Abstract
Functional mesoporous materials with multilevel architectures, ranging from 0D to 3D, are typically prepared using surfactant-templating methods. In these methods, surfactants first form single micelles or aggregated micelles, which then assemble with precursors or oligomers to form ordered mesostructures on interfaces. In this Review, we outline the preparation of single-micelle architectures and the single-micelle-directed synthesis of mesoporous materials, including low-dimensional and 3D mesostructures, as well as hierarchical and asymmetric mesostructures directed by the single-micelle assembly. A range of architectures have been prepared via single-micelle assembly, for example, single-micelle porous liquids, single-layered mesoporous nanosheets, single-crystal mesoporous nanoparticles and Janus mesoporous nanocomposites. Using microscopic techniques such as cryo-electron microscopy, single micelles can now be directly observed. Such techniques improve our understanding of the formation processes of the single micelles, the assemblies of micelles and, as a result, the ordered mesoporous materials. The limitations of multilevel, functional mesoporous materials created by single-micelle assembly and future research directions are also discussed.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wan, Y. & Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007).
Schüth, F. & Schmidt, W. Microporous and mesoporous materials. Adv. Mater. 14, 629–638 (2002).
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997).
Schuth, F. Endo- and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Ed. 42, 3604–3622 (2003).
Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).
Yu, K., Smarsly, B. & Brinker, C. J. Self-assembly and characterization of mesostructured silica films with a 3D arrangement of isolated spherical mesopores. Adv. Funct. Mater. 13, 47–52 (2003).
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992). The first report of the fabrication of mesoporous nanomaterials.
Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).
Meng, Y. et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005).
Lu, Y. F. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389, 364–368 (1997).
Liu, Y. et al. Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices. Sci. Adv. 1, e1500166 (2015).
Wei, J. et al. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc. 133, 20369–20377 (2011).
Guan, B. Y., Yu, L. & Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 138, 11306–11311 (2016).
Huo, Q. S. et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368, 317–321 (1994).
Yu, C. Z., Fan, J., Tian, B. Z. & Zhao, D. Y. Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem. Mater. 16, 889–898 (2004).
Inagaki, S., Sakamoto, Y., Fukushima, Y. & Terasaki, O. Pore wall of a mesoporous molecular sieve derived from kanemite. Chem. Mater. 8, 2089–2095 (1996).
Huo, Q. et al. A new class of silica cross-linked micellar core-shell nanoparticles. J. Am. Chem. Soc. 128, 6447–6453 (2006). This study reports the demonstration of single-micellar nanoparticles.
Chi, F., Guan, B., Yang, B., Liu, Y. & Huo, Q. Terminating effects of organosilane in the formation of silica cross-linked micellar core-shell nanoparticles. Langmuir 26, 11421–11426 (2010).
Zhu, J. et al. Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties. Small 6, 276–282 (2010).
Gao, J. S. et al. The nanocomposites of SO3H-hollow-nanosphere and chiral amine for asymmetric aldol reaction. J. Mater. Chem. 19, 8580–8588 (2009).
Hao, N., Wang, H. T., Webley, P. A. & Zhao, D. Y. Synthesis of uniform periodic mesoporous organosilica hollow spheres with large-pore size and efficient encapsulation capacity for toluene and the large biomolecule bovine serum albumin. Micropor. Mesopor. Mat. 132, 543–551 (2010).
Liu, J., Bai, S. Y., Zhong, H., Li, C. & Yang, Q. H. Tunable assembly of organosilica hollow nanospheres. J. Phys. Chem. C 114, 953–961 (2010).
Li, Y. Y. & Kruk, M. Single-micelle-templated synthesis of hollow silica nanospheres with tunable pore structures. RSC Adv. 5, 69870–69877 (2015).
Tan, H. et al. Facile synthesis of hybrid silica nanocapsules by interfacial templating condensation and their application in fluorescence imaging. Chem. Commun. 41, 6240–6242 (2009).
Liu, J. et al. Organic–inorganic hybrid hollow nanospheres with microwindows on the shell. Chem. Mater. 20, 4268–4275 (2008).
Mandal, M. & Kruk, M. Family of single-micelle-templated organosilica hollow nanospheres and nanotubes synthesized through adjustment of organosilica/surfactant ratio. Chem. Mater. 24, 123–132 (2012).
Yang, Y. et al. Ultrasmall single micelle@resin core-shell nanocarriers as efficient cargo loading vehicles for in vivo biomedical applications. J. Mater. Chem. B 3, 4671–4678 (2015).
Ma, K. et al. Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles. Nature 558, 577–580 (2018). This paper reports the fabrication of nanostructures from micelles comprising ionic surfactants.
Sasidharan, M. & Nakashima, K. Core–shell–corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres. Acc. Chem. Res. 47, 157–167 (2014).
Khanal, A., Inoue, Y., Yada, M. & Nakashima, K. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core–shell–corona structure. J. Am. Chem. Soc. 129, 1534–1535 (2007).
Sasidharan, M., Liu, D., Gunawardhana, N., Yoshio, M. & Nakashima, K. Synthesis, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres. J. Mater. Chem. 21, 13881–13888 (2011).
Sasidharan, M. et al. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries. Nanoscale 3, 4768–4773 (2011).
Sasidharan, M. et al. Novel titania hollow nanospheres of size 28±1 nm using soft-templates and their application for lithium-ion rechargeable batteries. Chem. Commun. 47, 6921–6923 (2011).
Bastakoti, B. P., Guragain, S., Yokoyama, Y., Yusa, S. & Nakashima, K. Synthesis of hollow CaCO3 nanospheres templated by micelles of poly(styrene-b-acrylic acid-b-ethylene glycol) in aqueous solutions. Langmuir 27, 379–384 (2011).
Bastakoti, B. P. et al. A block copolymer micelle template for synthesis of hollow calcium phosphate nanospheres with excellent biocompatibility. Chem. Commun. 48, 6532–6534 (2012).
Bastakoti, B. P. et al. Multifunctional core-shell-corona-type polymeric micelles for anticancer drug-delivery and imaging. Chem. Eur. J. 19, 4812–4817 (2013).
Bastakoti, B. P. et al. Inorganic–organic hybrid nanoparticles with biocompatible calcium phosphate thin shells for fluorescence enhancement. Chem. Asian J. 8, 1301–1305 (2013).
Sasidharan, M., Gunawardhana, N., Yoshio, M. & Nakashima, K. WO3 hollow nanospheres for high-lithium storage capacity and good cyclability. Nano Energy 1, 503–508 (2012).
Sasidharan, M., Gunawardhana, N., Yoshio, M. & Nakashima, K. V2O5 hollow nanospheres: a lithium intercalation host with good rate capability and capacity retention. J. Electrochem. Soc. 159, A618–A621 (2012).
Sasidharan, M., Gunawardhana, N., Yoshio, M. & Nakashima, K. Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries. Mater. Res. Bull. 47, 2161–2164 (2012).
Sasidharan, M., Gunawardhana, N., Senthil, C. & Yoshio, M. Micelle templated NiO hollow nanospheres as anode materials in lithium ion batteries. J. Mater. Chem. A 2, 7337–7344 (2014).
Zheng, D. J. et al. Unconventional route to hairy plasmonic/semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion. Chem. Mater. 27, 5271–5278 (2015).
Pang, X., Zhao, L., Han, W., Xin, X. & Lin, Z. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 8, 426–431 (2013). This paper reports a robust strategy to fabricate a series of monodisperse nanocrystals from star-like single micelles.
Li, X. et al. From precision synthesis of block copolymers to properties and applications of nanoparticles. Angew. Chem. Int. Ed. 57, 2046–2070 (2018).
Yang, D. et al. Precisely size-tunable magnetic/plasmonic core/shell nanoparticles with controlled optical properties. Angew. Chem. Int. Ed. 54, 12091–12096 (2015).
Pang, X. et al. Block copolymer/ferroelectric nanoparticle nanocomposites. Nanoscale 5, 8695–8702 (2013).
Chen, Y. et al. Hairy uniform permanently ligated hollow nanoparticles with precise dimension control and tunable optical properties. J. Am. Chem. Soc. 139, 12956–12967 (2017).
Pang, X., He, Y., Jung, J. & Lin, Z. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353, 1268–1272 (2016).
Chen, Y. et al. Precisely size-tunable monodisperse hairy plasmonic nanoparticles via amphiphilic star-like block copolymers. Small 12, 6714–6723 (2016).
Ma, K. et al. Early formation pathways of surfactant micelle directed ultrasmall silica ring and cage structures. J. Am. Chem. Soc. 140, 17343–17348 (2018).
Li, K. J. et al. A generic method for preparing hollow mesoporous silica catalytic nanoreactors with metal oxide nanoparticles inside their cavities. Angew. Chem. Int. Ed. 57, 16458–16463 (2018).
Zhang, J. et al. Porous liquids: a promising class of media for gas separation. Angew. Chem. Int. Ed. 54, 932–936 (2015).
Warren, S. C. et al. Generalized route to metal nanoparticles with liquid behavior. J. Am. Chem. Soc. 128, 12074–12075 (2006).
Bourlinos, A. B. et al. Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components. Eur. Phys. J. E 20, 109–117 (2006).
O’Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).
Pevzner, S. & Regev, O. The in situ phase transitions occurring during bicontinuous cubic phase formation. Micropor. Mesopor. Mat. 38, 413–421 (2000).
Landry, C. C. et al. Phase transformations in mesostructured silica/surfactant composites. mechanisms for change and applications to materials synthesis. Chem. Mater. 13, 1600–1608 (2001).
Ma, K., Sai, H. & Wiesner, U. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 13180–13183 (2012).
Ma, K., Werner-Zwanziger, U., Zwanziger, J. & Wiesner, U. Controlling growth of ultrasmall sub-10 nm fluorescent mesoporous silica nanoparticles. Chem. Mater. 25, 677–691 (2013).
Mo, J., He, L., Ma, B. & Chen, T. Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood–brain barrier. ACS Appl. Mater. Inter. 8, 6811–6825 (2016).
Urata, C., Aoyama, Y., Tonegawa, A., Yamauchi, Y. & Kuroda, K. Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chem. Commun. 34, 5094–5096 (2009).
Urata, C. et al. Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J. Am. Chem. Soc. 133, 8102–8105 (2011).
Fang, Y. et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991 (2010).
Yu, L. et al. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials 161, 292–305 (2018).
Vis, B. et al. Non-functionalized ultrasmall silica nanoparticles directly and size-selectively activate T cells. ACS Nano 12, 10843–10854 (2018).
Sun, Y. et al. Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling. Nat. Commun. 8, 252 (2017). This study investigates the influence of micelle size distributions on early growth of mesoporous materials and also on micelle assembly and mesostructures. These findings provide general insights into the design and synthesis of mesoporous materials.
Liu, J. et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 4, 2798 (2013).
Madhugiri, S., Sun, B., Smirniotis, P. G., Ferraris, J. P. & Balkus, K. J. Electrospun mesoporous titanium dioxide fibers. Micropor. Mesopor. Mat. 69, 77–83 (2004).
Wang, H. Q., Zhang, C. F., Chen, Z. X., Liu, H. K. & Guo, Z. P. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries. Carbon 81, 782–787 (2015).
Yang, P. D., Zhao, D. Y., Chmelka, B. F. & Stucky, G. D. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mater. 10, 2033–2036 (1998).
Tanaka, S., Doi, A., Nakatani, N., Katayama, Y. & Miyake, Y. Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon 47, 2688–2698 (2009).
Lu, X. H., Liu, H. Q., Deng, C. H. & Yan, X. M. Facile synthesis and application of mesoporous silica coated magnetic carbon nanotubes. Chem. Commun. 47, 1210–1212 (2011).
Zhu, X. et al. Synthesis of carbon nanotubes@mesoporous carbon core–shell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy. J. Mater. Chem. A 7, 8975–8983 (2019).
Liu, J. J. et al. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 25, 384–392 (2015).
Wang, Y., Song, H., Yu, C. Z. & Gu, H. C. From helixes to mesostructures: evolution of mesoporous silica shells on single-walled carbon nanotubes. Chem. Mater. 28, 936–942 (2016).
Zhao, D. Y., Sun, J. Y., Li, Q. Z. & Stucky, G. D. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275–279 (2000).
Yang, S. et al. On the origin of helical mesostructures. J. Am. Chem. Soc. 128, 10460–10466 (2006).
Huang, X. et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5, 5390–5399 (2011).
Teng, Z. et al. Highly ordered mesoporous silica films with perpendicular mesochannels by a simple Stöber-solution growth approach. Angew. Chem. Int. Ed. 51, 2173–2177 (2012).
Deng, Y., Qi, D., Deng, C., Zhang, X. & Zhao, D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 130, 28–29 (2008).
Denkova, G., Mendes, E. & Coppens, O. Kinetics and mechanism of the sphere-to-rod transition of triblock copolymer micelles in aqueous solutions. J. Phys. Chem. B 113, 989–996 (2009).
Wang, C. et al. A shear stress regulated assembly route to silica nanotubes and their closely packed hollow mesostructures. Angew. Chem. Int. Ed. 52, 11603–11606 (2013).
Iqbal, M. et al. Standing mesochannels: mesoporous PdCu films with vertically aligned mesochannels from nonionic micellar solutions. ACS Appl. Mater. Inter. 10, 40623–40630 (2018).
Fang, Y. et al. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524–1530 (2013).
Li, C. et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating. Angew. Chem. Int. Ed. 55, 12746–12750 (2016).
Kao, K. C., Lin, C. H., Chen, T. Y., Liu, Y. H. & Mou, C. Y. A general method for growing large area mesoporous silica thin films on flat substrates with perpendicular nanochannels. J. Am. Chem. Soc. 137, 3779–3782 (2015).
Tan, H. et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674–5683 (2018).
Xi, X. et al. Highly uniform carbon sheets with orientation-adjustable ordered mesopores. ACS Nano 12, 5436–5444 (2018).
Fang, Y. et al. Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv. Mater. 28, 9385–9390 (2016).
Wang, Z. M. et al. Sandwich-type nanocomposite of reduced graphene oxide and periodic mesoporous silica with vertically aligned mesochannels of tunable pore depth and size. Adv. Funct. Mater. 27, 1704066 (2017).
Feng, D. et al. Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J. Am. Chem. Soc. 133, 15148–15156 (2011).
Shan, F. et al. A facile approach for controlling the orientation of one-dimensional mesochannels in mesoporous titania films. J. Am. Chem. Soc. 134, 20238–20241 (2012).
Weng, W. et al. A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity. Angew. Chem. Int. Ed. 49, 3956–3959 (2010).
Oveisi, H. et al. A mesoporous γ-alumina film with vertical mesoporosity: the unusual conversion from a Im3m mesostructure to vertically oriented γ-alumina nanowires. Angew. Chem. Int. Ed. 50, 7410–7413 (2011).
Liu, Y. et al. Mesoporous silica thin membranes with large vertical mesochannels for nanosize-based separation. Adv. Mater. 29, 1702274 (2017).
Sun, L. B., Liu, X. Q. & Zhou, H. C. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev. 44, 5092–5147 (2015).
Peng, L., Zhu, Y., Chen, D., Ruoff, R. S. & Yu, G. Two-dimensional materials for beyond-lithium-ion batteries. Adv. Energy Mater. 6, 1600025 (2016).
Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).
Wang, Z. et al. Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Ed. 57, 2894–2898 (2018).
Yu, J. F., Wang, Q., O’Hare, D. & Sun, L. Y. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 46, 5950–5974 (2017).
Lan, K. et al. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140, 4135–4143 (2018). This paper reports an unprecedented solvent-confined, template-free synthesis of 2D mesoporous material.
Jiang, B. et al. Mesoporous metallic iridium nanosheets. J. Am. Chem. Soc. 140, 12434–12441 (2018).
Tian, B. et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater. 2, 159–163 (2003). This work introduces the concept of acid-base pairs, providing a general method for designing the interaction between precursors and micelles for mesoporous material architectures.
Wang, X. Q. et al. Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted Stöber method. Chem. Mater. 28, 2356–2362 (2016).
Luo, L., Liang, Y., Erichsen, E. S. & Anwander, R. Monodisperse mesoporous silica nanoparticles of distinct topology. J. Colloid Inter. Sci. 495, 84–93 (2017).
Wei, J., Yue, Q., Sun, Z. K., Deng, Y. H. & Zhao, D. Y. Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. Angew. Chem. Int. Ed. 51, 6149–6153 (2012).
Yang, S. et al. Siliceous nanopods from a compromised dual-templating approach. Angew. Chem. Int. Ed. 46, 8579–8582 (2007).
Niu, D. et al. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery. Adv. Mater. 26, 4947–4953 (2014).
Chen, Y. & Shi, J. Chemistry of mesoporous organosilica in nanotechnology: molecularly organic–inorganic hybridization into frameworks. Adv. Mater. 28, 3235–3272 (2016).
Croissant, J. et al. Mixed periodic mesoporous organosilica nanoparticles and core–shell systems, application to in vitro two-photon imaging, therapy, and drug delivery. Chem. Mater. 26, 7214–7220 (2014).
Shen, D. et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 14, 923–932 (2014).
Yang, Y. N. et al. Stepwise degradable nanocarriers enabled cascade delivery for synergistic cancer therapy. Adv. Funct. Mater. 28, 1800706 (2018).
Cha, B. G., Jeong, J. H. & Kim, J. Extra-large pore mesoporous silica nanoparticles enabling codelivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent. Sci. 4, 484–492 (2018).
Liu, D. W. et al. Surfactant assembly within Pickering emulsion droplets for fabrication of interior-structured mesoporous carbon microspheres. Angew. Chem. Int. Ed. 57, 10899–10904 (2018).
Liu, J. et al. Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).
Ai, K., Liu, Y., Ruan, C., Lu, L. & Lu, G. M. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 25, 998–1003 (2013).
Xing, Y., Zhang, J., Chen, F., Liu, J. & Cai, K. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale 9, 8781–8790 (2017).
Guan, B. Y., Zhang, S. L. & Lou, X. W. D. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 57, 6176–6180 (2018).
Wang, Z. J., Brown, A. T., Tan, K., Chabal, Y. J. & Balkus, K. J. Selective extraction of thorium from rare earth elements using wrinkled mesoporous carbon. J. Am. Chem. Soc. 140, 14735–14739 (2018).
Peng, L. et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 141, 7073–7080 (2019).
Chen, F. et al. Nanoscale polydopamine (PDA) meets π–π interactions: an interface-directed coassembly approach for mesoporous nanoparticles. Langmuir 32, 12119–12128 (2016).
Croissant, J. et al. One-pot construction of multipodal hybrid periodic mesoporous organosilica nanoparticles with crystal-like architectures. Adv. Mater. 27, 145–149 (2015).
Guan, B. et al. Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures. Nanoscale 4, 6588–6596 (2012).
Li, Y. et al. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew. Chem. Int. Ed. 54, 11073–11077 (2015).
Jiang, B. et al. Tunable-sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew. Chem. Int. Ed. 55, 10037–10041 (2016).
Jiang, B. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 8, 15581 (2017).
Jiang, B., Li, C. L., Imura, M., Tang, J. & Yamauchi, Y. Multimetallic mesoporous spheres through surfactant-directed synthesis. Adv. Sci. 2, 1500112 (2015).
Jiang, B. et al. Mesoporous bimetallic RhCu alloy nanospheres using a sophisticated soft-templating strategy. Chem. Mater. 30, 428–435 (2018).
Lv, H., Lopes, A., Xu, D. & Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 4, 1412–1419 (2018).
Lv, H. et al. Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chem. Sci. 10, 1986–1993 (2019).
Sun, L. B., Li, J. R., Park, J. & Zhou, H. C. Cooperative template-directed assembly of mesoporous metal–organic frameworks. J. Am. Chem. Soc. 134, 126–129 (2012).
Ma, Y. et al. A chelation-induced cooperative self-assembly methodology for the synthesis of mesoporous metal hydroxide and oxide nanospheres. Nanoscale 10, 5731–5737 (2018).
Warren, S. C. et al. Ordered mesoporous materials from metal nanoparticle–block copolymer self-assembly. Science 320, 1748–1752 (2008).
Bastakoti, B. P. et al. Polymeric micelle assembly with inorganic nanosheets for construction of mesoporous architectures with crystallized walls. Angew. Chem. Int. Ed. 54, 4222–4225 (2015).
Ondry, J. C., Robbennolt, S., Kang, H., Yan, Y. & Tolbert, S. H. A room-temperature, solution phase method for the synthesis of mesoporous metal chalcogenide nanocrystal-based thin films with precisely controlled grain sizes. Chem. Mater. 28, 6105–6117 (2016).
Ong, G. K. et al. Ordering in polymer micelle-directed assemblies of colloidal nanocrystals. Nano Lett. 15, 8240–8244 (2015).
Wang, P. P., Yang, Y., Zhuang, J. & Wang, X. Self-adjustable crystalline inorganic nanocoils. J. Am. Chem. Soc. 135, 6834–6837 (2013).
Kim, J. et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J. Am. Chem. Soc. 128, 688–689 (2006).
Kim, J. et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47, 8438–8441 (2008).
Zhao, W., Gu, J., Zhang, L., Chen, H. & Shi, J. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 127, 8916–8917 (2005).
Lee, J. E., Lee, N., Kim, T., Kim, J. & Hyeon, T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44, 893–902 (2011).
Liu, J., Bu, W., Pan, L. & Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013).
Liu, J. N., Bu, W. B. & Shi, J. L. Silica coated upconversion nanoparticles: a versatile platform for the development of efficient theranostics. Acc. Chem. Res. 48, 1797–1805 (2015).
Zhang, Z. et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24, 1418–1423 (2012).
Xie, C. et al. Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett. 17, 3798–3802 (2017).
Yue, Q. et al. An interface coassembly in biliquid phase: toward core–shell magnetic mesoporous silica microspheres with tunable pore size. J. Am. Chem. Soc. 137, 13282–13289 (2015).
Wang, Y. et al. Kinetically controlled dendritic mesoporous silica nanoparticles: from dahlia- to pomegranate-like structures by micelle filling. Chem. Mater. 30, 5770–5776 (2018).
Xu, C. et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small 11, 5949–5955 (2015).
Tang, J., Liu, J., Salunkhe, R. R., Wang, T. & Yamauchi, Y. Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. Chem. Commun. 52, 505–508 (2016).
Zhang, Y. et al. Amphiphilic block copolymers directed interface coassembly to construct multifunctional microspheres with magnetic core and monolayer mesoporous aluminosilicate shell. Adv. Mater. 30, e1800345 (2018).
Ataee-Esfahani, H. et al. Mesoporous metallic cells: design of uniformly sized hollow mesoporous Pt–Ru particles with tunable shell thicknesses. Small 9, 1047–1051 (2013).
Guan, B. Y., Yu, L. & Lou, X. W. Chemically assisted formation of monolayer colloidosomes on functional particles. Adv. Mater. 28, 9596–9601 (2016). This work provides a general method to deposit one single layer of micelle–oligomers composite on a wide range of substrates.
Chen, Y. et al. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4, 6001–6013 (2010).
Teng, Z. G. et al. Yolk–shell structured mesoporous nanoparticles with thioether-bridged organosilica frameworks. Chem. Mater. 26, 5980–5987 (2014).
Teng, Z. et al. A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. J. Am. Chem. Soc. 137, 7935–7944 (2015).
Teng, Z. et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Adv. Mater. 28, 1707612 (2018).
Kim, K. et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 535, 131–135 (2016).
Na, K. et al. Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328–332 (2011).
Wang, M. et al. An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres. J. Am. Chem. Soc. 136, 1884–1892 (2014).
Liu, Y. et al. Constructing three-dimensional mesoporous bouquet-posy-like TiO2 superstructures with radially oriented mesochannels and single-crystal walls. J. Am. Chem. Soc. 139, 517–526 (2017).
Yue, Q. et al. Nanoengineering of core–shell magnetic mesoporous microspheres with tunable surface roughness. J. Am. Chem. Soc. 139, 4954–4961 (2017).
Wang, W. et al. Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Cent. Sci. 3, 839–846 (2017).
Suteewong, T. et al. Multicompartment mesoporous silica nanoparticles with branched shapes: an epitaxial growth mechanism. Science 340, 337–341 (2013). This study is a systematic investigation into the mechanism of and the ability to control the anisotropic assembly of micelles.
Li, X. et al. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 136, 15086–15092 (2014).
Li, X. et al. Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. J. Am. Chem. Soc. 137, 5903–5906 (2015).
Li, X. et al. Degradation-restructuring induced anisotropic epitaxial growth for fabrication of asymmetric diblock and triblock mesoporous nanocomposites. Adv. Mater. 29, 1701652 (2017).
Lan, K. et al. Mesoporous TiO2 microspheres with precisely controlled crystallites and architectures. Chem 4, 2436–2450 (2018).
Hu, H. et al. Reversible and precise self-assembly of Janus metal-organosilica nanoparticles through a linker-free approach. ACS Nano 10, 7323–7330 (2016).
Wang, X. et al. A controllable asymmetrical/symmetrical coating strategy for architectural mesoporous organosilica nanostructures. Nanoscale 8, 13581–13588 (2016).
Hu, H. et al. Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale 9, 4826–4834 (2017).
Diez, P. et al. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).
Llopis-Lorente, A. et al. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 8, 15511 (2017).
Abbaraju, P. L. et al. Asymmetric silica nanoparticles with tunable head–tail structures enhance hemocompatibility and maturation of immune cells. J. Am. Chem. Soc. 139, 6321–6328 (2017).
Zhao, T. et al. Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 140, 10009–10015 (2018).
Zhang, L. et al. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials 181, 113–125 (2018).
Wu, Z. Y. et al. Janus nanoarchitectures: From structural design to catalytic applications. Nano Today 22, 62–82 (2018).
Yang, T. et al. Dumbbell-shaped bi-component mesoporous Janus solid nanoparticles for biphasic interface catalysis. Angew. Chem. Int. Ed. 56, 8459–8463 (2017).
Ma, X., Hahn, K. & Sanchez, S. Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137, 4976–4979 (2015).
Xuan, M. et al. Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138, 6492–6497 (2016).
Xuan, M. et al. Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem. Int. Ed. 57, 12463–12467 (2018).
Tang, J. et al. Hard-sphere packing and icosahedral assembly in the formation of mesoporous materials. J. Am. Chem. Soc. 129, 9044–9048 (2007).
Meka, A. K. et al. A vesicle supra-assembly approach to synthesize amine-functionalized hollow dendritic mesoporous silica nanospheres for protein delivery. Small 12, 5169–5177 (2016).
O’Brien, S. et al. Time-resolved in situ X-ray powder diffraction study of the formation of mesoporous silicates. Chem. Mater. 11, 1822–1832 (1999).
Flodström, K., Wennerström, H. & Alfredsson, V. Mechanism of mesoporous silica formation. A time-resolved NMR and TEM study of silica–block copolymer aggregation. Langmuir 20, 680–688 (2004).
Acknowledgements
The work was supported by the National Natural Science Foundation of China (NSFC, 21733003, 21875043, 21701027), Key Basic Research Program of the Science and Technology Commission of Shanghai Municipality (17JC1400100), China National Key Basic Research Program (973 Project) (2018YFA0209400, 2017YFA0207303), Natural Science Foundation of Shanghai (18ZR1404600) and Shanghai Sailing Program (17YF1401000). This work was supported by Qatar University under High Impact-Fund Program Grant (QUHI-CAS-19/20-1).
Author information
Authors and Affiliations
Contributions
All authors researched data for the article, contributed to the discussion of content, and wrote and edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, T., Elzatahry, A., Li, X. et al. Single-micelle-directed synthesis of mesoporous materials. Nat Rev Mater 4, 775–791 (2019). https://doi.org/10.1038/s41578-019-0144-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-019-0144-x
This article is cited by
-
Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure
Journal of Porous Materials (2024)
-
Mesoporous Nanofibers from Extended Electrospinning Technique
Advanced Fiber Materials (2024)
-
Janus mesoporous nanoparticles enable building biological logic systems
Science China Chemistry (2024)
-
Versatile synthesis of metal-compound based mesoporous Janus nanoparticles
Nature Communications (2023)
-
Solvent-pair surfactants enabled assembly of clusters and copolymers towards programmed mesoporous metal oxides
Nature Communications (2023)