: Characterization techniques to quantify non-radiative recombination losses in perovskite thin films and complete devices.
Fig. 4: Defect-passivation strategies.
Fig. 5: Graded junctions in perovskite solar cells.
Fig. 6: Calculations of the maximum achievable device performance parameters in single-junction perovskite solar cells.

References

  1. 1.

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    CAS  Google Scholar 

  2. 2.

    Wang, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019).

    CAS  Google Scholar 

  3. 3.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  4. 4.

    Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018).

    CAS  Google Scholar 

  5. 5.

    Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    CAS  Google Scholar 

  6. 6.

    Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    CAS  Google Scholar 

  7. 7.

    Chen, J. & Park, N.-G. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 1803019 (2018).

  8. 8.

    Aydin, E., De Bastiani, M. & De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019).

    Google Scholar 

  9. 9.

    Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).

    Google Scholar 

  10. 10.

    Sarritzu, V. et al. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Sci. Rep. 7, 44629 (2017).

    CAS  Google Scholar 

  11. 11.

    Tvingstedt, K. et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014).

    CAS  Google Scholar 

  12. 12.

    Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    CAS  Google Scholar 

  13. 13.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    CAS  Google Scholar 

  14. 14.

    Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

    CAS  Google Scholar 

  15. 15.

    Yang, S. et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019).

    CAS  Google Scholar 

  16. 16.

    Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    CAS  Google Scholar 

  17. 17.

    Shao, Y., Yuan, Y. & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016).

    CAS  Google Scholar 

  18. 18.

    Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    CAS  Google Scholar 

  19. 19.

    Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    CAS  Google Scholar 

  20. 20.

    Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    CAS  Google Scholar 

  21. 21.

    Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    CAS  Google Scholar 

  22. 22.

    Wu, S. et al. Efficient large guanidinium mixed perovskite solar cells with enhanced photovoltage and low energy losses. Chem. Commun. 55, 4315–4318 (2019).

    CAS  Google Scholar 

  23. 23.

    Zhou, W. et al. Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V. Adv. Funct. Mater. 29, 1901026 (2019).

    Google Scholar 

  24. 24.

    Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

    Google Scholar 

  25. 25.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Google Scholar 

  26. 26.

    Lin, Y. et al. Π-conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 29, 1604545 (2017).

    Google Scholar 

  27. 27.

    Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015).

    CAS  Google Scholar 

  28. 28.

    Luo, D. et al. Dual-source precursor approach for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 29, 1604758 (2017).

    Google Scholar 

  29. 29.

    Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photon. 7, 306–310 (2013).

    CAS  Google Scholar 

  30. 30.

    Sha, W. E. I., Ren, X., Chen, L. & Choy, W. C. H. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015).

    Google Scholar 

  31. 31.

    Stranks, S. D., Hoye, R. L. Z., Di, D., Friend, R. H. & Deschler, F. The physics of light emission in halide perovskite devices. Adv. Mater. 1803336 (2018).

  32. 32.

    Hutter, E. M. et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2017).

    CAS  Google Scholar 

  33. 33.

    Stranks, S. D. & Plochocka, P. The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018).

    CAS  Google Scholar 

  34. 34.

    Stranks, S. D. Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2, 1515–1525 (2017).

    CAS  Google Scholar 

  35. 35.

    Eperon, G. E., Hörantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017).

    CAS  Google Scholar 

  36. 36.

    Filipiĉ, M. et al. CH3NH3PbI3 perovskite/silicon tandem solar cells: Characterization based optical simulations. Opt. Express 23, A263–A278 (2015).

    Google Scholar 

  37. 37.

    Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).

    CAS  Google Scholar 

  38. 38.

    Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photon. 10, 53–59 (2016).

    CAS  Google Scholar 

  39. 39.

    Fu, J. et al. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8, 1300 (2017).

    Google Scholar 

  40. 40.

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    CAS  Google Scholar 

  41. 41.

    Quan, L. N., García de Arquer, F. P., Sabatini, R. P. & Sargent, E. H. Perovskites for light emission. Adv. Mater. 30, 1801996 (2018).

    Google Scholar 

  42. 42.

    Richter, J. M. et al. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commum. 8, 376 (2017).

    Google Scholar 

  43. 43.

    Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

    CAS  Google Scholar 

  44. 44.

    Bretschneider, S. A. et al. Quantifying polaron formation and charge carrier cooling in lead-iodide perovskites. Adv. Mater. 30, 1707312 (2018).

    Google Scholar 

  45. 45.

    Joshi, P. P., Maehrlein, S. F. & Zhu, X. Dynamic screening and slow cooling of hot carriers in lead halide perovskites. Adv. Mater. 1803054 (2019).

  46. 46.

    Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    CAS  Google Scholar 

  47. 47.

    Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    CAS  Google Scholar 

  48. 48.

    de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Google Scholar 

  49. 49.

    Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commum. 7, 11755 (2016).

    Google Scholar 

  50. 50.

    Ran, C., Xu, J., Gao, W., Huang, C. & Dou, S. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev. 47, 4581–4610 (2018).

    CAS  Google Scholar 

  51. 51.

    Hill, A. H., Kennedy, C. L., Massaro, E. S. & Grumstrup, E. M. Perovskite carrier transport: disentangling the impacts of effective mass and scattering time through microscopic optical detection. J. Phys. Chem. Lett. 9, 2808–2813 (2018).

    CAS  Google Scholar 

  52. 52.

    Wang, Z. et al. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 3, 855–861 (2018).

    CAS  Google Scholar 

  53. 53.

    Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 12, 596–606 (2019).

    CAS  Google Scholar 

  54. 54.

    Li, L. et al. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv. Mater. 28, 9862–9868 (2016).

    CAS  Google Scholar 

  55. 55.

    Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    CAS  Google Scholar 

  56. 56.

    Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Google Scholar 

  57. 57.

    Solanki, A. et al. Cation influence on carrier dynamics in perovskite solar cells. Nano Energy 58, 604–611 (2019).

    CAS  Google Scholar 

  58. 58.

    He, Y. & Galli, G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem. Mater. 26, 5394–5400 (2014).

    CAS  Google Scholar 

  59. 59.

    Wu, N. et al. Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements. Energy Technol. 5, 1827–1835 (2017).

    CAS  Google Scholar 

  60. 60.

    Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717–727 (1947).

    Google Scholar 

  61. 61.

    Adinolfi, V. et al. The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater. 28, 3406–3410 (2016).

    CAS  Google Scholar 

  62. 62.

    Aranda, C., Guerrero, A. & Bisquert, J. Ionic effect enhances light emission and the photovoltage of methylammonium lead bromide perovskite solar cells by reduced surface recombination. ACS Energy Lett. 4, 741–746 (2019).

    CAS  Google Scholar 

  63. 63.

    Yang, D. et al. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett. 19, 3313–3320 (2019).

  64. 64.

    Abdi-Jalebi, M. et al. Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci. Adv. 5, eaav2012 (2019).

    CAS  Google Scholar 

  65. 65.

    Halvani Anaraki, E. et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett. 3, 773–778 (2018).

    CAS  Google Scholar 

  66. 66.

    Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017).

    CAS  Google Scholar 

  67. 67.

    Tress, W., Leo, K. & Riede, M. Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: a drift-diffusion simulation study. Phys. Rev. B 85, 155201 (2012).

    Google Scholar 

  68. 68.

    Tress, W. et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165 (2018).

    CAS  Google Scholar 

  69. 69.

    Wolff, C. M. et al. Reduced interface-mediated recombination for high open-circuit voltages in CN3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017).

    Google Scholar 

  70. 70.

    Wang, S. et al. Large guanidinium cation enhance photovoltage for perovskite solar cells via solution-processed secondary growth technique. Sol. Energy 176, 118–125 (2018).

    CAS  Google Scholar 

  71. 71.

    Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).

    CAS  Google Scholar 

  72. 72.

    Wang, J. et al. Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 4, 222–227 (2019).

    CAS  Google Scholar 

  73. 73.

    Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

    CAS  Google Scholar 

  74. 74.

    Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016).

    Google Scholar 

  75. 75.

    Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).

    CAS  Google Scholar 

  76. 76.

    Evans, T. J. S. et al. Competition between hot-electron cooling and large polaron screening in CsPbBr3 perovskite single crystals. J. Phys. Chem. C 122, 13724–13730 (2018).

    CAS  Google Scholar 

  77. 77.

    Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Google Scholar 

  78. 78.

    Guo, Z., Wu, X., Zhu, T., Zhu, X. & Huang, L. Electron–phonon scattering in atomically thin 2D perovskites. ACS Nano 10, 9992–9998 (2016).

    CAS  Google Scholar 

  79. 79.

    Motta, C. & Sanvito, S. Electron–phonon coupling and polaron mobility in hybrid perovskites from first principles. J. Phys. Chem. C 122, 1361–1366 (2018).

    CAS  Google Scholar 

  80. 80.

    Karakus, M. et al. Phonon–electron scattering limits free charge mobility in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 4991–4996 (2015).

    CAS  Google Scholar 

  81. 81.

    Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    CAS  Google Scholar 

  82. 82.

    Wright, A. D. et al. Band-tail recombination in hybrid lead iodide perovskite. Adv. Funct. Mater. 27, 1700860 (2017).

    Google Scholar 

  83. 83.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Google Scholar 

  84. 84.

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    CAS  Google Scholar 

  85. 85.

    Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017).

    Google Scholar 

  86. 86.

    Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018).

    CAS  Google Scholar 

  87. 87.

    Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Google Scholar 

  88. 88.

    Green, M. A. Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovolt. Res. Appl. 20, 472–476 (2012).

    CAS  Google Scholar 

  89. 89.

    Pazos-Outon, L. M., Xiao, T. P. & Yablonovitch, E. Fundamental efficiency limit of lead iodide perovskite solar cells. J. Phys. Chem. Lett. 9, 1703–1711 (2018).

    CAS  Google Scholar 

  90. 90.

    Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Google Scholar 

  91. 91.

    Shi, X.-B. et al. Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018).

    Google Scholar 

  92. 92.

    Tress, W. Perovskite solar cells on the way to their radiative efficiency limit – insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017).

    Google Scholar 

  93. 93.

    Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    CAS  Google Scholar 

  94. 94.

    Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–24 (2017).

    Google Scholar 

  95. 95.

    Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    CAS  Google Scholar 

  96. 96.

    Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    CAS  Google Scholar 

  97. 97.

    Birkhold, S. T. et al. Interplay of mobile ions and injected carriers creates recombination centers in metal halide perovskites under bias. ACS Energy Lett. 3, 1279–1286 (2018).

    CAS  Google Scholar 

  98. 98.

    Reislöhner, U., Metzner, H. & Ronning, C. Hopping conduction observed in thermal admittance spectroscopy. Phys. Rev. Lett. 104, 226403 (2010).

    Google Scholar 

  99. 99.

    Losee, D. L. Admittance spectroscopy of impurity levels in Schottky barriers. J. Appl. Phys. 46, 2204–2214 (1975).

    CAS  Google Scholar 

  100. 100.

    Wang, S., Kaienburg, P., Klingebiel, B., Schillings, D. & Kirchartz, T. Understanding thermal admittance spectroscopy in low-mobility semiconductors. J. Phys. Chem. C 122, 9795–9803 (2018).

    CAS  Google Scholar 

  101. 101.

    Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

    CAS  Google Scholar 

  102. 102.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    CAS  Google Scholar 

  103. 103.

    Ono, L. K. & Qi, Y. Surface and interface aspects of organometal halide perovskite materials and solar cells. J. Phys. Chem. Lett. 7, 4764–4794 (2016).

    CAS  Google Scholar 

  104. 104.

    Ohmann, R. et al. Real-space imaging of the atomic structure of organic–inorganic perovskite. J. Am. Chem. Soc. 137, 16049–16054 (2015).

    CAS  Google Scholar 

  105. 105.

    Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    CAS  Google Scholar 

  106. 106.

    El-Hajje, G. et al. Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Energy Environ. Sci. 9, 2286–2294 (2016).

    CAS  Google Scholar 

  107. 107.

    Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    CAS  Google Scholar 

  108. 108.

    Tu, Y. et al. Diboron-assisted interfacial defect control strategy for highly efficient planar perovskite solar cells. Adv. Mater. 30, 1805085 (2018).

    Google Scholar 

  109. 109.

    Liang, P. W. et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014).

    CAS  Google Scholar 

  110. 110.

    Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    CAS  Google Scholar 

  111. 111.

    Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    CAS  Google Scholar 

  112. 112.

    Zhang, L. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 8, 15640 (2017).

    CAS  Google Scholar 

  113. 113.

    Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    CAS  Google Scholar 

  114. 114.

    Ban, M. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).

    Google Scholar 

  115. 115.

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    CAS  Google Scholar 

  116. 116.

    Jiang, Q. et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).

    Google Scholar 

  117. 117.

    Yang, R. et al. Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018).

    Google Scholar 

  118. 118.

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    CAS  Google Scholar 

  119. 119.

    Chao, L. et al. Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem. 5, 995–1006 (2019).

    CAS  Google Scholar 

  120. 120.

    Hu, Q. et al. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles. Nat. Commum. 8, 15688 (2017).

    CAS  Google Scholar 

  121. 121.

    Brenes, R., Eames, C., Bulović, V., Islam, M. S. & Stranks, S. D. The impact of atmosphere on the local luminescence properties of metal halide perovskite grains. Adv. Mater. 30, 1706208 (2018).

    Google Scholar 

  122. 122.

    Abdi-Jalebi, M. et al. Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett. 3, 2671–2678 (2018).

    CAS  Google Scholar 

  123. 123.

    Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).

    CAS  Google Scholar 

  124. 124.

    Kubicki, D. J. et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1-xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 14173–14180 (2017).

    CAS  Google Scholar 

  125. 125.

    Kuai, L. et al. Passivating crystal boundaries with potassium-rich phase in organic halide perovskite. Sol. RRL 3, 1900053 (2019).

    Google Scholar 

  126. 126.

    Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    CAS  Google Scholar 

  127. 127.

    Liu, T. et al. Stable formamidinium-based perovskite solar cells via in situ grain encapsulation. Adv. Energy Mater. 8, 1800232 (2018).

    Google Scholar 

  128. 128.

    Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    CAS  Google Scholar 

  129. 129.

    Zhang, C. C. et al. Polarized ferroelectric polymers for high-performance perovskite solar cells. Adv. Mater. 31, 1902222 (2019).

    Google Scholar 

  130. 130.

    Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).

    CAS  Google Scholar 

  131. 131.

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    CAS  Google Scholar 

  132. 132.

    Peng, J. et al. Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 10, 1792–1800 (2017).

    CAS  Google Scholar 

  133. 133.

    Peng, J. et al. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: Role of carbonyl groups in poly(methyl methacrylate). Adv. Energy Mater. 8, 1801208 (2018).

    Google Scholar 

  134. 134.

    Turren-Cruz, S. H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    CAS  Google Scholar 

  135. 135.

    Masuko, K. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

    Google Scholar 

  136. 136.

    Wu, Y. et al. Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ. Sci. 10, 2472–2479 (2017).

    CAS  Google Scholar 

  137. 137.

    Cui, P. et al. Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150–159 (2019).

    CAS  Google Scholar 

  138. 138.

    Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014).

    Google Scholar 

  139. 139.

    Yuan, Y. et al. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).

    Google Scholar 

  140. 140.

    Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    CAS  Google Scholar 

  141. 141.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Google Scholar 

  142. 142.

    Bian, H. et al. Graded bandgap CsPbI2+xBr1−x perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2, 1500–1510 (2018).

    CAS  Google Scholar 

  143. 143.

    Cho, K. T. et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10, 621–627 (2017).

    CAS  Google Scholar 

  144. 144.

    Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    CAS  Google Scholar 

  145. 145.

    Chirilă, A. et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011).

    Google Scholar 

  146. 146.

    Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).

    Google Scholar 

  147. 147.

    Green, M. A. et al. Solar cell efficiency tables (version 52). Prog. Photovolt. Res. Appl. 26, 427–436 (2018).

    Google Scholar 

  148. 148.

    Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017).

    CAS  Google Scholar 

  149. 149.

    Chen, J. et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017).

    CAS  Google Scholar 

  150. 150.

    Kelso, M. V., Mahenderkar, N. K., Chen, Q., Tubbesing, J. Z. & Switzer, J. A. Spin coating epitaxial films. Science 364, 166–169 (2019).

    CAS  Google Scholar 

  151. 151.

    Sun, S. et al. Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule 3, 1437–1451 (2019).

    CAS  Google Scholar 

  152. 152.

    Odabaşı, Ç. & Yıldırım, R. Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools. Nano Energy 56, 770–791 (2019).

    Google Scholar 

  153. 153.

    Lu, H., Chen, X., Anthony, J. E., Johnson, J. C. & Beard, M. C. Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 141, 4919–4927 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the 973 Program of China (2015CB932203) and the National Natural Science Foundation of China (91733301, 61722501 and 61377025). W.Z. thanks the EPSRC New Investigator Award (2018; EP/R043272/1) for financial support.

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion of content. D.L. and R.S. researched most of the data and wrote the draft. W.Z., Q.G. and R.Z. revised the manuscript before submission.

Corresponding authors

Correspondence to Wei Zhang or Rui Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Efficiency chart published by the National Renewable Energy Laboratory (NREL): https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Su, R., Zhang, W. et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater 5, 44–60 (2020). https://doi.org/10.1038/s41578-019-0151-y

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing