Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture

Abstract

Metal–organic frameworks (MOFs) have diverse applications involving the storage, separation and sensing of weakly interacting, high-purity gases. Exposure to impure gas streams and interactions with corrosive and coordinating gases raises the question of chemical robustness; however, the factors that determine the stability of MOFs are not fully understood. Framework materials have been previously categorized as either thermodynamically or kinetically stable, but recent work has elucidated an energetic penalty for porosity for all these materials with respect to a dense phase, which has implications for the design of materials for gas storage, heterogeneous catalysis and electronic applications. In this Review, we focus on two main strategies for stabilization of the porous phase — using inert metal ions or increasing the heterolytic metal–ligand bond strength. We review the progress in designing robust materials for the capture of coordinating and corrosive gases such as H2O vapour, NH3, H2S, SO2, nitrogen oxides (NOx) and elemental halogens. We envision that the pursuit of strategies for kinetic stabilization of MOFs will yield increasing numbers of robust frameworks suited to harsh conditions and that short-term stability towards these challenging gases will be predictive of long-term stability for applications in less demanding environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Metastability of porous materials.
Fig. 2: Routes towards kinetic stabilization of MOFs.
Fig. 3: MOF building blocks with high kinetic stability.
Fig. 4: H2O capacities of porous solids.
Fig. 5: NH3 capacities of porous solids.
Fig. 6: Oxidative capture of halogens.

References

  1. 1.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  CAS  Google Scholar 

  2. 2.

    Mason, J. A., Veenstra, M. & Long, J. R. Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 5, 32–51 (2014).

    Article  CAS  Google Scholar 

  3. 3.

    Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    Article  CAS  Google Scholar 

  4. 4.

    DeSantis, D. et al. Techno-economic analysis of metal–organic frameworks for hydrogen and natural gas storage. Energy Fuels 31, 2024–2032 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    Kizzie, A. C., Wong-Foy, A. G. & Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27, 6368–6373 (2011).

    Article  CAS  Google Scholar 

  7. 7.

    Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    Dusselier, M. & Davis, M. E. Small-pore zeolites: synthesis and catalysis. Chem. Rev. 118, 5265–5329 (2018).

    Article  CAS  Google Scholar 

  9. 9.

    Yang, D. & Gates, B. C. Catalysis by metal organic frameworks: perspective and suggestions for future research. ACS Catal. 9, 1779–1798 (2019).

    Article  CAS  Google Scholar 

  10. 10.

    Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  11. 11.

    Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    Article  CAS  Google Scholar 

  12. 12.

    Hendon, C. H., Rieth, A. J., Korzyński, M. D. & Dincă, M. Grand challenges and future opportunities for metal–organic frameworks. ACS Cent. Sci. 3, 554–563 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    Furukawa, H. et al. Ultrahigh porosity in metal–organic frameworks. Science 329, 424–428 (2010).

    Article  CAS  Google Scholar 

  14. 14.

    Kitagawa, S. Porous materials and the age of gas. Angew. Chem. Int. Ed. 54, 10686–10687 (2015).

    Article  CAS  Google Scholar 

  15. 15.

    Cheetham, A. K., Kieslich, G. & Yeung, H. H. M. Thermodynamic and kinetic effects in the crystallization of metal–organic frameworks. Acc. Chem. Res. 51, 659–667 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Hughes, J. T. & Navrotsky, A. MOF-5: enthalpy of formation and energy landscape of porous materials. J. Am. Chem. Soc. 133, 9184–9187 (2011).

    Article  CAS  Google Scholar 

  17. 17.

    Hughes, J. T., Bennett, T. D., Cheetham, A. K. & Navrotsky, A. Thermochemistry of zeolitic imidazolate frameworks of varying porosity. J. Am. Chem. Soc. 135, 598–601 (2013). Study in which calorimetric measurements indicate that evacuated porous phases of many ZIFs, along with previously measured MOF-5, zeolites and mesoporous silicas, are metastable with respect to dense phases of the same components.

    Article  CAS  Google Scholar 

  18. 18.

    Bhunia, M. K., Hughes, J. T., Fettinger, J. C. & Navrotsky, A. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir 29, 8140–8145 (2013).

    Article  CAS  Google Scholar 

  19. 19.

    Wu, L., Hughes, J., Moliner, M., Navrotsky, A. & Corma, A. Experimental energetics of large and extra-large pore zeolites: pure silica beta polymorph C (BEC) and Ge-containing ITQ-33. Microporous Mesoporous Mater. 187, 77–81 (2014).

    Article  CAS  Google Scholar 

  20. 20.

    Akimbekov, Z. & Navrotsky, A. Little thermodynamic penalty for the synthesis of ultraporous metal organic frameworks. ChemPhysChem 17, 468–470 (2016).

    Article  CAS  Google Scholar 

  21. 21.

    Akimbekov, Z., Wu, D., Brozek, C. K., Dincă, M. & Navrotsky, A. Thermodynamics of solvent interaction with the metal–organic framework MOF-5. Phys. Chem. Chem. Phys. 18, 1158–1162 (2015).

    Article  CAS  Google Scholar 

  22. 22.

    Bennett, T. D. & Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 3, 431–440 (2018).

    Article  Google Scholar 

  23. 23.

    Zhou, C. et al. Thermodynamic features and enthalpy relaxation in a metal–organic framework glass. Phys. Chem. Chem. Phys. 20, 18291–18296 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Keen, D. A. & Bennett, T. D. Structural investigations of amorphous metal–organic frameworks formed via different routes. Phys. Chem. Chem. Phys. 20, 7857–7861 (2018).

    Article  CAS  Google Scholar 

  25. 25.

    Longley, L. et al. Flux melting of metal–organic frameworks. Chem. Sci. 10, 3592–3601 (2019).

    Article  CAS  Google Scholar 

  26. 26.

    Hu, Y. H. & Zhang, L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Phys. Rev. B 81, 174103 (2010).

    Article  CAS  Google Scholar 

  27. 27.

    Erkartal, M. & Durandurdu, M. Pressure-induced amorphization of MOF-5: a first principles study. ChemistrySelect 3, 8056–8063 (2018).

    Article  CAS  Google Scholar 

  28. 28.

    Bennett, T. D. et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011).

    Article  CAS  Google Scholar 

  29. 29.

    Eigen, M. Fast elementary steps in chemical reaction mechanisms. Pure Appl. Chem. 6, 97–115 (1963).

    Article  CAS  Google Scholar 

  30. 30.

    Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  CAS  Google Scholar 

  31. 31.

    Millange, F., Serre, C. & Férey, G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: The first CrIII hybrid inorganic–organic microporous solids: CrIII(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}x. Chem. Commun. 8, 822–823 (2002).

    Article  CAS  Google Scholar 

  32. 32.

    Hamon, L. et al. Molecular insight into the adsorption of H2S in the flexible MIL-53(Cr) and rigid MIL-47(V) MOFs: infrared spectroscopy combined to molecular simulations. J. Phys. Chem. C 115, 2047–2056 (2011).

    Article  CAS  Google Scholar 

  33. 33.

    Kang, I. J., Khan, N. A., Haque, E. & Jhung, S. H. Chemical and thermal stability of isotypic metal–organic frameworks: effect of metal ions. Chem. Eur. J. 17, 6437–6442 (2011). Study showing that the trend in chemical stability for a family of isostructural carboxylate frameworks is in line with the kinetics of metal–ligand exchange but contrasts with the trend in metal–oxygen bond strength.

    Article  CAS  Google Scholar 

  34. 34.

    Rosi, N. L. et al. Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005).

    Article  CAS  Google Scholar 

  35. 35.

    Dietzel, P. D. C., Panella, B., Hirscher, M., Blom, R. & Fjellvåg, H. Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem. Commun. 9, 959–961 (2006).

    Article  CAS  Google Scholar 

  36. 36.

    Jiao, Y. et al. Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni. Ind. Eng. Chem. Res. 54, 12408–12414 (2015).

    Article  CAS  Google Scholar 

  37. 37.

    Li, H. et al. Enhanced hydrostability in Ni-doped MOF-5. Inorg. Chem. 51, 9200–9207 (2012).

    Article  CAS  Google Scholar 

  38. 38.

    Liao, P.-Q. et al. Drastic enhancement of catalytic activity via post-oxidation of a porous MnII triazolate framework. Chem. Eur. J. 20, 11303–11307 (2014).

    Article  CAS  Google Scholar 

  39. 39.

    Liao, P.-Q. et al. Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ. Sci. 8, 1011–1016 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    Rieth, A. J., Tulchinsky, Y. & Dincă, M. High and reversible ammonia uptake in mesoporous azolate metal–organic frameworks with open Mn, Co, and Ni sites. J. Am. Chem. Soc. 138, 9401–9404 (2016).

    Article  CAS  Google Scholar 

  41. 41.

    Rieth, A. J., Yang, S., Wang, E. N. & Dincă, M. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Cent. Sci. 3, 668–672 (2017). Study in which a family of triazolate MOFs with pore diameters greater than the size at which irreversibility upon H 2 O desorption is expected nevertheless exhibits reversible H 2 O isotherms, owing to adsorption of H 2 O at open metal sites prior to the pore-filling event.

    Article  CAS  Google Scholar 

  42. 42.

    Rieth, A. J. & Dincă, M. Controlled gas uptake in metal–organic frameworks with record ammonia sorption. J. Am. Chem. Soc. 140, 3461–3466 (2018). Study showing that triazolate MOFs that exhibit a high density of open metal sites sorb record amounts of NH 3 and that the trend in stability towards NH 3 for the Mn 2+ , Co 2+ , Ni 2+ and Cu 2+ materials follows the trend in metal cation inertness.

    Article  CAS  Google Scholar 

  43. 43.

    Rieth, A. J. et al. Tunable metal–organic frameworks enable high-efficiency cascaded adsorption heat pumps. J. Am. Chem. Soc. 140, 17591–17596 (2018).

    Article  CAS  Google Scholar 

  44. 44.

    Irving, H. & Williams, R. J. P. Order of stability of metal complexes. Nature 162, 746–747 (1948).

    Article  CAS  Google Scholar 

  45. 45.

    Irving, H. & Williams, R. J. P. The stability of transition-metal complexes. J. Chem. Soc. 3192–3210 (1953).

  46. 46.

    Choi, H. J., Dincă, M. & Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal−organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848–7850 (2008).

    Article  CAS  Google Scholar 

  47. 47.

    Choi, H. J., Dincă, M., Dailly, A. & Long, J. R. Hydrogen storage in water-stable metal–organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate. Energy Environ. Sci. 3, 117–123 (2010).

    Article  CAS  Google Scholar 

  48. 48.

    Wade, C. R., Corrales-Sanchez, T., Narayan, T. C. & Dincă, M. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties. Energy Environ. Sci. 6, 2172–2177 (2013).

    Article  CAS  Google Scholar 

  49. 49.

    Colombo, V. et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chem. Sci. 2, 1311–1319 (2011).

    Article  CAS  Google Scholar 

  50. 50.

    Low, J. J. et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834–15842 (2009). Study in which the experimental evidence and theoretical calculations reveal that hydrolysis of metal–ligand bonds is favourable and has a similar driving force for diverse frameworks, including MOF-5, ZIF-8 and HKUST-1, but that the activation energy barrier for hydrolysis is the determining factor for hydrothermal stability.

    Article  CAS  Google Scholar 

  51. 51.

    Olmstead, W. N., Margolin, Z. & Bordwell, F. G. Acidities of water and simple alcohols in dimethyl sulfoxide solution. J. Org. Chem. 45, 3295–3299 (1980).

    Article  CAS  Google Scholar 

  52. 52.

    Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456–463 (1988).

    Article  CAS  Google Scholar 

  53. 53.

    Mondloch, J. E. et al. Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013).

    Article  CAS  Google Scholar 

  54. 54.

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  CAS  Google Scholar 

  55. 55.

    Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  CAS  Google Scholar 

  56. 56.

    Li, H., Cosio, M., Wang, K., Burtner, W. & Zhou, H.-C. in Elaboration and Applications of Metal-Organic Frameworks Ch. 1 (eds Ma, S. & Perman, J. A.) 1–35 (World Scientific, 2018).

  57. 57.

    Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    Article  CAS  Google Scholar 

  58. 58.

    Nguyen, J. G. & Cohen, S. M. Moisture-resistant and superhydrophobic metal−organic frameworks obtained via postsynthetic modification. J. Am. Chem. Soc. 132, 4560–4561 (2010).

    Article  CAS  Google Scholar 

  59. 59.

    Li, T. et al. Systematic modulation and enhancement of CO2:N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues. Chem. Sci. 4, 1746–1755 (2013).

    Article  CAS  Google Scholar 

  60. 60.

    Makal, T. A., Wang, X. & Zhou, H.-C. Tuning the moisture and thermal stability of metal–organic frameworks through incorporation of pendant hydrophobic groups. Cryst. Growth Des. 13, 4760–4768 (2013).

    Article  CAS  Google Scholar 

  61. 61.

    Jasuja, H., Huang, Y. & Walton, K. S. Adjusting the stability of metal–organic frameworks under humid conditions by ligand functionalization. Langmuir 28, 16874–16880 (2012).

    Article  CAS  Google Scholar 

  62. 62.

    Tan, K. et al. Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74. Chem. Mater. 26, 6886–6895 (2014).

    Article  CAS  Google Scholar 

  63. 63.

    Al-Janabi, N., Alfutimie, A., Siperstein, F. R. & Fan, X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Front. Chem. Sci. Eng. 10, 103–107 (2016).

    Article  CAS  Google Scholar 

  64. 64.

    Gul-E-Noor, F. et al. Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 13, 7783–7788 (2011).

    Article  CAS  Google Scholar 

  65. 65.

    McHugh, L. N. et al. Hydrolytic stability in hemilabile metal–organic frameworks. Nat. Chem. 10, 1096–1102 (2018).

    Article  CAS  Google Scholar 

  66. 66.

    Tian, Y. et al. Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer. Dalton Trans. 43, 1519–1523 (2014).

    Article  CAS  Google Scholar 

  67. 67.

    Towsif Abtab, S. M. et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4, 94–105 (2018). Study reporting a mesoporous Cr 3+ carboxylate framework that has a record 200 wt% capacity for H 2 O and can cyclically capture H 2 O, whereas isostructural frameworks formed with more labile cations, such as Fe 3+ or Al 3+ , collapse upon H 2 O uptake.

    Article  CAS  Google Scholar 

  68. 68.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  69. 69.

    Peterson, G. W. et al. Ammonia vapor removal by Cu3(BTC)2 and its characterization by MAS NMR. J. Phys. Chem. C 113, 13906–13917 (2009).

    Article  CAS  Google Scholar 

  70. 70.

    Hungerford, J. et al. DMOF-1 as a representative MOF for SO2 adsorption in both humid and dry conditions. J. Phys. Chem. C 122, 23493–23500 (2018).

    Article  CAS  Google Scholar 

  71. 71.

    Ruhl, A. S. & Kranzmann, A. Investigation of corrosive effects of sulphur dioxide, oxygen and water vapour on pipeline steels. Int. J. Greenh. Gas Con. 13, 9–16 (2013).

    Article  CAS  Google Scholar 

  72. 72.

    Elder, A. C., Bhattacharyya, S., Nair, S. & Orlando, T. M. Reactive adsorption of humid SO2 on metal–organic framework nanosheets. J. Phys. Chem. C 122, 10413–10422 (2018).

    Article  CAS  Google Scholar 

  73. 73.

    Brozek, C. K., Miller, J. T., Stoian, S. A. & Dincă, M. NO disproportionation at a mononuclear site-isolated Fe2+ center in Fe2+-MOF-5. J. Am. Chem. Soc. 137, 7495–7501 (2015).

    Article  CAS  Google Scholar 

  74. 74.

    McGrath, D. T. et al. Selective decontamination of the reactive air pollutant nitrous acid via node-linker cooperativity in a metal-organic framework. Chem. Sci. 10, 5576–5581 (2019).

    Article  CAS  Google Scholar 

  75. 75.

    Carter, J. H. et al. Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal–organic framework. J. Am. Chem. Soc. 140, 15564–15567 (2018).

    Article  CAS  Google Scholar 

  76. 76.

    Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014).

    Article  CAS  Google Scholar 

  77. 77.

    Liu, J. et al. Stability effects on CO2 adsorption for the DOBDC series of metal–organic frameworks. Langmuir 27, 11451–11456 (2011).

    Article  CAS  Google Scholar 

  78. 78.

    Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54, 4349–4352 (2015).

    Article  CAS  Google Scholar 

  79. 79.

    Park, S. S., Rieth, A. J., Hendon, C. H. & Dincă, M. Selective vapor pressure dependent proton transport in a metal−organic framework with two distinct hydrophilic pores. J. Am. Chem. Soc. 140, 2016–2019 (2018).

    Article  CAS  Google Scholar 

  80. 80.

    Cui, S. et al. Metal-organic frameworks as advanced moisture sorbents for energy-efficient high temperature cooling. Sci. Rep. 8, 15284 (2018).

    Article  CAS  Google Scholar 

  81. 81.

    Abdulhalim, R. G. et al. A fine-tuned metal-organic framework for autonomous indoor moisture control. J. Am. Chem. Soc. 139, 10715–10722 (2017).

    Article  CAS  Google Scholar 

  82. 82.

    Critoph, R. E. Evaluation of alternative refrigerant–adsorbent pairs for refrigeration cycles. Appl. Therm. Eng. 16, 891–900 (1996).

    Article  CAS  Google Scholar 

  83. 83.

    De Lange, M. F., Verouden, K. J. F. M., Vlugt, T. J. H., Gascon, J. & Kapteijn, F. Adsorption-driven heat pumps: the potential of metal–organic frameworks. Chem. Rev. 115, 12205–12250 (2015).

    Article  CAS  Google Scholar 

  84. 84.

    Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metal–organic frameworks for water harvesting from air. Adv. Mater. 30, 1704304 (2018).

    Article  CAS  Google Scholar 

  85. 85.

    Trapani, F., Polyzoidis, A., Loebbecke, S. & Piscopo, C. G. On the general water harvesting capability of metal-organic frameworks under well-defined climatic conditions. Microporous Mesoporous Mater. 230, 20–24 (2016).

    Article  CAS  Google Scholar 

  86. 86.

    Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    Article  CAS  Google Scholar 

  87. 87.

    Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017). The first report of a device with a MOF (MOF-801) that captures H 2 O from the atmosphere and can be regenerated using low-grade heat from natural sunlight.

    Article  CAS  Google Scholar 

  88. 88.

    Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    Article  CAS  Google Scholar 

  89. 89.

    Canivet, J. et al. Structure–property relationships of water adsorption in metal–organic frameworks. New J. Chem. 38, 3102–3111 (2014).

    Article  CAS  Google Scholar 

  90. 90.

    Jeremias, F., Lozan, V., Henninger, S. K. & Janiak, C. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Trans. 42, 15967–15973 (2013).

    Article  CAS  Google Scholar 

  91. 91.

    Akiyama, G. et al. Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 157, 89–93 (2012).

    Article  CAS  Google Scholar 

  92. 92.

    Khutia, A., Rammelberg, H. U., Schmidt, T., Henninger, S. & Janiak, C. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 25, 790–798 (2013).

    Article  CAS  Google Scholar 

  93. 93.

    Wright, A. M., Rieth, A. J., Yang, S., Wang, E. & Dincă, M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal–organic frameworks. Chem. Sci. 9, 3856–3859 (2018).

    Article  CAS  Google Scholar 

  94. 94.

    Rieth, A. J. et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks. J. Am. Chem. Soc. 141, 13858–13866 (2019).

  95. 95.

    Jasuja, H., Zang, J., Sholl, D. S. & Walton, K. S. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs. J. Phys. Chem. C 116, 23526–23532 (2012).

    Article  CAS  Google Scholar 

  96. 96.

    Wißmann, G. et al. Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater. 152, 64–70 (2012).

    Article  CAS  Google Scholar 

  97. 97.

    Schaate, A. et al. Porous interpenetrated zirconium–organic frameworks (PIZOFs): a chemically versatile family of metal–organic frameworks. Chem. Eur. J. 17, 9320–9325 (2011).

    Article  CAS  Google Scholar 

  98. 98.

    DeCoste, J. B., Demasky, T. J., Katz, M. J., Farha, O. K. & Hupp, J. T. A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New J. Chem. 39, 2396–2399 (2015).

    Article  CAS  Google Scholar 

  99. 99.

    Wu, H. et al. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    Article  CAS  Google Scholar 

  100. 100.

    Vermoortele, F. et al. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr). J. Am. Chem. Soc. 135, 11465–11468 (2013).

    Article  CAS  Google Scholar 

  101. 101.

    Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016).

    Article  CAS  Google Scholar 

  102. 102.

    Wang, S. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018).

    Article  CAS  Google Scholar 

  103. 103.

    Volkringer, C. et al. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chem. Mater. 21, 5695–5697 (2009).

    Article  CAS  Google Scholar 

  104. 104.

    Jeremias, F., Khutia, A., Henninger, S. K. & Janiak, C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J. Mater. Chem. 22, 10148–10151 (2012).

    Article  CAS  Google Scholar 

  105. 105.

    Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    Article  CAS  Google Scholar 

  106. 106.

    Kummer, H. et al. A functional full-scale heat exchanger coated with aluminum fumarate metal–organic framework for adsorption heat transformation. Ind. Eng. Chem. Res. 56, 8393–8398 (2017).

    Article  CAS  Google Scholar 

  107. 107.

    Fröhlich, D. et al. Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships. J. Mater. Chem. A 4, 11859–11869 (2016).

    Article  CAS  Google Scholar 

  108. 108.

    Fröhlich, D., Henninger, S. K. & Janiak, C. Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H. Dalton Trans. 43, 15300–15304 (2014).

    Article  CAS  Google Scholar 

  109. 109.

    Reinsch, H. et al. Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chem. Mater. 25, 17–26 (2013).

    Article  CAS  Google Scholar 

  110. 110.

    Lenzen, D. et al. Scalable green synthesis and full-scale test of the metal–organic framework CAU-10-H for use in adsorption-driven chillers. Adv. Mater. 30, 1705869 (2018).

    Article  CAS  Google Scholar 

  111. 111.

    Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).

    Article  CAS  Google Scholar 

  112. 112.

    Küsgens, P. et al. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 120, 325–330 (2009).

    Article  CAS  Google Scholar 

  113. 113.

    Ehrenmann, J., Henninger, S. K. & Janiak, C. Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs. Eur. J. Inorg. Chem. 2011, 471–474 (2011).

    Article  CAS  Google Scholar 

  114. 114.

    Seo, Y.-K. et al. Energy-efficient dehumidification over hierachically porous metal–organic frameworks as advanced water adsorbents. Adv. Mater. 24, 806–810 (2012).

    Article  CAS  Google Scholar 

  115. 115.

    Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).

    Article  CAS  Google Scholar 

  116. 116.

    Chen, Z. et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J. Am. Chem. Soc. 141, 2900–2905 (2019).

    Article  CAS  Google Scholar 

  117. 117.

    Sohail, M. et al. Synthesis of highly crystalline NH2-MIL-125 (Ti) with S-shaped water isotherms for adsorption heat transformation. Cryst. Growth Des. 17, 1208–1213 (2017).

    Article  CAS  Google Scholar 

  118. 118.

    Masciocchi, N. et al. Cubic octanuclear Ni(II) clusters in highly porous polypyrazolyl-based materials. J. Am. Chem. Soc. 132, 7902–7904 (2010).

    Article  CAS  Google Scholar 

  119. 119.

    Wang, K. et al. Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance. J. Am. Chem. Soc. 138, 914–919 (2016).

    Article  CAS  Google Scholar 

  120. 120.

    Padial, N. M. et al. Highly hydrophobic isoreticular porous metal–organic frameworks for the capture of harmful volatile organic compounds. Angew. Chem. Int. Ed. 52, 8290–8294 (2013).

    Article  CAS  Google Scholar 

  121. 121.

    Denysenko, D. et al. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal–organic frameworks featuring different pore sizes. Chem. Eur. J. 17, 1837–1848 (2011).

    Article  CAS  Google Scholar 

  122. 122.

    Denysenko, D., Grzywa, M., Jelic, J., Reuter, K. & Volkmer, D. Scorpionate-type coordination in MFU-4l metal–organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sites. Angew. Chem. Int. Ed. 53, 5832–5836 (2014).

    Article  CAS  Google Scholar 

  123. 123.

    Shustova, N. B., Cozzolino, A. F., Reineke, S., Baldo, M. & Dincă, M. Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal–organic frameworks with open metal sites. J. Am. Chem. Soc. 135, 13326–13329 (2013).

    Article  CAS  Google Scholar 

  124. 124.

    Smith, M. K., Jensen, K. E., Pivak, P. A. & Mirica, K. A. Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 28, 5264–5268 (2016).

    Article  CAS  Google Scholar 

  125. 125.

    Bobbitt, N. S. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017).

    Article  CAS  Google Scholar 

  126. 126.

    Chen, Y., Li, L., Li, J., Ouyang, K. & Yang, J. Ammonia capture and flexible transformation of M-2(INA) (M=Cu, Co, Ni, Cd) series materials. J. Hazard. Mater. 306, 340–347 (2016).

    Article  CAS  Google Scholar 

  127. 127.

    Barea, E., Montoro, C. & Navarro, J. A. R. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43, 5419–5430 (2014).

    Article  CAS  Google Scholar 

  128. 128.

    Decoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014).

    Article  CAS  Google Scholar 

  129. 129.

    NIOSH. Immediately Dangerous to Life or Health Concentrations (IDLH): Ammonia. The National Institute for Occupational Safety and Health https://www.cdc.gov/niosh/idlh/7664417.html (1994).

  130. 130.

    Woellner, M. et al. Adsorption and detection of hazardous trace gases by metal–organic frameworks. Adv. Mater. 30, 1704679 (2018).

    Article  CAS  Google Scholar 

  131. 131.

    Godfrey, H. G. W. et al. Ammonia storage by reversible host–guest site exchange in a robust metal–organic framework. Angew. Chem. Int. Ed. 57, 14778–14781 (2018).

    Google Scholar 

  132. 132.

    Petit, C. et al. Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites. Langmuir 27, 13043–13051 (2011).

    Article  CAS  Google Scholar 

  133. 133.

    Kajiwara, T. et al. A systematic study on the stability of porous coordination polymers against ammonia. Chem. Eur. J. 20, 15611–15617 (2014).

    Article  CAS  Google Scholar 

  134. 134.

    DeCoste, J. B., Denny, Jr., M. S., Peterson, G. W., Mahle, J. J. & Cohen, S. M. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 7, 2711–2716 (2016).

    Article  CAS  Google Scholar 

  135. 135.

    Grant Glover, T., Peterson, G. W., Schindler, B. J., Britt, D. & Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 66, 163–170 (2011).

    Article  CAS  Google Scholar 

  136. 136.

    Katz, M. J. et al. High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Trans. 45, 4150–4153 (2016).

    Article  CAS  Google Scholar 

  137. 137.

    Britt, D., Tranchemontagne, D. & Yaghi, O. M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. USA 105, 11623–11627 (2008).

    Article  Google Scholar 

  138. 138.

    Petit, C. & Bandosz, T. J. Enhanced adsorption of ammonia on metal–organic framework/graphite oxide composites: analysis of surface interactions. Adv. Funct. Mater. 20, 111–118 (2010).

    Article  CAS  Google Scholar 

  139. 139.

    Spanopoulos, I., Xydias, P., Malliakas, C. D. & Trikalitis, P. N. A straight forward route for the development of metal–organic frameworks functionalized with aromatic −OH groups: synthesis, characterization, and gas (N2, Ar, H2, CO2, CH4, NH3) sorption properties. Inorg. Chem. 52, 855–862 (2013).

    Article  CAS  Google Scholar 

  140. 140.

    Jasuja, H., Peterson, G. W., Decoste, J. B., Browe, M. A. & Walton, K. S. Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chem. Eng. Sci. 124, 118–124 (2015).

    Article  CAS  Google Scholar 

  141. 141.

    Joshi, J. N., Garcia-Gutierrez, E. Y., Moran, C. M., Deneff, J. I. & Walton, K. S. Engineering copper carboxylate functionalities on water stable metal–organic frameworks for enhancement of ammonia removal capacities. J. Phys. Chem. C 121, 3310–3319 (2017).

    Article  CAS  Google Scholar 

  142. 142.

    Morris, W., Doonan, C. J. & Yaghi, O. M. Postsynthetic modification of a metal–organic framework for stabilization of a hemiaminal and ammonia uptake. Inorg. Chem. 50, 6853–6855 (2011).

    Article  CAS  Google Scholar 

  143. 143.

    Wilcox, O. T. et al. Acid loaded porphyrin-based metal–organic framework for ammonia uptake. Chem. Commun. 51, 14989–14991 (2015).

    Article  CAS  Google Scholar 

  144. 144.

    Van Humbeck, J. F. et al. Ammonia capture in porous organic polymers densely functionalized with Brønsted acid groups. J. Am. Chem. Soc. 136, 2432–2440 (2014).

    Article  CAS  Google Scholar 

  145. 145.

    Takahashi, A. et al. Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds. J. Am. Chem. Soc. 138, 6376–6379 (2016).

    Article  CAS  Google Scholar 

  146. 146.

    Doonan, C. J., Tranchemontagne, D. J., Glover, T. G., Hunt, J. R. & Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2, 235–238 (2010).

    Article  CAS  Google Scholar 

  147. 147.

    Barin, G. et al. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations. Chem. Sci. 8, 4399–4409 (2017).

    Article  CAS  Google Scholar 

  148. 148.

    Vikrant, K., Kumar, V., Ok, Y. S., Kim, K.-H. & Deep, A. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC Trends Anal. Chem. 105, 263–281 (2018).

    Article  CAS  Google Scholar 

  149. 149.

    Yassine, O. et al. H2S sensors: fumarate-based fcu-MOF thin film grown on a capacitive interdigitated electrode. Angew. Chem. Int. Ed. 55, 15879–15883 (2016).

    Article  CAS  Google Scholar 

  150. 150.

    Wan, X., Wu, L., Zhang, L., Song, H. & Lv, Y. Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors. Sens. Actuators B Chem. 220, 614–621 (2015).

    Article  CAS  Google Scholar 

  151. 151.

    Petit, C., Levasseur, B., Mendoza, B. & Bandosz, T. J. Reactive adsorption of acidic gases on MOF/graphite oxide composites. Microporous Mesoporous Mater. 154, 107–112 (2012).

    Article  CAS  Google Scholar 

  152. 152.

    Petit, C., Mendoza, B. & Bandosz, T. J. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem 11, 3678–3684 (2010).

    Article  CAS  Google Scholar 

  153. 153.

    Nickerl, G. et al. Integration of accessible secondary metal sites into MOFs for H2S removal. Inorg. Chem. Front. 1, 325–330 (2014).

    Article  CAS  Google Scholar 

  154. 154.

    Joshi, J. N. et al. Probing metal–organic framework design for adsorptive natural gas purification. Langmuir 34, 8443–8450 (2018).

    Article  CAS  Google Scholar 

  155. 155.

    Sánchez-González, E. et al. Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF. J. Mater. Chem. A 6, 16900–16909 (2018).

    Article  Google Scholar 

  156. 156.

    Belmabkhout, Y. et al. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3, 1059–1066 (2018).

    Article  CAS  Google Scholar 

  157. 157.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    Article  CAS  Google Scholar 

  158. 158.

    Liu, G. et al. Enabling fluorinated MOF-based membranes for simultaneous removal of H2S and CO2 from natural gas. Angew. Chemie Int. Ed. 57, 14811–14816 (2018).

    Article  CAS  Google Scholar 

  159. 159.

    Subramanian, S. & Zaworotko, M. J. Porous solids by design: [Zn(4,4′-bpy)2(SiF6)]n·xDMF, a single framework octahedral coordination polymer with large square channels. Angew. Chem. Int. Ed. 34, 2127–2129 (1995).

    Article  CAS  Google Scholar 

  160. 160.

    Cadiau, A. et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 356, 731–735 (2017).

    Article  CAS  Google Scholar 

  161. 161.

    Mohideen, M. I. H. et al. A fine-tuned MOF for gas and vapor separation: a multipurpose adsorbent for acid gas removal, dehydration, and BTX sieving. Chem 3, 822–833 (2017).

    Article  CAS  Google Scholar 

  162. 162.

    Córdoba, P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel 144, 274–286 (2015).

    Article  CAS  Google Scholar 

  163. 163.

    EPA. Power Plant Data Highlights. US Environmental Protection Agency https://www.epa.gov/airmarkets/coal-fired-power-plant-data (2018).

  164. 164.

    Ding, L. & Yazaydin, A. O. The effect of SO2 on CO2 capture in zeolitic imidazolate frameworks. Phys. Chem. Chem. Phys. 15, 11856–11861 (2013).

    Article  CAS  Google Scholar 

  165. 165.

    Pacciani, R. et al. Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent. Environ. Sci. Technol. 45, 7083–7088 (2011).

    Article  CAS  Google Scholar 

  166. 166.

    Han, X., Yang, S. & Schröder, M. Porous metal–organic frameworks as emerging sorbents for clean air. Nat. Rev. Chem. 3, 108–118 (2019).

    Article  CAS  Google Scholar 

  167. 167.

    Mounfield, W. P. et al. Synergistic effects of water and SO2 on degradation of MIL-125 in the presence of acid gases. J. Phys. Chem. C 120, 27230–27240 (2016).

    Article  CAS  Google Scholar 

  168. 168.

    Yang, S. et al. Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. J. Am. Chem. Soc. 135, 4954–4957 (2013).

    Article  CAS  Google Scholar 

  169. 169.

    Yang, S. et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 4, 887–894 (2012). Report of the structural visualization of CO 2 and SO 2 within MOF pores, providing insight into the mechanism of selectivity towards SO 2.

    Article  CAS  Google Scholar 

  170. 170.

    Li, L. et al. Post-synthetic modulation of the charge distribution in a metal–organic framework for optimal binding of carbon dioxide and sulfur dioxide. Chem. Sci. 10, 1472–1482 (2019).

    Article  CAS  Google Scholar 

  171. 171.

    Tan, K. et al. Mechanism of preferential adsorption of SO2 into two microporous paddle wheel frameworks M(bdc)(ted)0.5. Chem. Mater. 25, 4653–4662 (2013).

    Article  CAS  Google Scholar 

  172. 172.

    Cui, X. et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv. Mater. 29, 1606929 (2017).

    Article  CAS  Google Scholar 

  173. 173.

    Tchalala, M. R. et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat. Commun. 10, 1328 (2019).

    Article  CAS  Google Scholar 

  174. 174.

    Rodríguez-Albelo, L. M. et al. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series. Nat. Commun. 8, 14457 (2017).

    Article  CAS  Google Scholar 

  175. 175.

    Bhattacharyya, S. et al. Interactions of SO2-containing acid gases with ZIF-8: structural changes and mechanistic investigations. J. Phys. Chem. C 120, 27221–27229 (2016).

    Article  CAS  Google Scholar 

  176. 176.

    Wang, C. et al. Agriculture is a major source of NOx pollution in California. Sci. Adv. 4, eaao3477 (2018).

    Article  CAS  Google Scholar 

  177. 177.

    EPA. Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards. US Environmental Protection Agency http://www.gpo.gov/fdsys/pkg/FR-2014-04-28/pdf/2014-06954.pdf (2014).

  178. 178.

    The European Commission. Commission Regulation (EU) No 459/2012. Official Journal of the European Union http://data.europa.eu/eli/reg/2012/459/oj (2012).

  179. 179.

    Wang, P. et al. Porous metal–organic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NOx with NH3. RSC Adv. 4, 48912–48919 (2014).

    Article  CAS  Google Scholar 

  180. 180.

    Jiang, H. et al. Effect of cosolvent and temperature on the structures and properties of Cu-MOF-74 in low-temperature NH3-SCR. Ind. Eng. Chem. Res. 56, 3542–3550 (2017).

    Article  CAS  Google Scholar 

  181. 181.

    Zhang, M., Wang, W. & Chen, Y. Theoretical investigation of selective catalytic reduction of NO on MIL-100-Fe. Phys. Chem. Chem. Phys. 20, 2211–2219 (2018).

    Article  CAS  Google Scholar 

  182. 182.

    Granger, P. & Parvulescu, V. I. Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem. Rev. 111, 3155–3207 (2011).

    Article  CAS  Google Scholar 

  183. 183.

    Bartok, W. & Sarofim, A. F. (eds) Fossil Fuel Combustion: A Source Book. (Wiley-Interscience, 1991).

  184. 184.

    van Faassen, E. & Vanin, A. Radicals for Life. The Various Forms of Nitric Oxide. (Elsevier, 2007).

  185. 185.

    Keefer, L. K. Thwarting thrombus. Nat. Mater. 2, 357–358 (2003).

    Article  CAS  Google Scholar 

  186. 186.

    Baudron, S. A. Dipyrrin based homo- and hetero-metallic infinite architectures. CrystEngComm 12, 2288–2295 (2010).

    Article  CAS  Google Scholar 

  187. 187.

    Xiao, B. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal−organic framework. J. Am. Chem. Soc. 129, 1203–1209 (2007).

    Article  CAS  Google Scholar 

  188. 188.

    Wright, A. M., Wu, G. & Hayton, T. W. Structural characterization of a copper nitrosyl complex with a {CuNO}10 configuration. J. Am. Chem. Soc. 132, 14336–14337 (2010).

    Article  CAS  Google Scholar 

  189. 189.

    Bordiga, S. et al. Interaction of N2, CO and NO with Cu-exchanged ETS-10: a compared FTIR study with other Cu-zeolites and with dispersed Cu2O. Catal. Today 70, 91–105 (2001).

    Article  CAS  Google Scholar 

  190. 190.

    Peikert, K. et al. Tuning the nitric oxide release behavior of amino functionalized HKUST-1. Microporous Mesoporous Mater. 216, 118–126 (2015).

    Article  CAS  Google Scholar 

  191. 191.

    McKinlay, A. C. et al. Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal–organic frameworks. Chem. Mater. 25, 1592–1599 (2013).

    Article  CAS  Google Scholar 

  192. 192.

    Bonino, F. et al. Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO. Chem. Mater. 20, 4957–4968 (2008).

    Article  CAS  Google Scholar 

  193. 193.

    McKinlay, A. C. et al. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440–10444 (2008).

    Article  CAS  Google Scholar 

  194. 194.

    Cattaneo, D. et al. Tuning the nitric oxide release from CPO-27 MOFs. RSC Adv. 6, 14059–14067 (2016).

    Article  CAS  Google Scholar 

  195. 195.

    Bloch, E. D. et al. Gradual release of strongly bound nitric oxide from Fe2(NO)2(dobdc). J. Am. Chem. Soc. 137, 3466–3469 (2015).

    Article  CAS  Google Scholar 

  196. 196.

    Ebrahim, A. M., Levasseur, B. & Bandosz, T. J. Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions. Langmuir 29, 168–174 (2013).

    Article  CAS  Google Scholar 

  197. 197.

    Peterson, G. W., Mahle, J. J., Decoste, J. B., Gordon, W. O. & Rossin, J. A. Extraordinary NO2 removal by the metal–organic framework UiO-66-NH2. Angew. Chem. Int. Ed. 55, 6235–6238 (2016).

    Article  CAS  Google Scholar 

  198. 198.

    Han, X. et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mater. 17, 691–696 (2018). The first report of a MOF with reversible capture of NO 2 , which forms helical monomer–dimer chains within the pores.

    Article  CAS  Google Scholar 

  199. 199.

    Schulz, M. et al. A calixarene-based metal–organic framework for highly selective NO2 detection. Angew. Chem. Int. Ed. 57, 12961–12965 (2018).

    Article  CAS  Google Scholar 

  200. 200.

    Sava, D. F. et al. Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. J. Am. Chem. Soc. 133, 12398–12401 (2011).

    Article  CAS  Google Scholar 

  201. 201.

    Sava, D. F. et al. Competitive I2 sorption by Cu-BTC from humid gas streams. Chem. Mater. 25, 2591–2596 (2013).

    Article  CAS  Google Scholar 

  202. 202.

    Falaise, C. et al. Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chem. Commun. 49, 10320–10322 (2013).

    Article  CAS  Google Scholar 

  203. 203.

    Yao, R.-X., Cui, X., Jia, X.-X., Zhang, F.-Q. & Zhang, X.-M. A luminescent zinc(II) metal–organic framework (MOF) with conjugated π-electron ligand for high iodine capture and nitro-explosive detection. Inorg. Chem. 55, 9270–9275 (2016).

    Article  CAS  Google Scholar 

  204. 204.

    Li, B. et al. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nat. Commun. 8, 485 (2017).

    Article  CAS  Google Scholar 

  205. 205.

    Zhang, X. et al. Confinement of iodine molecules into triple-helical chains within robust metal–organic frameworks. J. Am. Chem. Soc. 139, 16289–16296 (2017).

    Article  CAS  Google Scholar 

  206. 206.

    Lobanov, S. S. et al. Iodine in metal–organic frameworks at high pressure. J. Phys. Chem. A 122, 6109–6117 (2018).

    Article  CAS  Google Scholar 

  207. 207.

    Banerjee, D. et al. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Appl. Mater. Interfaces 10, 10622–10626 (2018).

    Article  CAS  Google Scholar 

  208. 208.

    DeCoste, J. B., Browe, M. A., Wagner, G. W., Rossin, J. A. & Peterson, G. W. Removal of chlorine gas by an amine functionalized metal–organic framework via electrophilic aromatic substitution. Chem. Commun. 51, 12474–12477 (2015).

    Article  CAS  Google Scholar 

  209. 209.

    Tulchinsky, Y. et al. Reversible capture and release of Cl2 and Br2 with a redox-active metal–organic framework. J. Am. Chem. Soc. 139, 5992–5997 (2017). Report of a cobalt triazolate framework that oxidatively captures Cl 2 and Br 2 at room temperature and reductively releases them upon heating.

    Article  CAS  Google Scholar 

  210. 210.

    Brozek, C. K. & Dincă, M. Lattice-imposed geometry in metal–organic frameworks: lacunary Zn4O clusters in MOF-5 serve as tripodal chelating ligands for Ni2+. Chem. Sci. 3, 2110–2113 (2012).

    Article  CAS  Google Scholar 

  211. 211.

    Brozek, C. K. & Dincă, M. Cation exchange at the secondary building units of metal-organic frameworks. Chem. Soc. Rev. 43, 5456–5467 (2014).

    Article  CAS  Google Scholar 

  212. 212.

    Leus, K. et al. Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks. Microporous Mesoporous Mater. 226, 110–116 (2016).

    Article  CAS  Google Scholar 

  213. 213.

    Richens, D. T. Ligand substitution reactions at inorganic centers. Chem. Rev. 105, 1961–2002 (2005).

    Article  CAS  Google Scholar 

  214. 214.

    Helm, L. & Merbach, A. E. Inorganic and bioinorganic solvent exchange mechanisms. Chem. Rev. 105, 1923–1960 (2005).

    Article  CAS  Google Scholar 

  215. 215.

    Ripin, D. H. & Evans, D. A. Evans pKa Table. The Evans Group. http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf (2005).

  216. 216.

    Yuhas, B. D., Mowat, J. P. S., Miller, M. A. & Sinkler, W. AlPO-78: a 24-layer ABC-6 aluminophosphate synthesized using a simple structure-directing agent. Chem. Mater. 30, 582–586 (2018).

    Article  CAS  Google Scholar 

  217. 217.

    Huberty, M. S., Wagner, A. L., McCormick, A. & Cussler, E. Ammonia absorption at haber process conditions. AIChE J. 58, 3526–3532 (2012).

    Article  CAS  Google Scholar 

  218. 218.

    Petit, C., Mendoza, B. & Bandosz, T. J. Reactive adsorption of ammonia on Cu-based MOF/graphene composites. Langmuir 26, 15302–15309 (2010).

    Article  CAS  Google Scholar 

  219. 219.

    Savage, M. et al. Selective adsorption of sulfur dioxide in a robust metal–organic framework material. Adv. Mater. 28, 8705–8711 (2016).

    Article  CAS  Google Scholar 

  220. 220.

    Fernandez, C. A. et al. Gas-induced expansion and contraction of a fluorinated metal−organic framework. Cryst. Growth Des. 10, 1037–1039 (2010).

    Article  CAS  Google Scholar 

  221. 221.

    Mon, M. et al. A post-synthetic approach triggers selective and reversible sulphur dioxide adsorption on a metal–organic framework. Chem. Commun. 54, 9063–9066 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Studies of small-molecule interactions with metal nodes in MOFs are supported through a CAREER grant from the US National Science Foundation to M.D. (DMR-1452612). A.J.R. is supported by the Martin Family Fellowship for Sustainability. The authors thank the Abdul Latif Jameel World Water and Food Security Lab for seed funding for water capture.

Author information

Affiliations

Authors

Contributions

A.J.R. and A.M.W. wrote the initial manuscript. A.J.R. and M.D. revised and edited the manuscript prior to submission.

Corresponding author

Correspondence to Mircea Dincă.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

US Environmental Protection Agency Sulfur Dioxide Trends: https://www.epa.gov/air-trends/sulfur-dioxide-trends

US Occupational Safety and Health Administration Hydrogen Sulfide: https://www.osha.gov/SLTC/hydrogensulfide/index.html

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rieth, A.J., Wright, A.M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat Rev Mater 4, 708–725 (2019). https://doi.org/10.1038/s41578-019-0140-1

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing