Achieving high energy density and high power density with pseudocapacitive materials

Abstract

Batteries and supercapacitors serve as the basis for electrochemical energy-storage devices. Although both rely on electrochemical processes, their charge-storage mechanisms are dissimilar, giving rise to different energy and power densities. Pseudocapacitive materials store charge through battery-like redox reactions but at fast rates comparable to those of electrochemical double-layer capacitors; these materials, therefore, offer a pathway for achieving both high energy and high power densities. Materials that combine these properties are in demand for the realization of fast-charging electrochemical energy-storage devices capable of delivering high power for long periods of time. In this Review, we describe the fundamental electrochemical properties of pseudocapacitive materials, with emphasis on kinetic processes and distinctions between battery and pseudocapacitive materials. In addition, we discuss the various types of pseudocapacitive materials, highlighting the differences between intrinsic and extrinsic materials; assess device applications; and consider the future prospects for the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Representative characteristics of electrochemical energy-storage materials.
Fig. 2: Electrochemical performance of selected pseudocapacitive materials.
Fig. 3: Comparison of hybrid device architectures and performance.

References

  1. 1.

    IEA. Global EV Outlook 2017: Two Million and Counting. International Energy Agency https://www.iea.org/publications/freepublications/publication/GlobalEVOutlook2017.pdf (2017).

  2. 2.

    Liang, Y. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6–32 (2019).

    Google Scholar 

  3. 3.

    Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018).

    Google Scholar 

  4. 4.

    Davies, D. M. et al. Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 4, 42–50 (2019).

    Google Scholar 

  5. 5.

    Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    CAS  Google Scholar 

  6. 6.

    Conway, B. E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539–1548 (1991). A seminal paper that distinguishes supercapacitor behaviour from that of batteries.

    CAS  Google Scholar 

  7. 7.

    Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Ch. 2 & Ch. 3 (Springer US, 1999).

  8. 8.

    Abruña, H. D., Kiya, Y. & Henderson, J. C. Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008).

    Google Scholar 

  9. 9.

    Brousse, T., Bélanger, D. & Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015). This paper presents the defining features of pseudocapacitive materials and dispels some of the misimpressions in the field.

    CAS  Google Scholar 

  10. 10.

    Come, J. et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014).

    CAS  Google Scholar 

  11. 11.

    Girard, H.-L., Dunn, B. & Pilon, L. Simulations and interpretation of three-electrode cyclic voltammograms of pseudocapacitive electrodes. Electrochim. Acta 211, 420–429 (2016).

    CAS  Google Scholar 

  12. 12.

    Costentin, C., Porter, T. R. & Savéant, J.-M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658 (2017).

    CAS  Google Scholar 

  13. 13.

    Bai, L. & Conway, B. E. AC impedance of faradaic reactions involving electrosorbed intermediates: examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams. J. Electrochem. Soc. 138, 2897–2907 (1991).

    CAS  Google Scholar 

  14. 14.

    Taberna, P. L., Simon, P. & Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003).

    CAS  Google Scholar 

  15. 15.

    Ko, J. S., Sassin, M. B., Rolison, D. R. & Long, J. W. Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures. Electrochim. Acta 275, 225–235 (2018).

    CAS  Google Scholar 

  16. 16.

    Ko, J. S., Sassin, M. B., Parker, J. F., Rolison, D. R. & Long, J. W. Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells. Sustain. Energy Fuels 2, 626–636 (2018).

    CAS  Google Scholar 

  17. 17.

    Lindström, H. et al. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997). This paper set the foundation for providing kinetic analysis that distinguishes between semi-infinite and capacitor-like behaviour.

    Google Scholar 

  18. 18.

    Randles, J. E. B. A cathode ray polarograph. Part II.—The current-voltage curves. Trans Faraday Soc. 44, 327–338 (1948).

    CAS  Google Scholar 

  19. 19.

    Ševčík, A. Oscillographic polarography with periodical triangular voltage. Collect. Czech. Chem. Commun. 13, 349–377 (1948).

    Google Scholar 

  20. 20.

    Come, J., Taberna, P.-L., Hamelet, S., Masquelier, C. & Simon, P. Electrochemical kinetic study of LiFePO4 using cavity microelectrode. J. Electrochem. Soc. 158, A1090–A1093 (2011).

    CAS  Google Scholar 

  21. 21.

    Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). This paper provides the electrochemical and structural characteristics that helped to define pseudocapacitive materials.

    CAS  Google Scholar 

  22. 22.

    Xiao, X. et al. Freestanding MoO3–x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9, 355–363 (2014).

    CAS  Google Scholar 

  23. 23.

    Lai, C.-H. et al. Application of poly(3-hexylthiophene-2,5-diyl) as a protective coating for high rate cathode materials. Chem. Mater. 30, 2589–2599 (2018).

    CAS  Google Scholar 

  24. 24.

    Ko, J. S. et al. High-rate capability of Na2FePO4F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. J. Mater. Chem. A 5, 18707–18715 (2017).

    CAS  Google Scholar 

  25. 25.

    Cook, J. B. et al. Suppression of electrochemically driven phase transitions in nanostructured MoS2 pseudocapacitors probed using operando X-ray diffraction. ACS Nano 13, 1223–1231 (2019).

    CAS  Google Scholar 

  26. 26.

    Lai, C.-H. et al. Designing pseudocapacitance for Nb2O5/carbide-derived carbon electrodes and hybrid devices. Langmuir 33, 9407–9415 (2017).

    CAS  Google Scholar 

  27. 27.

    Liu, T.-C. Behavior of molybdenum nitrides as materials for electrochemical capacitors. J. Electrochem. Soc. 145, 1882–1888 (1998).

    CAS  Google Scholar 

  28. 28.

    Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    CAS  Google Scholar 

  29. 29.

    Forghani, M. & Donne, S. W. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior. J. Electrochem. Soc. 165, A664–A673 (2018).

    CAS  Google Scholar 

  30. 30.

    Shao, H., Lin, Z., Xu, K., Taberna, P.-L. & Simon, P. Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Mater. 18, 456–461 (2019).

    Google Scholar 

  31. 31.

    Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977).

    CAS  Google Scholar 

  32. 32.

    Takami, N. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371–379 (1995).

    CAS  Google Scholar 

  33. 33.

    Cottrell, F. G. Der Reststrom bei galvanischer Polarisation, betrachtet als ein Diffusionsproblem [German]. Z. Phys. Chem. 42U, 385–431 (1903).

    Google Scholar 

  34. 34.

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. 2nd edn Ch. 11 & Ch. 15 (Wiley, 2001).

  35. 35.

    Gibson, A. J. & Donne, S. W. A step potential electrochemical spectroscopy (SPECS) investigation of anodically electrodeposited thin films of manganese dioxide. J. Power Sources 359, 520–528 (2017).

    CAS  Google Scholar 

  36. 36.

    Dupont, M. F. & Donne, S. W. A step potential electrochemical spectroscopy analysis of electrochemical capacitor electrode performance. Electrochim. Acta 167, 268–277 (2015).

    CAS  Google Scholar 

  37. 37.

    Girard, H.-L., Wang, H., d’Entremont, A. L. & Pilon, L. Enhancing faradaic charge storage contribution in hybrid pseudocapacitors. Electrochim. Acta 182, 639–651 (2015).

    CAS  Google Scholar 

  38. 38.

    Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965).

    CAS  Google Scholar 

  39. 39.

    Mahmood, Q. et al. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 6, 1501115 (2016).

    Google Scholar 

  40. 40.

    Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    CAS  Google Scholar 

  41. 41.

    Toupin, M., Brousse, T. & Bélanger, D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14, 3946–3952 (2002).

    CAS  Google Scholar 

  42. 42.

    Tang, Y. et al. Identifying the origin and contribution of surface storage in TiO2(B) nanotube electrode by in situ dynamic valence state monitoring. Adv. Mater. 30, 1802200 (2018).

    Google Scholar 

  43. 43.

    Kodama, R., Terada, Y., Nakai, I., Komaba, S. & Kumagai, N. Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J. Electrochem. Soc. 153, A583–A588 (2006).

    CAS  Google Scholar 

  44. 44.

    Christensen, C. R. & Anson, F. C. Chronopotentiometry in thin layer of solution. Anal. Chem. 35, 205–209 (1963).

    CAS  Google Scholar 

  45. 45.

    Hubbard, A. T. Study of the kinetics of electrochemical reactions by thin-layer voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 22, 165–174 (1969).

    CAS  Google Scholar 

  46. 46.

    Andrieux, C. P. & Savéant, J. M. Electron transfer through redox polymer films. J. Electroanal. Chem. Interfacial Electrochem. 111, 377–381 (1980).

    CAS  Google Scholar 

  47. 47.

    Peerce, P. J. & Bard, A. J. Polymer films on electrodes. J. Electroanal. Chem. Interfacial Electrochem. 114, 89–115 (1980).

    CAS  Google Scholar 

  48. 48.

    Laviron, E., Roullier, L. & Degrand, C. A multilayer model for the study of space distributed redox modified electrodes. J. Electroanal. Chem. Interfacial Electrochem. 112, 11–23 (1980).

    CAS  Google Scholar 

  49. 49.

    Aoki, K., Tokuda, K. & Matsuda, H. Theory of linear sweep voltammetry with finite diffusion space: Part II. Totally irreversible and quasi-reversible cases. J. Electroanal. Chem. Interfacial Electrochem. 160, 33–45 (1984). This paper outlines the development of the parameters that helped to define finite diffusion and its relationship with thin-layer electrochemistry.

    CAS  Google Scholar 

  50. 50.

    Mirčeski, V. & Tomovski, Ž. Modeling of a voltammetric experiment in a limiting diffusion space. J. Solid State Electrochem. 15, 197–204 (2011).

    Google Scholar 

  51. 51.

    Lovrić, M., Komorsky-Lovrić, Š. & Scholz, F. Staircase voltammetry with finite diffusion space. Electroanalysis 9, 575–577 (1997).

    Google Scholar 

  52. 52.

    Aoki, K. & Osteryoung, J. Square wave voltammetry in a thin-layer cell. J. Electroanal. Chem. Interfacial Electrochem. 240, 45–51 (1988).

    CAS  Google Scholar 

  53. 53.

    Komorsky-Lovrić, Š. & Lovrić, M. Kinetic measurements of a surface confined redox reaction. Anal. Chim. Acta 305, 248–255 (1995).

    Google Scholar 

  54. 54.

    Mirčeski, V. Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry. J. Phys. Chem. B 108, 13719–13725 (2004).

    Google Scholar 

  55. 55.

    Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    CAS  Google Scholar 

  56. 56.

    Kim, H.-S., Cook, J. B., Tolbert, S. H. & Dunn, B. The development of pseudocapacitive properties in nanosized-MoO2. J. Electrochem. Soc. 162, A5083–A5090 (2015).

    CAS  Google Scholar 

  57. 57.

    Okubo, M. et al. Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries. ACS Nano 4, 741–752 (2010).

    CAS  Google Scholar 

  58. 58.

    Mei, B.-A., Li, B., Lin, J. & Pilon, L. Multidimensional cyclic voltammetry simulations of pseudocapacitive electrodes with a conducting nanorod scaffold. J. Electrochem. Soc. 164, A3237–A3252 (2017).

    CAS  Google Scholar 

  59. 59.

    Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    CAS  Google Scholar 

  60. 60.

    Ghodbane, O., Ataherian, F., Wu, N.-L. & Favier, F. In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors. J. Power Sources 206, 454–462 (2012).

    CAS  Google Scholar 

  61. 61.

    Crosnier, O. et al. Polycationic oxides as potential electrode materials for aqueous-based electrochemical capacitors. Curr. Opin. Electrochem. 9, 87–94 (2018).

    CAS  Google Scholar 

  62. 62.

    Yu, X. et al. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8, 1702930 (2018).

    Google Scholar 

  63. 63.

    Trasatti, S. & Buzzanca, G. Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J. Electroanal. Chem. Interfacial Electrochem. 29, A1–A5 (1971). This is the original report of the characterization of RuO 2 pseudocapacitive behaviour.

    Google Scholar 

  64. 64.

    Galizzioli, D., Tantardini, F. & Trasatti, S. Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes. J. Appl. Electrochem. 4, 57–67 (1974).

    CAS  Google Scholar 

  65. 65.

    Hadzi-Jordanov, S. Reversibility and growth behavior of surface oxide films at ruthenium electrodes. J. Electrochem. Soc. 125, 1471–1480 (1978).

    Google Scholar 

  66. 66.

    Zheng, J. P. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995).

    CAS  Google Scholar 

  67. 67.

    Conway, B. E. & Pell, W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637–644 (2003).

    CAS  Google Scholar 

  68. 68.

    Zhang, J. et al. Template synthesis of tubular ruthenium oxides for supercapacitor applications. J. Phys. Chem. C 114, 13608–13613 (2010).

    CAS  Google Scholar 

  69. 69.

    Ma, H. et al. Disassembly–reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor. Small 13, 1701026 (2017).

    Google Scholar 

  70. 70.

    Mondal, S. K. & Munichandraiah, N. Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities. J. Power Sources 175, 657–663 (2008).

    CAS  Google Scholar 

  71. 71.

    Sugimoto, W., Yokoshima, K., Murakami, Y. & Takasu, Y. Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim. Acta 52, 1742–1748 (2006).

    CAS  Google Scholar 

  72. 72.

    Long, J. W., Swider, K. E., Merzbacher, C. I. & Rolison, D. R. Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: the nature of capacitance in nanostructured materials. Langmuir 15, 780–785 (1999).

    CAS  Google Scholar 

  73. 73.

    Hu, C.-C., Chang, K.-H., Lin, M.-C. & Wu, Y.-T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006).

    CAS  Google Scholar 

  74. 74.

    Bi, R.-R. et al. Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 114, 2448–2451 (2010).

    CAS  Google Scholar 

  75. 75.

    Liu, Y., Zhou, F. & Ozolins, V. Ab initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116, 1450–1457 (2012).

    CAS  Google Scholar 

  76. 76.

    Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T. & Rolison, D. R. Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B 106, 12677–12683 (2002).

    CAS  Google Scholar 

  77. 77.

    Wen, S., Lee, J.-W., Yeo, I.-H., Park, J. & Mho, S. The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochim. Acta 50, 849–855 (2004).

    CAS  Google Scholar 

  78. 78.

    Lee, H. Y. & Goodenough, J. B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999).

    CAS  Google Scholar 

  79. 79.

    Ghodbane, O., Pascal, J.-L. & Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130–1139 (2009).

    CAS  Google Scholar 

  80. 80.

    Devaraj, S. & Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008).

    CAS  Google Scholar 

  81. 81.

    Yan, W. et al. Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem. Mater. 24, 2382–2390 (2012).

    CAS  Google Scholar 

  82. 82.

    Zhao, Y., Li, M. P., Liu, S. & Islam, M. F. Superelastic pseudocapacitors from freestanding MnO2-decorated graphene-coated carbon nanotube aerogels. ACS Appl. Mater. Interfaces 9, 23810–23819 (2017).

    CAS  Google Scholar 

  83. 83.

    Peng, L. et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 13, 2151–2157 (2013).

    CAS  Google Scholar 

  84. 84.

    Jabeen, N. et al. Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl. Mater. Interfaces 8, 33732–33740 (2016).

    CAS  Google Scholar 

  85. 85.

    Cheng, F. et al. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038–2044 (2006).

    CAS  Google Scholar 

  86. 86.

    Wang, X. & Li, Y. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880–2881 (2002).

    CAS  Google Scholar 

  87. 87.

    Chen, D. et al. Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem. Mater. 27, 6608–6619 (2015).

    CAS  Google Scholar 

  88. 88.

    Kuo, S.-L. & Wu, N.-L. Investigation of pseudocapacitive charge-storage reaction of MnO2nH2O supercapacitors in aqueous electrolytes. J. Electrochem. Soc. 153, A1317–A1324 (2006).

    CAS  Google Scholar 

  89. 89.

    Wang, G.-X., Zhang, B.-L., Yu, Z.-L. & Qu, M.-Z. Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ion. 176, 1169–1174 (2005).

    CAS  Google Scholar 

  90. 90.

    Yang, Y., Xiao, L., Zhao, Y. & Wang, F. Hydrothermal synthesis and electrochemical characterization of α-MnO2 nanorods as cathode material for lithium batteries. Int. J. Electrochem. Sci. 3, 67–74 (2008).

    CAS  Google Scholar 

  91. 91.

    Li, L. et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118, 22865–22872 (2014).

    CAS  Google Scholar 

  92. 92.

    Gambou-Bosca, A. & Bélanger, D. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. J. Power Sources 326, 595–603 (2016).

    CAS  Google Scholar 

  93. 93.

    Reichman, B. & Bard, A. J. The application of Nb2O5 as a cathode in nonaqueous lithium cells. J. Electrochem. Soc. 128, 344–346 (1981).

    CAS  Google Scholar 

  94. 94.

    Ohzuku, T., Sawai, K. & Hirai, T. Electrochemistry of L-niobium pentoxide a lithium/non-aqueous cell. J. Power Sources 19, 287–299 (1987).

    CAS  Google Scholar 

  95. 95.

    Kim, J. W., Augustyn, V. & Dunn, B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Adv. Energy Mater. 2, 141–148 (2012).

    CAS  Google Scholar 

  96. 96.

    Liu, C.-P., Zhou, F. & Ozolins, V. First principles study for lithium intercalation and diffusion behavior in orthorhombic Nb2O5 electrochemical supercapacitor. APS Meet. Abstr. B26. 003 (2012).

    Google Scholar 

  97. 97.

    Marchand, R., Brohan, L. & Tournoux, M. TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15, 1129–1133 (1980).

    CAS  Google Scholar 

  98. 98.

    Zukalová, M., KalbáČ, M., Kavan, L., Exnar, I. & Graetzel, M. Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248–1255 (2005).

    Google Scholar 

  99. 99.

    Li, X., Wu, G., Liu, X., Li, W. & Li, M. Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 31, 1–8 (2017).

    CAS  Google Scholar 

  100. 100.

    Liu, S. et al. Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24, 3201–3204 (2012).

    CAS  Google Scholar 

  101. 101.

    Dylla, A. G., Xiao, P., Henkelman, G. & Stevenson, K. J. Morphological dependence of lithium insertion in nanocrystalline TiO2(B) nanoparticles and nanosheets. J. Phys. Chem. Lett. 3, 2015–2019 (2012).

    CAS  Google Scholar 

  102. 102.

    Hua, X. et al. Lithiation thermodynamics and kinetics of the TiO2 (B) nanoparticles. J. Am. Chem. Soc. 139, 13330–13341 (2017).

    CAS  Google Scholar 

  103. 103.

    Ren, Y. et al. Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51, 2164–2167 (2012).

    CAS  Google Scholar 

  104. 104.

    Wilkening, M., Lyness, C., Armstrong, A. R. & Bruce, P. G. Diffusion in confined dimensions: Li+ transport in mixed conducting TiO2–B nanowires. J. Phys. Chem. C 113, 4741–4744 (2009).

    CAS  Google Scholar 

  105. 105.

    Hoshina, K., Harada, Y., Inagaki, H. & Takami, N. Characterization of lithium storage in TiO2(B) by 6Li-NMR and X-ray diffraction analysis. J. Electrochem. Soc. 161, A348–A354 (2014).

    CAS  Google Scholar 

  106. 106.

    Laskova, B., Zukalova, M., Zukal, A., Bousa, M. & Kavan, L. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase). J. Power Sources 246, 103–109 (2014).

    CAS  Google Scholar 

  107. 107.

    Giannuzzi, R. et al. Ultrathin TiO2(B) nanorods with superior lithium-ion storage performance. ACS Appl. Mater. Interfaces 6, 1933–1943 (2014).

    CAS  Google Scholar 

  108. 108.

    Okubo, M. et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007).

    CAS  Google Scholar 

  109. 109.

    Rauda, I. E. et al. Nanostructured pseudocapacitors based on atomic layer deposition of V2O5 onto conductive nanocrystal-based mesoporous ITO scaffolds. Adv. Funct. Mater. 24, 6717–6728 (2014).

    CAS  Google Scholar 

  110. 110.

    Tang, Y.-J. et al. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600116 (2016).

    Google Scholar 

  111. 111.

    Wang, R. et al. Elucidating the intercalation pseudocapacitance mechanism of MoS2–carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl. Mater. Interfaces 9, 32745–32755 (2017).

    CAS  Google Scholar 

  112. 112.

    Liang, Y. et al. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194–2202 (2015).

    CAS  Google Scholar 

  113. 113.

    Chen, K., Pan, W. & Xue, D. Phase transformation of Ce3+-doped MnO2 for pseudocapacitive electrode materials. J. Phys. Chem. C 120, 20077–20081 (2016).

    CAS  Google Scholar 

  114. 114.

    Hu, Z. et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 11, 226–234 (2015).

    CAS  Google Scholar 

  115. 115.

    Sun, R. et al. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 35, 396–404 (2017).

    CAS  Google Scholar 

  116. 116.

    Hu, Z. et al. 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 7, 16094–16099 (2015).

    CAS  Google Scholar 

  117. 117.

    Zhai, D. et al. A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). J. Power Sources 196, 7860–7867 (2011).

    CAS  Google Scholar 

  118. 118.

    Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017).

    CAS  Google Scholar 

  119. 119.

    Shin, J.-Y., Joo, J. H., Samuelis, D. & Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543–551 (2012).

    CAS  Google Scholar 

  120. 120.

    Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Google Scholar 

  121. 121.

    Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    CAS  Google Scholar 

  122. 122.

    Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P. & Stevenson, K. J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726–732 (2014).

    CAS  Google Scholar 

  123. 123.

    Liu, Y. et al. Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation. Adv. Energy Mater. 8, 1702604 (2018).

    Google Scholar 

  124. 124.

    Zhu, L. et al. Perovskite SrCo0.9Nb0.1O3−δ as an anion-intercalated electrode material for supercapacitors with ultrahigh volumetric energy density. Angew. Chem. Int. Ed. 55, 9576–9579 (2016).

    CAS  Google Scholar 

  125. 125.

    Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).

    CAS  Google Scholar 

  126. 126.

    Wang, B., Chen, Z., Lu, G., Wang, T. & Ge, Y. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes. Mater. Res. Bull. 76, 37–40 (2016).

    CAS  Google Scholar 

  127. 127.

    Pande, P., Rasmussen, P. G. & Thompson, L. T. Charge storage on nanostructured early transition metal nitrides and carbides. J. Power Sources 207, 212–215 (2012).

    CAS  Google Scholar 

  128. 128.

    Cong, X. et al. Intrinsic charge storage capability of transition metal dichalcogenides as pseudocapacitor electrodes. J. Phys. Chem. C 119, 20864–20870 (2015).

    CAS  Google Scholar 

  129. 129.

    Cook, J. B. et al. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv. Energy Mater. 7, 1601283 (2017).

    Google Scholar 

  130. 130.

    Mahmood, Q. et al. Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical architectures. Nano Lett. 15, 2269–2277 (2015).

    CAS  Google Scholar 

  131. 131.

    Muller, G. A., Cook, J. B., Kim, H.-S., Tolbert, S. H. & Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911–1917 (2015).

    CAS  Google Scholar 

  132. 132.

    Shuai, J. et al. Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing. Mater. Res. Express 3, 064001 (2016).

    Google Scholar 

  133. 133.

    Xu, X. et al. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658 (2018).

    Google Scholar 

  134. 134.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Google Scholar 

  135. 135.

    Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

    Google Scholar 

  136. 136.

    Du, F. et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta 235, 690–699 (2017).

    CAS  Google Scholar 

  137. 137.

    Lian, P. et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017).

    CAS  Google Scholar 

  138. 138.

    Kayali, E., VahidMohammadi, A., Orangi, J. & Beidaghi, M. Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Appl. Mater. Interfaces 10, 25949–25954 (2018).

    CAS  Google Scholar 

  139. 139.

    Hu, M. et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016).

    CAS  Google Scholar 

  140. 140.

    Tang, Q., Zhou, Z. & Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012).

    CAS  Google Scholar 

  141. 141.

    Hong, M. S., Lee, S. H. & Kim, S. W. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem. Solid-State Lett. 5, A227–A230 (2002).

    CAS  Google Scholar 

  142. 142.

    Hwang, J. Y. et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18, 57–70 (2015).

    CAS  Google Scholar 

  143. 143.

    Wu, Z.-S. et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4, 5835–5842 (2010).

    CAS  Google Scholar 

  144. 144.

    Wang, Y.-G., Wang, Z.-D. & Xia, Y.-Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim. Acta 50, 5641–5646 (2005).

    CAS  Google Scholar 

  145. 145.

    Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

    Google Scholar 

  146. 146.

    Long, J. W. et al. Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull. 36, 513–522 (2011).

    CAS  Google Scholar 

  147. 147.

    Ra, E. J., Raymundo-Piñero, E., Lee, Y. H. & Béguin, F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47, 2984–2992 (2009).

    CAS  Google Scholar 

  148. 148.

    Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930–A939 (2001).

    CAS  Google Scholar 

  149. 149.

    Naoi, K., Ishimoto, S., Isobe, Y. & Aoyagi, S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195, 6250–6254 (2010).

    CAS  Google Scholar 

  150. 150.

    Naoi, K., Ishimoto, S., Miyamoto, J. & Naoi, W. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363–9373 (2012).

    CAS  Google Scholar 

  151. 151.

    Jeżowski, P. et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 17, 167–173 (2017).

    Google Scholar 

  152. 152.

    Tran, T. D., Feikert, J. H., Pekala, R. W. & Kinoshita, K. Rate effect on lithium-ion graphite electrode performance. J. Appl. Electrochem. 26, 1161–1167 (1996).

    CAS  Google Scholar 

  153. 153.

    Sivakkumar, S. R. & Pandolfo, A. G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim. Acta 65, 280–287 (2012).

    CAS  Google Scholar 

  154. 154.

    Naoi, K. et al. Ultrafast nanocrystalline-TiO2(B)/carbon nanotube hyperdispersion prepared via combined ultracentrifugation and hydrothermal treatments for hybrid supercapacitors. Adv. Mater. 28, 6751–6757 (2016).

    CAS  Google Scholar 

  155. 155.

    Zhao, Y. et al. Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors. Electrochim. Acta 258, 343–352 (2017).

    CAS  Google Scholar 

  156. 156.

    Kong, L. et al. High-power and high-energy asymmetric supercapacitors based on Li+-intercalation into a T-Nb2O5/graphene pseudocapacitive electrode. J. Mater Chem. A. 2, 17962–17970 (2014).

    CAS  Google Scholar 

  157. 157.

    Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    CAS  Google Scholar 

  158. 158.

    Myung, S.-T., Amine, K. & Sun, Y.-K. Nanostructured cathode materials for rechargeable lithium batteries. J. Power Sources 283, 219–236 (2015).

    CAS  Google Scholar 

  159. 159.

    Cresce, A. V. et al. Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19, 574–586 (2017).

    CAS  Google Scholar 

  160. 160.

    Okoshi, M., Yamada, Y., Yamada, A. & Nakai, H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J. Electrochem. Soc. 160, A2160–A2165 (2013).

    CAS  Google Scholar 

  161. 161.

    Xie, X. et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016).

    CAS  Google Scholar 

  162. 162.

    Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019). This paper reports the performance of a state-of-the-art, high-power hybrid supercapacitor device based on a MXene as the redox electrode.

    CAS  Google Scholar 

  163. 163.

    Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    CAS  Google Scholar 

  164. 164.

    Grayfer, E. D., Pazhetnov, E. M., Kozlova, M. N., Artemkina, S. B. & Fedorov, V. E. Anionic redox chemistry in polysulfide electrode materials for rechargeable batteries. ChemSusChem 10, 4805–4811 (2017).

    CAS  Google Scholar 

  165. 165.

    Goodenough, J. B. & Kim, Y. Locating redox couples in the layered sulfides with application to Cu[Cr2]S4. J. Solid State Chem. 182, 2904–2911 (2009).

    CAS  Google Scholar 

  166. 166.

    Moreau, P., Ouvrard, G., Gressier, P., Ganal, P. & Rouxel, J. Electronic structures and charge transfer in lithium and mercury intercalated titanium disulfides. J. Phys. Chem. Solids 57, 1117–1122 (1996).

    CAS  Google Scholar 

  167. 167.

    Subramanian, V., Zhu, H. & Wei, B. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8, 827–832 (2006).

    CAS  Google Scholar 

  168. 168.

    Shi, P. et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11, 444–452 (2017).

    CAS  Google Scholar 

  169. 169.

    Kwon, B. J. et al. Effect of passivating shells on the chemistry and electrode properties of LiMn2O4 nanocrystal heterostructures. ACS Appl. Mater. Interfaces 11, 3823–3833 (2019).

    CAS  Google Scholar 

  170. 170.

    Kim, U-H., Myung, S-T., Yoon, C. S. & Sun, Y-K. Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries. ACS Energy Lett. 2, 1848–1854 (2017).

    CAS  Google Scholar 

  171. 171.

    Ding, Z. et al. Understanding the enhanced kinetics of gradient-chemical-doped lithium-rich cathode material. ACS Appl. Mater. Interfaces 9, 20519–20526 (2017).

    CAS  Google Scholar 

  172. 172.

    Weber, R., Fell, C. R., Dahn, J. R. & Hy, S. Operando X-ray diffraction study of polycrystalline and single-crystal LixNi0.5Mn0.3Co0.2O2. J. Electrochem. Soc. 164, A2992–A2999 (2017).

    CAS  Google Scholar 

  173. 173.

    Grenier, A. et al. Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer. Chem. Mater. 29, 7345–7352 (2017).

    CAS  Google Scholar 

  174. 174.

    Conway, B. E. & Gileadi, E. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Trans. Faraday Soc. 58, 2493–2509 (1962).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the US Office of Naval Research (grants nos. N00014-17-1-2244 and N00014-16-1-2164) for supporting their research.

Author information

Affiliations

Authors

Contributions

All authors researched data for the article. C.C., D.S.A., D.M.B., R.H.D. and B.D. contributed to the discussion of content and writing and editing of the article prior to submission.

Corresponding author

Correspondence to Bruce Dunn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, C., Ashby, D.S., Butts, D.M. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5, 5–19 (2020). https://doi.org/10.1038/s41578-019-0142-z

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing