Molecular magnetism: from chemical design to spin control in molecules, materials and devices

Abstract

The field of molecular magnetism is rapidly evolving towards the use of magnetic molecules and molecule-based magnetic materials in physics-driven and nanotechnology-driven fields, in particular molecular spintronics, quantum technologies, metal–organic frameworks (MOFs) and 2D materials. In molecular spintronics, the goal is the development of a new generation of spintronic devices based on molecular materials or, in the longer term, on one or a few molecules. In the area of quantum technologies, the milestones reached in the design of molecular spin qubits with long quantum coherence times and in the implementation of quantum operations have raised expectations for the use of molecular spin qubits in quantum computation. MOFs and 2D materials are two classes of materials for which magnetism has been, until very recently, an elusive property; molecular materials with attractive properties and functionalities are now starting to be developed in both areas. In MOFs, single-molecule magnets and spin crossover complexes can be integrated into the nodes of the framework, within the pores or both, sometimes giving rise to smart magnetic materials or to hybrid materials exhibiting synergistic combinations of properties. 2D molecular-based magnets can provide a platform to study magnetism in the 2D limit and exhibit superior properties compared with their inorganic analogues in terms of chemical stability and tunability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Molecule-based spintronics.
Fig. 2: Manipulation of single spins in molecules.
Fig. 3: Magnetic molecules as quantum bits and quantum gates.
Fig. 4: Metal–organic frameworks containing spin-crossover complexes.
Fig. 5: Metal–organic frameworks containing single-molecule magnets.
Fig. 6: 2D molecular-based magnets.

References

  1. 1.

    Willett, R. D., Gatteschi, D. & Kahn, O. Magneto-structural Correlations in Exchange Coupled Systems (D. Reidel Publishing, 1985).

  2. 2.

    Kahn, O. Dinuclear complexes with predictable magnetic properties. Angew. Chem. Int. Ed. 24, 834–850 (1985).

    Google Scholar 

  3. 3.

    Drillon, M., Coronado, E., Beltrán, D. & Georges, R. Classical treatment of a Heisenberg linear chain with spin alternation; application to the MnNi(EDTA)·6(H2O). Chem. Phys. 79, 449–453 (1983).

    CAS  Google Scholar 

  4. 4.

    Kahn, O. Molecular Magnetism (VCH, 1993).

  5. 5.

    Georges, R., Borrás-Almenar, J. J., Coronado, E., Curély, J. & Drillon, M. in Magnetism: Molecules to Materials Vol. 1 (eds Miller, J. S. & Drillon, M.) 1–47 (Wiley-VCH Verlag, 2001).

  6. 6.

    Seiden, J. Static properties of an alternating isotropic chain of one-half quantum spins and classical spins. J. Phys. Lett. 44, 947–952 (1983).

    CAS  Google Scholar 

  7. 7.

    Coronado, E. et al. Low temperature investigation of the ferrimagnetic chains MnM′(EDTA).6H2O (M′ = Co, Ni and Cu(II)): thermal and magnetic properties. J. Am. Chem. Soc. 111, 3874–3800 (1989).

    CAS  Google Scholar 

  8. 8.

    Miyasaka, H., Julve, M., Yamashita, M. & Clerac, R. Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets. Inorg. Chem. 48, 3420–3437 (2009).

    CAS  Google Scholar 

  9. 9.

    Sessoli, R. et al. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat. Phys. 11, 69–74 (2015).

    CAS  Google Scholar 

  10. 10.

    Miller, J. S. Organic- and molecule-based magnets. Mater. Today 17, 224–235 (2014).

    CAS  Google Scholar 

  11. 11.

    Caneschi, A., Gatteschi, D., Sessoli, R. & Rey, P. Toward molecular magnets—the metal-radical approach. Acc. Chem. Res. 22, 392–398 (1989).

    CAS  Google Scholar 

  12. 12.

    Stumpf, H. O., Ouahab, L., Pei, Y., Grandjean, d. & Kahn, O. A molecular-based magnet with a fully interlocked 3-dimensional structure. Science 261, 447–449 (1993).

    CAS  Google Scholar 

  13. 13.

    Tamaki, H. et al. Design of metal-complex magnets—syntheses and magnetic properties of mixed-metal assemblies {NBu4[MCr(ox)3]}x (NBu4 + = tetra(n-butyl) ammonium ion, ox2– = oxalate ion, M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+). J. Am. Chem. Soc. 114, 6974–6979 (1992).

    CAS  Google Scholar 

  14. 14.

    Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    CAS  Google Scholar 

  15. 15.

    Gütlich, P., Hauser, A. & Spiering, H. Thermal and optical switching of iron(II) complexes. Angew. Chem. Int. Ed. 33, 2024–2054 (1994).

    Google Scholar 

  16. 16.

    Real, J. A., Gaspar, A. B. & Muñoz, M. C. Thermal, pressure and light switchable spin-crossover materials. Dalton Trans. 12, 2062–2079 (2005).

    Google Scholar 

  17. 17.

    Linares, J., Codjovi, E. & Garcia, Y. Pressure and temperature spin crossover sensors with optical detection. Sensors 12, 4479–4492 (2012).

    CAS  Google Scholar 

  18. 18.

    Molnár, G., Rat, S., Salmon, L., Nicolazzi, W. & Bousseksou, A. Spin crossover nanomaterials: from fundamental concepts to devices. Adv. Mater. 30, 1703862 (2018).

    Google Scholar 

  19. 19.

    Kahn, O. & Jay Martínez, C. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    CAS  Google Scholar 

  20. 20.

    Gatteschi, D. Molecular magnetism: a basis for new materials. Adv. Mater. 6, 635–645 (1994).

    CAS  Google Scholar 

  21. 21.

    Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    CAS  Google Scholar 

  22. 22.

    Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    CAS  Google Scholar 

  23. 23.

    Friedman, J. R., Sarachik, M. P., Tejada, J. & Ziolo, R. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996).

    CAS  Google Scholar 

  24. 24.

    Guo, F.-S. et al. A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew. Chem. Int. Ed. 56, 11445–11449 (2017).

    CAS  Google Scholar 

  25. 25.

    Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548, 439–442 (2017).

    CAS  Google Scholar 

  26. 26.

    Guo, F.-S. et al. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 362, 1400–1403 (2018).

    CAS  Google Scholar 

  27. 27.

    Coronado, E. & Day, P. Magnetic molecular conductors. Chem. Rev. 104, 5419–5448 (2004).

    CAS  Google Scholar 

  28. 28.

    Kurmoo, M. et al. Superconducting and semiconducting magnetic charge transfer salts: (BEDT-TTF)4AFe(C2O4)3·C6H5CN (A = H2O, K, NH4). J. Am. Chem. Soc. 117, 12209–12217 (1995).

    CAS  Google Scholar 

  29. 29.

    Coronado, E., Galán-Mascarós, J. R., Gómez-García, C. J. & Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408, 447–449 (2000).

    CAS  Google Scholar 

  30. 30.

    Coronado, E., Gómez-García, C. J., Nuez, A., Romero, F. M. & Waerenborgh, J. C. Synthesis, chirality and magnetic properties of bimetallic cyanide-bridged two-dimensional ferromagnets. Chem. Mater. 18, 2670–2681 (2006).

    CAS  Google Scholar 

  31. 31.

    Train, C. et al. Strong magneto-chiral dichroism in enantiopure chiral ferromangets. Nat. Mater. 7, 729–734 (2008).

    CAS  Google Scholar 

  32. 32.

    Maspoch, D. et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nat. Mater. 2, 190–195 (2003).

    CAS  Google Scholar 

  33. 33.

    Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. Photoinduced magnetization of a cobalt–iron cyanide. Science 272, 704–705 (1996).

    CAS  Google Scholar 

  34. 34.

    Coronado, E. et al. Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate. J. Am. Chem. Soc. 127, 4580–4581 (2005).

    CAS  Google Scholar 

  35. 35.

    Ohkoshi, S. et al. 90-Degree optical switching of output second-harmonic light in chiral photomagnet. Nat. Photonics 8, 65–71 (2014).

    CAS  Google Scholar 

  36. 36.

    Abellán, G., Martí-Gastaldo, C., Ribera, A. & Coronado, E. Hybrid materials based on magnetic layered double hydroxides: a molecular perspective. Acc. Chem. Res. 48, 1601–1611 (2015).

    Google Scholar 

  37. 37.

    Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 8, 707 (2009).

    CAS  Google Scholar 

  38. 38.

    Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

  39. 39.

    Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

  40. 40.

    Camarero, J. & Coronado, E. Molecular vs. inorganic spintronics: the role of molecular materials and single molecules. J. Mater. Chem. 19, 1678–1684 (2009).

  41. 41.

    Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336 (2011).

    CAS  Google Scholar 

  42. 42.

    Prieto, J. P. et al. Enhancing light emission in interface engineered spin-OLEDs through spin-polarized injection at high voltages. Adv. Mater. 31, 1806817 (2019).

    Google Scholar 

  43. 43.

    Yu, Z. G. Impurity-band transport in organic spin valves. Nat. Commun. 5, 4842 (2014).

    CAS  Google Scholar 

  44. 44.

    Nguyen, T. D., Ehrenfreund, E. & Vardeny, Z. V. Spin-polarized light emitting diode based on an organic bipolar spin valve. Science 337, 204 (2012).

    CAS  Google Scholar 

  45. 45.

    Sun, X. et al. A molecular spin-photovoltaic device. Science 357, 677 (2017).

    CAS  Google Scholar 

  46. 46.

    Su, T. A., Neupane, M., Steigerwald, M. L., Venkatamaran, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

    CAS  Google Scholar 

  47. 47.

    Mannini, M. et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468, 417–421 (2010).

    CAS  Google Scholar 

  48. 48.

    Wäckerlin, C. et al. Giant hysteresis of single-molecule magnets adsorbed on a non-magnetic insulator. Adv. Mater. 28, 5195–5199 (2016).

    Google Scholar 

  49. 49.

    Martínez, R. V. et al. Nanoscale deposition of single-molecule magnets onto SiO2 patterns. Adv. Mater. 19, 291–295 (2007).

    Google Scholar 

  50. 50.

    Atodiresei, N. et al. Design of the local spin polarization at the organic–ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010).

    Google Scholar 

  51. 51.

    Aragonés, A. C. et al. Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett. 16, 218–226 (2016).

    Google Scholar 

  52. 52.

    Koplovitz, G. et al. Magnetic nanoplatelet-based spin memory device operating at ambient temperature. Adv. Mater. 29, 1606748 (2017).

    Google Scholar 

  53. 53.

    Bedoya-Pinto, A., Prima-García, H., Casanova, F., Coronado, E. & Hueso, L. E. Spin-polarized hopping transport in magnetically tunable rare-earth quinolines. Adv. Electron. Mater. 1, 1500065 (2015).

    Google Scholar 

  54. 54.

    Poggini, L. et al. An organic spin valve embedding a self assembled monolayer of organic radicals. Adv. Mater. Interfaces 3, 1500855 (2016).

    Google Scholar 

  55. 55.

    Cucinotta, G. et al. Tuning of a vertical spin valve with a monolayer of single molecule magnets. Adv. Funct. Mater. 50, 1703600 (2017).

    Google Scholar 

  56. 56.

    Miralles, S. G. et al. Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes. Chem. Sci. 9, 199–208 (2018).

    CAS  Google Scholar 

  57. 57.

    Bedoya-Pinto, A. et al. Interface-assisted sign inversion of the magnetoresistance in spin valves based on novel lanthanide quinoline molecules. Adv. Funct. Mater. 28, 1702099 (2017).

    Google Scholar 

  58. 58.

    Sanvito, S. The rise of spinterface science. Nat. Phys. 6, 562–564 (2010).

    CAS  Google Scholar 

  59. 59.

    Cinchetti, M., Dediu, A. & Hueso, L. E. Activating the molecular spinterface. Nat. Mater. 16, 507 (2017).

    CAS  Google Scholar 

  60. 60.

    Forment-Aliaga, A. & Coronado, E. Hybrid interfaces in molecular spintronics. Chem. Rec. 18, 737–748 (2018).

    CAS  Google Scholar 

  61. 61.

    Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    CAS  Google Scholar 

  62. 62.

    Zyazin, A. S. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 10, 3307 (2010).

    CAS  Google Scholar 

  63. 63.

    Gaudenzi, R. et al. Exchange coupling inversion in a high-spin organic triradical molecule. Nano Lett. 16, 2066–2071 (2016).

    CAS  Google Scholar 

  64. 64.

    Heinrich, B. M., Braun, L., Pascual, J. I. & Franke, K. J. Tuning the magnetic anisotropy in single molecules. Nano Lett. 15, 4024–4028 (2015).

    CAS  Google Scholar 

  65. 65.

    Heinrich, B. M., Braun, L., Pascual, J. I. & Franke, K. J. Protection of excited spin states by a superconducting energy gap. Nat. Phys. 9, 765–768 (2013).

    CAS  Google Scholar 

  66. 66.

    Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    CAS  Google Scholar 

  67. 67.

    Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreeened Kondo effect. Science 328, 1370–1373 (2010).

    CAS  Google Scholar 

  68. 68.

    DiLullo, A. et al. Molecular Kondo chain. Nano Lett. 12, 3174–3179 (2012).

    CAS  Google Scholar 

  69. 69.

    Hiraoka, R. et al. Single-molecule quantum dot as a Kondo simulator. Nat. Commun. 8, 16012 (2017).

    CAS  Google Scholar 

  70. 70.

    Komeda, T., Isshiki, H., Liu, J., Katoh, K. & Yamashita, M. Variation of Kondo temperature induced by molecule–substrate decoupling in film formation of bis(phthalocyaninato)terbium(III) molecules on Au(III). ACS Nano 8, 4866–4875 (2014).

    CAS  Google Scholar 

  71. 71.

    Island, J. O. et al. Proximity-induced Shiba states in a molecular junction. Phys. Rev. Lett. 118, 117001 (2017).

    Google Scholar 

  72. 72.

    de Bruijckere, J. et al. Ground-state spin blockade in a single-molecule junction. Phys. Rev. Lett. 122, 197701 (2019).

    Google Scholar 

  73. 73.

    Prins, F., Monrabal-capilla, M., Osorio, E. A., Coronado, E. & van der Zant, H. S. J. Room-temperature electrical addressing of a bistable spin-crossover molecular system. Adv. Mater. 23, 1545–1549 (2011).

    CAS  Google Scholar 

  74. 74.

    Aravena, D. & Ruiz, E. Coherent transport through spin-crossover single molecules. J. Am. Chem. Soc. 134, 777–779 (2012).

    CAS  Google Scholar 

  75. 75.

    Dugay, J. et al. Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles. Adv. Mater. 27, 1288–1293 (2015).

    CAS  Google Scholar 

  76. 76.

    Torres-Cavanillas, R. et al. Design of bistable gold@spin-crossover core–shell nanoparticles showing large electrical responses for the spin switching. Adv. Mater. 31, e1900039 (2019).

  77. 77.

    Holovchenko, A. et al. Near room-temperature memory devices based on hybrid spin-crossover@SiO2 nanoparticles coupled to single-layer graphene nanoelectrodes. Adv. Mater. 28, 7228–7233 (2016).

    CAS  Google Scholar 

  78. 78.

    Miyamachi, T. et al. Robust spin crossover and memristance across a single molecule. Nat. Commun. 3, 938 (2012).

    Google Scholar 

  79. 79.

    Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    CAS  Google Scholar 

  80. 80.

    Thiele, S. et al. Electrically driven nuclear spin resonance in single-molecule magnets. Science 344, 1135–1138 (2014).

    CAS  Google Scholar 

  81. 81.

    Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W. & Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47, 501–513 (2018).

    CAS  Google Scholar 

  82. 82.

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six hours coherence time. Nature 517, 177–180 (2015).

    CAS  Google Scholar 

  83. 83.

    Tosi, G. et al. Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8, 450 (2017).

    Google Scholar 

  84. 84.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    CAS  Google Scholar 

  85. 85.

    Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 41, 7464–7478 (2012).

    CAS  Google Scholar 

  86. 86.

    Gaita-Ariño, A., Luis, F., Hill, S. & Coronado, E. Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019).

    Google Scholar 

  87. 87.

    Lunghi, A., Totti, F., Sessoli, R. & Sanvito, S. The role of anharmonic phonons in under-barrier spin relaxation of single-molecule magnets. Nat. Commun. 8, 14620 (2017).

    Google Scholar 

  88. 88.

    Lunghi, A., Totti, F., Sanvito, S. & Sessoli, R. Intra-molecular origin of the spin-phonon coupling in slow-relaxing molecular magnets. Chem. Sci. 8, 6051 (2017).

    CAS  Google Scholar 

  89. 89.

    Escalera-Moreno, L., Baldoví, J. J., Gaita-Ariño, A. & Coronado, E. Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective. Chem. Sci. 9, 3265–3275 (2018).

    CAS  Google Scholar 

  90. 90.

    Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015).

    CAS  Google Scholar 

  91. 91.

    Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5, 5304 (2014).

    CAS  Google Scholar 

  92. 92.

    Atzori, M. et al. Room-temperature quantum coherence and Rabi oscillations in vanadyl phthalocyanine: toward multifunctional molecular spin qubits. J. Am. Chem. Soc. 138, 2154–2157 (2016).

    CAS  Google Scholar 

  93. 93.

    Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

    CAS  Google Scholar 

  94. 94.

    Lehmann, J., Gaita-Arin̄o, A., Coronado, E. & Loss, D. Spin qubits with electrically gated polyoxometalate molecules. Nat. Nanotech. 2, 312–317 (2007).

    CAS  Google Scholar 

  95. 95.

    Timco, G. A. et al. A modular design of molecular qubits to implement molecular quantum gates. Nat. Commun. 4, 173–178 (2009).

    CAS  Google Scholar 

  96. 96.

    Ferrando-Soria, J. et al. Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Commun. 7, 11377 (2016).

    CAS  Google Scholar 

  97. 97.

    Aromi, G., Aguilá, D., Gamez, P., Luis, F. & Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 41, 537–546 (2012).

    CAS  Google Scholar 

  98. 98.

    Jenkins, M. D. et al. Coherent manipulation of three-qubit states in a molecular single-ion magnet. Phys. Rev. B 95, 064423 (2017).

    Google Scholar 

  99. 99.

    Moreno-Pineda, E. et al. Observation of cooperative electronic quantum tunneling: increasing accesible nuclear spins in a molecular qudit. Inorg. Chem. 57, 9873–9879 (2018).

    CAS  Google Scholar 

  100. 100.

    Schoelkopf, J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664 (2008).

    CAS  Google Scholar 

  101. 101.

    Jenkins, M. D. et al. Coupling single-molecule magnets to quantum circuits. New J. Phys. 15, 095007 (2013).

    Google Scholar 

  102. 102.

    Wang, C., Liu, D. & Lin, W. Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 135, 13222–13234 (2013).

    CAS  Google Scholar 

  103. 103.

    Sun, L., Campbell, M. G. & Dinca, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    CAS  Google Scholar 

  104. 104.

    Park, J. G. et al. Long charge delocalization and bulk electronic conductivity in the mixed-valence metal-organic framework Fe(1,2,3-triazolate)2(BF4)x. J. Am. Chem. Soc. 140, 8526–8534 (2018).

    CAS  Google Scholar 

  105. 105.

    Xie, L. S. et al. Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140, 7411–7414 (2018).

    CAS  Google Scholar 

  106. 106.

    Aubrey, M. L. et al. Electron delocalization and charge mobility as a function of reduction in a metal-organic framework. Nat. Mater. 17, 625–632 (2018).

    CAS  Google Scholar 

  107. 107.

    Z.Hu, Z., Deibert, B. J. & Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014).

    Google Scholar 

  108. 108.

    Xu, L.-J., Xu, G.-T. & Chen, Z.-N. Recent advances in lanthanide luminiscence with metal–organic chromophores as sensitizers. Coord. Chem. Rev. 273–274, 47–62 (2014).

    Google Scholar 

  109. 109.

    Coronado, E. & Mínguez Espallargas, G. Dynamic magnetic MOFs. Chem. Soc. Rev. 42, 1525 (2013).

    CAS  Google Scholar 

  110. 110.

    Mínguez Espallargas, G. & Coronado, E. Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev. 47, 533–557 (2018).

    Google Scholar 

  111. 111.

    Coronado, E., M. Giménez-Marqués, M., Mínguez Espallargas, G., Rey, F. & Vitórica-Yrezábal, I. J. Spin-crossover modification through selective CO2 sorption. J. Am. Chem. Soc. 135, 15986–15989 (2013).

    CAS  Google Scholar 

  112. 112.

    Giménez-Marqués, M. et al. Gas confinement in compartmentalized coordination polymers for highly selective sorption. Chem. Sci. 8, 3109–3120 (2017).

    Google Scholar 

  113. 113.

    Muñoz, M. C. & Real, J. A. Thermo-, piezo-, photo- and chemo-switchable metallocyanate based coordination polymers. Coord. Chem. Rev. 255, 2068–2093 (2011).

    Google Scholar 

  114. 114.

    Arcís-Castillo, Z. et al. Reversible chemisorption of sulfur dioxide in a spin crossover porous coordination polymer. Inorg. Chem. 52, 12777–12783 (2013).

    Google Scholar 

  115. 115.

    Rubio-Giménez, V. et al. High-quality metal–organic framework ultrathin films for electronically active interfaces. J. Am. Chem. Soc. 138, 2576–2584 (2016).

    Google Scholar 

  116. 116.

    Rubio-Giménez, V. et al. Bottom-up fabrication of semiconductive metal–organic framework ultrathin films. Adv. Mater. 30, 1704291 (2018).

    Google Scholar 

  117. 117.

    Rubio-Giménez, V. et al. Effect of the nanostructuration on the spin crossover transition in crystalline ultrathin films. Chem. Sci. 10, 4038–4047 (2019).

    Google Scholar 

  118. 118.

    Baldoví, J. J. et al. A SIM-MOF: three dimensional organization of single-ion magnets with anion-exchange capabilities. Chem. Eur. J. 20, 10695–10702 (2014).

    Google Scholar 

  119. 119.

    Aulakh, D. et al. Metal–organic frameworks as platforms for the controlled nanostructuring of single-molecule magnets. J. Am. Chem. Soc. 137, 9254–9257 (2015).

    CAS  Google Scholar 

  120. 120.

    Abhervé, A. et al. Spin crossover encapsulation within a magnetic metal–organic framework. Chem. Commun. 52, 7360–7363 (2016).

    Google Scholar 

  121. 121.

    Clemente-León, M. et al. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets. Chem. Eur. J. 20, 1669–1676 (2014).

    Google Scholar 

  122. 122.

    Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Comm. 7, 11043 (2016).

    CAS  Google Scholar 

  123. 123.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Google Scholar 

  124. 124.

    Huang, X. et al. Superconductivity in a copper(II)-based coordination polymer with perfect Kagomé structure. Angew. Chem. Int. Ed. 57, 146–150 (2018).

    CAS  Google Scholar 

  125. 125.

    Abherbé, A., Mañas-Valero, S., Clemente-León, M. & Coronado, E. Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII(acac2-trien)]+ and [FeIII(sal2-trien)]+ molecules. Chem. Sci. 6, 4665–4673 (2015).

    Google Scholar 

  126. 126.

    J. López Cabrelles, J. et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nat. Chem. 10, 1001–1007 (2018).

    Google Scholar 

  127. 127.

    Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    CAS  Google Scholar 

  128. 128.

    Gibertini, M., Koperski, M., Morpurgo, A. F. & NOvoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotech. 14, 408–419 (2019).

    CAS  Google Scholar 

  129. 129.

    Li, H., Ruan, S. & Zeng, Y. J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv. Mater. 31, 1900065 (2019).

    Google Scholar 

  130. 130.

    Pedersen, K. S. et al. Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry. Nat. Chem. 10, 1056–1061 (2018).

    CAS  Google Scholar 

  131. 131.

    Suarez-Garcia, S. et al. Spin-crossover in an exfoliated coordination polymer and its implementation in thermochromic films. ACS Appl. Nano Mater. 1, 2662–2668 (2018).

    CAS  Google Scholar 

  132. 132.

    Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673 (2017).

    CAS  Google Scholar 

  133. 133.

    Jiang, W., Huang, H. & Liu, F. A Lieb-like lattice in a covalent–organic framework and its Stoner ferromagnetism. Nat. Commun. 10, 2207 (2019).

    Google Scholar 

  134. 134.

    Dugay, J. et al. Phase transitions in spin-crossover thin fims probed by graphene transport measurements. Nano Lett. 17, 186–193 (2017).

    CAS  Google Scholar 

  135. 135.

    Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).

    CAS  Google Scholar 

  136. 136.

    Zhang, B. et al. Quantum spin liquid from a three-dimensional copper-oxalate framework. J. Am. Chem. Soc. 140, 122–125 (2018).

    CAS  Google Scholar 

  137. 137.

    Liu, H. L. et al. Organic-based magnon spintronics. Nat. Mater. 17, 308–312 (2018).

    CAS  Google Scholar 

  138. 138.

    Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    CAS  Google Scholar 

  139. 139.

    Someya, T., Bao, Z. N. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    CAS  Google Scholar 

  140. 140.

    Giménez-Marqués, M., Hidalgo, T., Serre, C. & Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 307, 342–360 (2016).

    Google Scholar 

  141. 141.

    Fert, A., Barthelemy, A. & Petroff, F. In Contemporary Concepts of Condensed Matter Science Vol. 1, Ch. 6 (Elsevier, 2006).

  142. 142.

    A. Barthelemy, A. et al. Magnetoresistance and spin electronics. J. Magn. Magn. Mater. 242–245, 68–76 (2002).

    Google Scholar 

  143. 143.

    Atzori, M. & Sessoli, R. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).

    CAS  Google Scholar 

  144. 144.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Google Scholar 

  145. 145.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    CAS  Google Scholar 

  146. 146.

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Google Scholar 

  147. 147.

    Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017).

    CAS  Google Scholar 

  148. 148.

    Duong, D. C., Yun, S. J. & Lee, Y. H. Van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803–11830 (2017).

    CAS  Google Scholar 

  149. 149.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  150. 150.

    Hirsch, A. & Hauke, F. Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57, 4338–4354 (2018).

    CAS  Google Scholar 

  151. 151.

    Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2016).

    Google Scholar 

  152. 152.

    Xia, W. et al. Recent progress in van der Waals heterojunctions. Nanoscale 9, 4324–4365 (2017).

    CAS  Google Scholar 

  153. 153.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro-Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, 9439 (2016).

    Google Scholar 

  154. 154.

    Li, C. et al. Engineering graphene and TMDs based van der Waals hetrerostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018).

    CAS  Google Scholar 

  155. 155.

    Schwierz, F. Graphene transistors. Nat. Nanotech. 5, 487 (2010).

    CAS  Google Scholar 

  156. 156.

    Huang, X., Qi, X., Boey, F. & Zhang, H. Graphene-based composites. Chem. Soc. Rev. 41, 666 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to J. P. Malrieu and B. Tsukerblat on the occasion of their 80th birthdays. The author is indebted to the members of the group and all co-workers and colleagues who have contributed, each in their own way, to the development of the field in the last years. Financial support from the European Union (European Cooperation in Science and Tecnology (COST) Action MolSpin 15128 on Molecular Spintronics, European Research Area in Quantum Technologies (QUANTERA) Project SUMO on Scaling Up Quantum Computation with Molecular Spins and ERC Advanced Grant Mol-2D 788222), the Spanish MINECO (grants MAT2017–89993-R, co-financed by the Fondo Europeo de Desarrollo Regional (FEDER), and Excellence Unit María de Maeztu MDM-2015–0538) and the Generalitat Valenciana (Prometeo Programme of Excellence) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eugenio Coronado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Nature Milestones: Spin: https://www.nature.com/milestones/milespin/index.html

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat Rev Mater 5, 87–104 (2020). https://doi.org/10.1038/s41578-019-0146-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing