Near-zero-index materials for photonics

Abstract

The discovery, design and development of materials are critically linked to advances in many areas of research, and optics is no exception. Recently, the spectral region in which the index of refraction of a material approaches zero has become a topic of interest owing to fascinating phenomena, such as static light, enhanced nonlinearities, light tunnelling and emission tailoring. As a result, such near-zero-index (NZI) materials bridge materials development and optical research. Here, we review recent advances in various classes of NZI platforms, with particular focus on homogeneous materials, including metals, semi-metals, doped semiconductors, phononic and interband materials, discussing the novel optical phenomena that they can produce. We also overview the developments in a key area for NZI materials, nonlinear optics, and survey some of the future goals in the field, such as the development of tailorable NZI materials in the visible range and the improvement of the theoretical description of the nonlinear enhancements in these materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Overview of the effects observed in near-zero-index materials.
Fig. 2: Comparison of experimentally realized bulk homogeneous ε-near-zero and near-zero-index materials.
Fig. 3: Studies of near-zero-index and ε-near-zero properties in homogeneous materials.
Fig. 4: Nonlinear optics in near-zero-index media.

References

  1. 1.

    Ronchi, V. & Barocas, V. Nature of Light: An Historical Survey (Heinemann Educational Books, 1970).

  2. 2.

    Hecht, E. Optics (Pearson, 2017).

  3. 3.

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    CAS  Article  Google Scholar 

  4. 4.

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

  5. 5.

    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Ziolkowski, R. W. & Heyman, E. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Elser, J., Wangberg, R., Podolskiy, V. A. & Narimanov, E. E. Nanowire metamaterials with extreme optical anisotropy. Appl. Phys. Lett. 89, 261102 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    Veselago, V. G. The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Uspekhi 10, 509–514 (1968).

    Article  Google Scholar 

  9. 9.

    Pendry, J. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  Google Scholar 

  11. 11.

    Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Article  Google Scholar 

  12. 12.

    Zhang, F., Kang, L., Zhao, Q., Zhou, J. & Lippens, D. Magnetic and electric coupling effects of dielectric metamaterial. New J. Phys. 14, 33031 (2012).

    Article  CAS  Google Scholar 

  13. 13.

    Urbas, A. M. et al. Roadmap on optical metamaterials. J. Opt. 18, 093005 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Adams, D. C. et al. Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys. Rev. Lett. 107, 133901 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N. & Vincent, P. A metamaterial for directive emission. Phys. Rev. Lett. 89, 213902 (2002).

    Article  CAS  Google Scholar 

  16. 16.

    Garcia, N., Ponizovskaya, E. V. & Xiao, J. Q. Zero permittivity materials: band gaps at the visible. Appl. Phys. Lett. 80, 1120–1122 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

    Article  CAS  Google Scholar 

  18. 18.

    Lovat, G., Burghignoli, P., Capolino, F., Jackson, D. R. & Wilton, D. R. Analysis of directive radiation from a line source in a metamaterial slab with low permittivity. IEEE Trans. Antennas Propag. 54, 1017–1030 (2006).

    Article  Google Scholar 

  19. 19.

    Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    Silveirinha, M. G. & Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using epsilon near-zero metamaterials. Phys. Rev. B 76, 245109 (2007).

    Article  CAS  Google Scholar 

  21. 21.

    Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Article  CAS  Google Scholar 

  22. 22.

    Mahmoud, A. M. & Engheta, N. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat. Commun. 5, 5638 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Powell, D. A. et al. Nonlinear control of tunneling through an epsilon-near-zero channel. Phys. Rev. B 79, 245135 (2009).

    Article  CAS  Google Scholar 

  24. 24.

    Campione, S., Wendt, J. R., Keeler, G. A. & Luk, T. S. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers. ACS Photonics 3, 293–297 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Liberal, I. & Engheta, N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Sci. Adv. 2, e1600987 (2016).

    Article  CAS  Google Scholar 

  26. 26.

    Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Suchowski, H. et al. Phase mismatch–free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Kinsey, N. et al. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2, 616–622 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Wang, Y., Capretti, A. & Dal Negro, L. Wide tuning of the optical and structural properties of alternative plasmonic materials. Opt. Mater. Express 5, 2415–2430 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Zhang, C. et al. High-performance doped silver films: overcoming fundamental material limits for nanophotonic applications. Adv. Mater. 29, 1605177 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Tyborski, T. et al. Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers. Phys. Rev. Lett. 115, 147401 (2015).

    Article  CAS  Google Scholar 

  35. 35.

    Streyer, W., Feng, K., Zhong, Y., Hoffman, A. J. J. & Wasserman, D. Engineering the reststrahlen band with hybrid plasmon/phonon excitations. MRS Commun. 6, 1–8 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Caldwell, J. D. et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690–3697 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Maas, R., Parsons, J., Engheta, N. & Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 7, 907–912 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Subramania, G., Fischer, A. J. & Luk, T. S. Optical properties of metal-dielectric based epsilon near zero metamaterials. Appl. Phys. Lett. 101, 241107 (2012).

    Article  CAS  Google Scholar 

  39. 39.

    Basharin, A. A., Mavidis, C., Kafesaki, M., Economou, E. N. & Soukoulis, C. M. Epsilon near zero based phenomena in metamaterials. Phys. Rev. B 87, 155130 (2013).

    Article  CAS  Google Scholar 

  40. 40.

    Li, Y. et al. On-chip zero-index metamaterials. Nat. Photonics 9, 738–742 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Edwards, B., Alù, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    Article  CAS  Google Scholar 

  42. 42.

    Vesseur, E. J. R., Coenen, T., Caglayan, H., Engheta, N. & Polman, A. Experimental verification of n = 0 structures for visible light. Phys. Rev. Lett. 110, 013902 (2013).

    Article  CAS  Google Scholar 

  43. 43.

    Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).

    Article  CAS  Google Scholar 

  44. 44.

    Campione, S. et al. Epsilon-near-zero modes for tailored light-matter interaction. Phys. Rev. Appl. 4, 044011 (2015).

    Article  CAS  Google Scholar 

  45. 45.

    Smolyaninov, I. I., Smolyaninova, V. N., Kildishev, A. V. & Shalaev, V. M. Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys. Rev. Lett. 102, 213901 (2009).

    Article  CAS  Google Scholar 

  46. 46.

    Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V. & Shalaev, V. M. Experimental observation of the trapped rainbow. Appl. Phys. Lett. 96, 211121 (2010).

    Article  CAS  Google Scholar 

  47. 47.

    Liu, R., Roberts, C. M., Zhong, Y., Podolskiy, V. A. & Wasserman, D. Epsilon-near-zero photonics wires. ACS Photonics 3, 1045–1052 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Shcherbakov, M. R. et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15, 6985–6990 (2015).

    Article  CAS  Google Scholar 

  49. 49.

    Shorokhov, A. S. et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances. Nano Lett. 16, 4857–4861 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  CAS  Google Scholar 

  51. 51.

    Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    Panoiu, N. C., Osgood, R. M. Jr., Zhang, S. & Brueck, S. R. J. Zero-n bandgap in photonic crystal superlattices. J. Opt. Soc. Am. B 23, 506–513 (2006).

    CAS  Article  Google Scholar 

  54. 54.

    Hajian, H., Ozbay, E. & Caglayan, H. Enhanced transmission and beaming via a zero-index photonic crystal. Appl. Phys. Lett. 109, 031105 (2016).

    Article  CAS  Google Scholar 

  55. 55.

    Reshef, O. et al. Direct observation of phase-free propagation in a silicon waveguide. ACS Photonics 4, 2385–2389 (2017).

    CAS  Article  Google Scholar 

  56. 56.

    Vlasov, Y. A., O’Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    CAS  Article  Google Scholar 

  57. 57.

    Marini, A. & García de Abajo, F. J. Self-organization of frozen light in near-zero-index media with cubic nonlinearity. Sci. Rep. 6, 20088 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    Ciattoni, A., Marini, A., Rizza, C., Scalora, M. & Biancalana, F. Polariton excitation in epsilon-near-zero slabs: transient trapping of slow light. Phys. Rev. A 87, 053853 (2013).

    Article  CAS  Google Scholar 

  59. 59.

    D’Aguanno, G. et al. Frozen light in a near-zero index metasurface. Phys. Rev. B 90, 054202 (2014).

    Article  CAS  Google Scholar 

  60. 60.

    Newman, W. D. et al. Ferrell–Berreman modes in plasmonic epsilon-near-zero media. ACS Photonics 2, 2–7 (2015).

    CAS  Article  Google Scholar 

  61. 61.

    Javani, M. H. & Stockman, M. I. Real and imaginary properties of epsilon-near-zero materials. Phys. Rev. Lett. 117, 107404 (2016).

    Article  CAS  Google Scholar 

  62. 62.

    Khurgin, J. B. Epsilon near zero materials vs. slow light and other resonance phenomena: anything new? (2017).

  63. 63.

    Khurgin, J. B. Epsilon near zero materials - photonics on steroids? (2018).

  64. 64.

    Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 7, 791–795 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999).

    CAS  Article  Google Scholar 

  66. 66.

    Khurgin, J. B. Slow light in various media: a tutorial. Adv. Opt. Photonics 2, 287–318 (2010).

    Article  Google Scholar 

  67. 67.

    Luk, T. S. et al. Directional perfect absorption using deep subwavelength low-permittivity films. Phys. Rev. B 90, 085411 (2014).

    Article  CAS  Google Scholar 

  68. 68.

    Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photonics 3, 706–714 (2009).

    CAS  Article  Google Scholar 

  69. 69.

    Tsakmakidis, K. L., Boardman, A. D. & Hess, O. ‘Trapped rainbow’ storage of light in metamaterials. Nature 450, 397–401 (2007).

    CAS  Article  Google Scholar 

  70. 70.

    Baba, T. Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008).

    CAS  Article  Google Scholar 

  71. 71.

    Krauss, T. F. Why do we need slow light? Nat. Photonics 2, 448–450 (2008).

    CAS  Article  Google Scholar 

  72. 72.

    Mahmoud, A. M., Liberal, I. & Engheta, N. Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling [Invited]. Opt. Mater. Express 7, 415–424 (2017).

    Article  Google Scholar 

  73. 73.

    Prain, A., Vezzoli, S., Westerberg, N., Roger, T. & Faccio, D. Spontaneous photon production in time-dependent epsilon-near-zero materials. Phys. Rev. Lett. 118, 133904 (2017).

    CAS  Article  Google Scholar 

  74. 74.

    Clerici, M. et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat. Commun. 8, 15829 (2017).

    CAS  Article  Google Scholar 

  75. 75.

    Alam, M. Z., Schulz, S. A., Upham, J., De Leon, I. & Boyd, R. W. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics 12, 79–83 (2018).

    CAS  Article  Google Scholar 

  76. 76.

    Benis, S., Zhao, P., Pattanaik, H. S., Hagan, D. J. & Van Stryland, E. W. Time-resolved nonlinear refraction of indium tin oxide at epsilon near zero. in Conf. Lasers Electro-Optics FM2F.2 https://doi.org/10.1364/CLEO_QELS.2017.FM2F.2 (OSA, 2017).

  77. 77.

    Benis, S., Hagan, D. J. & Van Stryland, E. W. Enhancement mechanism of nonlinear optical response of transparent conductive oxides at epsilon-near-zero. in Conf. Lasers Electro-Optics FF2E.1 https://doi.org/10.1364/CLEO_QELS.2018.FF2E.1 (OSA, 2018).

  78. 78.

    Shaltout, A. et al. Doppler-shift emulation using highly time-refracting TCO layer. in Conf. Lasers Electro-Optics FF2D.6 https://doi.org/10.1364/CLEO_QELS.2016.FF2D.6 (OSA, 2016).

  79. 79.

    Ciattoni, A. et al. Enhanced nonlinear effects in pulse propagation through epsilon-near-zero media. Laser Photon. Rev. 10, 517–525 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    Mattiucci, N., Bloemer, M. J. & D’Aguanno, G. Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal. Opt. Express 22, 6381–6390 (2014).

    Article  CAS  Google Scholar 

  81. 81.

    Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics 2, 1584–1591 (2015).

    CAS  Article  Google Scholar 

  82. 82.

    Vincenti, M. A. et al. Second-harmonic generation in longitudinal epsilon-near-zero materials. Phys. Rev. B 96, 045438 (2017).

    Article  Google Scholar 

  83. 83.

    Luk, T. S. et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett. 106, 151103 (2015).

    Article  CAS  Google Scholar 

  84. 84.

    Marcos, J. S., Silveirinha, M. G. & Engheta, N. µ-near-zero supercoupling. Phys. Rev. B 91, 195112 (2015).

    Article  CAS  Google Scholar 

  85. 85.

    Edwards, B., Alù, A., Silveirinha, M. G. & Engheta, N. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. J. Appl. Phys. 105, 044905 (2009).

    Article  CAS  Google Scholar 

  86. 86.

    Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat. Commun. 8, 472 (2017).

    Article  CAS  Google Scholar 

  87. 87.

    Schulz, S. A. et al. Optical response of dipole antennas on an epsilon-near-zero substrate. Phys. Rev. A 93, 063846 (2016).

    Article  CAS  Google Scholar 

  88. 88.

    Liberal, I., Mahmoud, A. M. & Engheta, N. Geometry-invariant resonant cavities. Nat. Commun. 7, 10989 (2016).

    CAS  Article  Google Scholar 

  89. 89.

    Mahmoud, A. M. & Engheta, N. “Static” optics. arXiv 1407, 2338 (2014).

    Google Scholar 

  90. 90.

    Cheng, D. Field and Wave Electromagnetics. (Addison-Wesley, 1983).

  91. 91.

    Reines, I. C., Wood, M. G., Luk, T. S., Serkland, D. K. & Campione, S. Compact epsilon-near-zero silicon photonic phase modulators. Opt. Express 26, 21594–21605 (2018).

    CAS  Article  Google Scholar 

  92. 92.

    Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. J. Opt. Soc. Am. B 32, 121–142 (2015).

    CAS  Article  Google Scholar 

  93. 93.

    Sun, S., Badawy, A.-H. A., Narayana, V., El-Ghazawi, T. & Sorger, V. J. The case for hybrid photonic plasmonic interconnects (HyPPIs): low-latency energy-and-area-efficient on-chip interconnects. IEEE Photonics J. 7, 1–14 (2015).

    CAS  Google Scholar 

  94. 94.

    Sorger, V. J. et al. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun. 2, 331 (2011).

    Article  CAS  Google Scholar 

  95. 95.

    Wang, C., Zhang, M., Stern, B., Lipson, M. & Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

    Article  Google Scholar 

  96. 96.

    Kinsey, N. et al. Practical platform for nanophotonics with refractory plasmonic metal nitrides and transparent conducting oxides. in Front. Opt. FM1B.3 https://doi.org/10.1364/FIO.2015.FM1B.3 (OSA, 2015).

  97. 97.

    Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett. 40, 1500–1503 (2015).

    CAS  Article  Google Scholar 

  98. 98.

    Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017).

    CAS  Article  Google Scholar 

  99. 99.

    Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R. & Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1, 17–22 (2012).

    CAS  Article  Google Scholar 

  100. 100.

    Lee, H. W. et al. Nanoscale conducting oxide PlasMOStor. Nano Lett. 14, 6463–6468 (2014).

    CAS  Article  Google Scholar 

  101. 101.

    Babicheva, V. E. et al. Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials. Opt. Express 21, 27326–27337 (2013).

    Article  CAS  Google Scholar 

  102. 102.

    Melikyan, A. et al. Surface plasmon polariton absorption modulator. Opt. Express 19, 8855–8869 (2011).

    CAS  Article  Google Scholar 

  103. 103.

    Babicheva, V. E., Boltasseva, A. & Lavrinenko, A. V. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4, 165–185 (2015).

    CAS  Article  Google Scholar 

  104. 104.

    Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

    CAS  Article  Google Scholar 

  105. 105.

    Park, J., Kang, J. H., Liu, X. X. & Brongersma, M. L. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci. Rep. 5, 15754 (2015).

    CAS  Article  Google Scholar 

  106. 106.

    Muskens, O. L. Extreme scattering and extraordinary nonlinearities of light in complex media. in EOS Topical Meeting on Waves in Complex Photonics Media: Fundamentals and Device Applications 2018. (EOS, 2018).

  107. 107.

    Strudley, T., Zehender, T., Blejean, C., Bakkers, E. P. A. M. & Muskens, O. L. Mesoscopic light transport by very strong collective multiple scattering in nanowire mats. Nat. Photonics 7, 413–418 (2013).

    CAS  Article  Google Scholar 

  108. 108.

    Strudley, T. et al. Observation of intensity statistics of light transmitted through 3D random media. Opt. Lett. 39, 6347–6350 (2014).

    Article  Google Scholar 

  109. 109.

    Jun, Y. C. et al. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. Nano Lett. 13, 5391–5396 (2013).

    CAS  Article  Google Scholar 

  110. 110.

    Abb, M., Sepulveda, B., Chong, H. M. H. & Muskens, O. L. Transparent conducting oxides for active hybrid metamaterial devices. J. Opt. 14, 114007 (2012).

    Article  CAS  Google Scholar 

  111. 111.

    Ma, Z., Li, Z., Liu, K., Ye, C. & Sorger, V. J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 4, 198–213 (2015).

    CAS  Article  Google Scholar 

  112. 112.

    Keeler, G. A. et al. Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide. in Opt. Fiber Commun. Conf. Th3I.1 (IEEE, 2017).

  113. 113.

    Boyd, R. W. Slow and fast light: fundamentals and applications. J. Mod. Opt. 56, 1908–1915 (2009).

    Article  Google Scholar 

  114. 114.

    Liberal, I. & Engheta, N. The rise of near-zero-index technologies. Science 358, 1540–1541 (2017).

    CAS  Article  Google Scholar 

  115. 115.

    Werner, W. S. M., Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).

    CAS  Article  Google Scholar 

  116. 116.

    Roberts, S. Optical properties of copper. Phys. Rev. 118, 1509–1518 (1960).

    CAS  Article  Google Scholar 

  117. 117.

    Johnson, P. & Christy, R. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 9, 5056–5070 (1974).

    CAS  Article  Google Scholar 

  118. 118.

    Rakić, A. D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34, 4755–4767 (1995).

    Article  Google Scholar 

  119. 119.

    Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    CAS  Article  Google Scholar 

  120. 120.

    McMahon, J. M., Schatz, G. C. & Gray, S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 15, 5415–5423 (2013).

    CAS  Article  Google Scholar 

  121. 121.

    Bloembergen, N., Burns, W. K. & Matsuoka, M. Reflected third harmonic generated by picosecond laser pulses. Opt. Commun. 1, 195–198 (1969).

    CAS  Article  Google Scholar 

  122. 122.

    Smith, D. D. et al. z-Scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys. 86, 6200 (1999).

    CAS  Article  Google Scholar 

  123. 123.

    Marini, A. et al. Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New J. Phys. 15, 013033 (2013).

    Article  CAS  Google Scholar 

  124. 124.

    Boyd, R. W., Shi, Z. & De Leon, I. The third-order nonlinear susceptibility of gold. Opt. Commun. 326, 74–79 (2014).

    CAS  Article  Google Scholar 

  125. 125.

    Moaied, M., Yajadda, M. M. A. & Ostrikov, K. Quantum effects of nonlocal plasmons in epsilon-near-zero properties of a thin gold film slab. Plasmon. 10, 1615–1623 (2015).

    CAS  Article  Google Scholar 

  126. 126.

    David, C., Mortensen, N. A. & Christensen, J. Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects. Sci. Rep. 3, 2526 (2013).

    CAS  Article  Google Scholar 

  127. 127.

    Raza, S., Christensen, T., Wubs, M., Bozhevolnyi, S. I. & Mortensen, N. A. Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity. Phys. Rev. B 88, 115401 (2013).

    Article  CAS  Google Scholar 

  128. 128.

    Chalabi, H., Schoen, D. & Brongersma, M. L. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 14, 1374–1380 (2014).

    CAS  Article  Google Scholar 

  129. 129.

    Hou, B., Shen, L., Shi, H., Kapadia, R. & Cronin, S. B. Hot electron-driven photocatalytic water splitting. Phys. Chem. Chem. Phys. 19, 2877–2881 (2017).

    CAS  Article  Google Scholar 

  130. 130.

    Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 5, 349–356 (2011).

    CAS  Article  Google Scholar 

  131. 131.

    Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 5, 915–919 (2009).

    CAS  Article  Google Scholar 

  132. 132.

    Ndukaife, J. et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol 11, 53–59 (2016).

    CAS  Article  Google Scholar 

  133. 133.

    Qian, H., Xiao, Y. & Liu, Z. Giant Kerr response of ultrathin gold films from quantum size effect. Nat. Commun. 7, 13153 (2016).

    CAS  Article  Google Scholar 

  134. 134.

    Zhu, F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    CAS  Article  Google Scholar 

  135. 135.

    Chaudhary, R. P., Saxena, S. & Shukla, S. Optical properties of stanene. Nanotechnology 27, 495701 (2016).

    Article  CAS  Google Scholar 

  136. 136.

    Liao, M. et al. Superconductivity in few-layer stanene. Nat. Phys. 14, 344–348 (2018).

    CAS  Article  Google Scholar 

  137. 137.

    Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    CAS  Article  Google Scholar 

  138. 138.

    Sundararaman, R. et al. Plasmonics in Argentene. arXiv 1806, 02672 (2018).

    Google Scholar 

  139. 139.

    Zang, Y. et al. Realizing an epitaxial decorated stanene with an insulating bandgap. Adv. Funct. Mater. 28, 1802723 (2018).

    Article  CAS  Google Scholar 

  140. 140.

    Khurgin, J. B. & Sun, G. In search of the elusive lossless metal. Appl. Phys. Lett. 96, 181102 (2010).

    Article  CAS  Google Scholar 

  141. 141.

    Peña-Rodríguez, O. et al. Optical properties of Au-Ag alloys: an ellipsometric study. Opt. Mater. Express 4, 403–410 (2014).

    Article  CAS  Google Scholar 

  142. 142.

    Weiss, D. E. & Muldawer, L. Optical properties of gold and dilute gold-zinc alloys. Phys. Rev. B 10, 2254–2261 (1974).

    CAS  Article  Google Scholar 

  143. 143.

    Irani, G. B., Huen, T. & Wooten, F. Optical properties of gold and α-phase gold-aluminum alloys. Phys. Rev. B 6, 2904–2909 (1972).

    CAS  Article  Google Scholar 

  144. 144.

    Boltasseva, A. & Shalaev, V. M. Transdimensional photonics. ACS Photonics 6, 1–3 (2019).

    CAS  Article  Google Scholar 

  145. 145.

    Soref, R., Peale, R. E. & Buchwald, W. Longwave plasmonics on doped silicon and silicides. Opt. Express 16, 6507–6514 (2008).

    CAS  Article  Google Scholar 

  146. 146.

    Cleary, J. W. et al. IR permittivities for silicides and doped silicon. J. Opt. Soc. Am. B 27, 730–734 (2010).

    CAS  Article  Google Scholar 

  147. 147.

    Cleary, J. W. et al. Silicides for infrared surface plasmon resonance biosensors. MRS Proc. 1133-AA10-03 (2008).

  148. 148.

    Hu, J. et al. Evolutionary design and prototyping of single crystalline titanium nitride lattice optics. ACS Photonics 4, 606–612 (2017).

    CAS  Article  Google Scholar 

  149. 149.

    Patsalas, P., Kalfagiannis, N. & Kassavetis, S. Optical properties and plasmonic performance of titanium nitride. Materials 8, 3128–3154 (2015).

    Google Scholar 

  150. 150.

    Zgrabik, C. M. & Hu, E. L. Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications. Opt. Mater. Express 5, 2786–2797 (2015).

    CAS  Article  Google Scholar 

  151. 151.

    Gui, L. et al. Nonlinear refractory plasmonics with titanium nitride nanoantennas. Nano Lett. 16, 5708–5713 (2016).

    CAS  Article  Google Scholar 

  152. 152.

    Smith, E. M. et al. Palladium germanides for mid- and long-wave infrared plasmonics. MRS Adv. 2, 2385–2390 (2017).

    CAS  Article  Google Scholar 

  153. 153.

    Cleary, J. W. et al. Platinum germanides for mid- and long-wave infrared plasmonics. Opt. Express 23, 3316–3326 (2015).

    CAS  Article  Google Scholar 

  154. 154.

    Strohfeldt, N. et al. Yttrium hydride nanoantennas for active plasmonics. Nano Lett. 14, 1140–1147 (2014).

    CAS  Article  Google Scholar 

  155. 155.

    Babicheva, V. E. et al. CMOS compatible ultra-compact modulator. in Conf. Lasers Electro-Optics FTu3K.3 https://doi.org/10.1364/CLEO_QELS.2014.FTu3K.3 (2014).

  156. 156.

    Kinsey, N. et al. Effective third-order nonlinearities in metallic refractory titanium nitride thin films. Opt. Mater. Express 5, 2395–2403 (2015).

    CAS  Article  Google Scholar 

  157. 157.

    Catellani, A. & Calzolari, A. Plasmonic properties of refractory titanium nitride. Phys. Rev. B 95, 115145 (2017).

    Article  Google Scholar 

  158. 158.

    Dutta, A. et al. Plasmonic interconnects using zirconium nitride. in Conf. Lasers Electro-Optics JW2A.86 https://doi.org/10.1364/CLEO_AT.2016.JW2A.86 (2016).

  159. 159.

    Li, W. et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014).

    CAS  Article  Google Scholar 

  160. 160.

    Kumar, M., Umezawa, N., Ishii, S. & Nagao, T. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics 3, 43–50 (2016).

    CAS  Article  Google Scholar 

  161. 161.

    Vertchenko, L., Akopian, N. & Lavrinenko, A. V. Epsilon-near-zero quantum networks. (2018).

  162. 162.

    Vertchenko, L., Akopian, N. & Lavrinenko, A. V. Epsilon-near-zero systems for quantum optics applications. in Conf. Lasers Electro-Optics FM4J.1 https://doi.org/10.1364/CLEO_QELS.2018.FM4J.1 (OSA, 2018).

  163. 163.

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    CAS  Article  Google Scholar 

  164. 164.

    Braic, L. et al. Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl. Mater. Interfaces 9, 29857–29862 (2017).

    CAS  Article  Google Scholar 

  165. 165.

    Kumar, M., Ishii, S., Umezawa, N. & Nagao, T. Band engineering of ternary metal nitride system Ti1-x ZrxN for plasmonic applications. Opt. Mater. Express 6, 29–38 (2016).

    CAS  Article  Google Scholar 

  166. 166.

    Naldoni, A. et al. Solar-powered plasmon-enhanced heterogeneous catalysis. Nanophotonics 5, 112–133 (2016).

    CAS  Article  Google Scholar 

  167. 167.

    Naldoni, A. et al. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. 5, 1601031 (2017).

    Article  CAS  Google Scholar 

  168. 168.

    Choi, S. K. et al. Photoelectrochemical hydrogen production on silicon microwire arrays overlaid with ultrathin titanium nitride. J. Mater. Chem. A 4, 14008–14016 (2016).

    Article  CAS  Google Scholar 

  169. 169.

    Noginov, M. A. et al. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 021101 (2011).

    Article  CAS  Google Scholar 

  170. 170.

    Gordon, T. R. et al. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett. 13, 2857–2863 (2013).

    CAS  Article  Google Scholar 

  171. 171.

    Li, S. Q. et al. Infrared plasmonics with indium-tin-oxide nanorod arrays. ACS Nano 5, 9161–9170 (2011).

    CAS  Article  Google Scholar 

  172. 172.

    Wetterau, L. et al. Characterization of highly-doped GaN as a new material for plasmonic applications. in Int. Conf. Optical MEMS Nanophotonics 1–2 https://doi.org/10.1109/OMN.2016.7565937 (IEEE, 2016).

  173. 173.

    Hageman, P. R., Schaff, W. J., Janinski, J. & Liliental-Weber, Z. n-type doping of wurtzite GaN with germanium grown with plasma-assisted molecular beam epitaxy. J. Cryst. Growth 267, 123–128 (2004).

    CAS  Article  Google Scholar 

  174. 174.

    Law, S., Adams, D. C., Taylor, A. M. & Wasserman, D. Mid-infrared designer metals. Opt. Express 20, 12155–12165 (2012).

    CAS  Article  Google Scholar 

  175. 175.

    Kim, J. et al. Optical properties of gallium-doped zinc oxide — a low-loss plasmonic material: first-principles theory and experiment. Phys. Rev. X 3, 041037 (2013).

    Google Scholar 

  176. 176.

    Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414–420 (2015).

    CAS  Article  Google Scholar 

  177. 177.

    Tice, D. B. et al. Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods. Nano Lett. 14, 1120–1126 (2014).

    CAS  Article  Google Scholar 

  178. 178.

    Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

    CAS  Article  Google Scholar 

  179. 179.

    Wood, M. G. et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica 5, 233–236 (2018).

    CAS  Article  Google Scholar 

  180. 180.

    Hoessbacher, C. et al. The plasmonic memristor: a latching optical switch. Opt. Quantum Electron. 1, 198–202 (2014).

    Google Scholar 

  181. 181.

    Liu, K., Ye, C. R., Khan, S. & Sorger, V. J. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photon. Rev. 9, 172–194 (2015).

    Article  Google Scholar 

  182. 182.

    DeVault, C. T. et al. Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates. Optica 5, 1557–1563 (2018).

    CAS  Article  Google Scholar 

  183. 183.

    Huang, Y.-W. et al. Gate-tunable conducting oxides metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    CAS  Article  Google Scholar 

  184. 184.

    Howes, A., Wang, W., Kravchenko, I. & Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787–792 (2018).

    Article  Google Scholar 

  185. 185.

    Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

    CAS  Article  Google Scholar 

  186. 186.

    Ferrera, M. et al. Dynamic nanophotonics [Invited]. J. Opt. Soc. Am. B 34, 95–103 (2017).

    CAS  Article  Google Scholar 

  187. 187.

    Campione, S., de Ceglia, D., Vincenti, M. A., Scalora, M. & Capolino, F. Electric field enhancement in ε-near-zero slabs under TM-polarized oblique incidence. Phys. Rev. B 87, 035120 (2013).

    Article  CAS  Google Scholar 

  188. 188.

    Campione, S., Kim, I., de Ceglia, D., Keeler, G. A. & Luk, T. S. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers. Opt. Express 24, 18782–18789 (2016).

    Article  Google Scholar 

  189. 189.

    Anopchenko, A., Tao, L., Arndt, C. & Lee, H. W. H. Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness. ACS Photonics 5, 2631–2637 (2018).

    CAS  Article  Google Scholar 

  190. 190.

    Kalusniak, S., Sadofev, S. & Henneberger, F. ZnO as a tunable metal: new types of surface plasmon polaritons. Phys. Rev. Lett. 112, 137401 (2014).

    CAS  Article  Google Scholar 

  191. 191.

    Streyer, W., Law, S., Rooney, G., Jacobs, T. & Wasserman, D. Strong absorption and selective emission from engineered metals with dielectric coatings. Opt. Express 21, 9113–9122 (2013).

    CAS  Article  Google Scholar 

  192. 192.

    Zhong, Y., Malagari, S. D., Hamilton, T. & Wasserman, D. Review of mid-infrared plasmonic materials. J. Nanophotonics 9, 093791 (2015).

    Article  CAS  Google Scholar 

  193. 193.

    De Vault, C. et al. Plasmonic antenna resonance pinning and suppression of near-field coupling from epsilon-near-zero substrate. in Conf. Lasers Electro-Optics FTu4H.5 https://doi.org/10.1364/CLEO_QELS.2017.FTu4H.5 (OSA, 2017).

  194. 194.

    Benz, A., Montaño, I., Klem, J. F. & Brener, I. Tunable metamaterials based on voltage controlled strong coupling. Appl. Phys. Lett. 103, 263116 (2013).

    Article  CAS  Google Scholar 

  195. 195.

    Geiser, M., Scalari, G., Castellano, F., Beck, M. & Faist, J. Room temperature terahertz polariton emitter. Appl. Phys. Lett. 101, 141118 (2012).

    Article  CAS  Google Scholar 

  196. 196.

    Kim, J., Naik, G., Emani, N., Guler, U. & Boltasseva, A. Plasmonic resonances in nanostructured transparent conducting oxide films. IEEE J. Sel. Top. Quantum Electron. 19, 4601907 (2013).

    Article  CAS  Google Scholar 

  197. 197.

    Guo, P., Schaller, R. d., Ketterson, J. B. & Chang, R. P. H. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics 10, 267–273 (2016).

    CAS  Article  Google Scholar 

  198. 198.

    Liu, H., Avrutin, V., Izyumskaya, N., Özgür, Ü. & Morkoç, H. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48, 458–484 (2010).

    CAS  Article  Google Scholar 

  199. 199.

    Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    CAS  Article  Google Scholar 

  200. 200.

    Schmidt, H. et al. Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Appl. Phys. Lett. 94, 243302 (2009).

    Article  CAS  Google Scholar 

  201. 201.

    Levy, D. H., Scuderi, A. C. & Irving, L. M. Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby. US Patent US 2008/0299771 A1 (2007).

  202. 202.

    Li, Y. & Ong, B. S. Thin film transistor using an oriented zinc oxide layer. EU Patent EP1921681 A (2008).

  203. 203.

    Pinarbasi, M. & Freitag, J. Method of forming transparent zinc oxide layers for high efficiency photovoltaic cells. US Patent 12/616,578 (2009).

  204. 204.

    Li, X. et al. InGaN based light emitting diodes with Ga doped ZnO as transparent conducting oxide. Phys. Status Solidi 207, 1993–1996 (2010).

    CAS  Article  Google Scholar 

  205. 205.

    Gorjanc, T. C., Leong, D., Py, C. & Roth, D. Room temperature deposition of ITO using r.f. magnetron sputtering. Thin Solid Films 413, 181–185 (2002).

    CAS  Article  Google Scholar 

  206. 206.

    Frolich, A. & Wegener, M. Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials. Opt. Mater. Express 1, 883–889 (2011).

    Article  CAS  Google Scholar 

  207. 207.

    Pradhan, A. K. et al. Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications. Sci. Rep. 4, 6415 (2014).

    CAS  Article  Google Scholar 

  208. 208.

    Liu, H. Y. et al. Highly conductive and optically transparent GZO films grown under metal-rich conditions by plasma assisted MBE. Phys. Status Solidi 4, 70–72 (2010).

    CAS  Google Scholar 

  209. 209.

    Morkoç, H. & Özgür, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology. (John Wiley & Sons, 2008).

  210. 210.

    Wang, A. et al. Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors. Proc. Natl. Acad. Sci. USA 98, 7113–7116 (2001).

    CAS  Article  Google Scholar 

  211. 211.

    Kelley, K. P., Sachet, E., Shelton, C. T. & Maria, J.-P. High mobility yttrium doped cadmium oxide thin films. APL Mater. 5, 076105 (2017).

    Article  CAS  Google Scholar 

  212. 212.

    Vogt, P. et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501 (2012).

    Article  CAS  Google Scholar 

  213. 213.

    Zhao, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 83, 24–151 (2016).

    CAS  Article  Google Scholar 

  214. 214.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  Article  Google Scholar 

  215. 215.

    Krishnamoorthy, H. N. S., Gholipour, B., Zheludev, N. I. & Soci, C. A non-volatile chalcogenide switchable hyperbolic metamaterial. Adv. Opt. Mater. 6, 1800332 (2018).

    Article  CAS  Google Scholar 

  216. 216.

    Piccinotti, D. et al. Tuneable Epsilon-Near-Zero in Chalcogenides. in Metamaterials 1–3 (2017).

  217. 217.

    Piccinotti, D. et al. Extraordinary Properties of Epsilon-Near-Zero and Low-Index Chalcogenide Metamaterials. in Conf. Lasers Electro-Optics FTh4H.6 (OSA, 2018).

  218. 218.

    Fox, M. Optical Properties of Solids (Oxford University Press, 2010).

  219. 219.

    Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  CAS  Google Scholar 

  220. 220.

    Nordin, L. et al. Mid-infrared epsilon-near-zero modes in ultra-thin phononic films. Appl. Phys. Lett. 111, 091105 (2017).

    Article  CAS  Google Scholar 

  221. 221.

    Feng, K. et al. Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 107, 081108 (2015).

    Article  CAS  Google Scholar 

  222. 222.

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Article  Google Scholar 

  223. 223.

    Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674–678 (2015).

    CAS  Article  Google Scholar 

  224. 224.

    Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    CAS  Article  Google Scholar 

  225. 225.

    Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    CAS  Article  Google Scholar 

  226. 226.

    Tiwald, T. E. et al. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B 60, 11464 (1999).

    CAS  Article  Google Scholar 

  227. 227.

    Aryaee Panah, M. E., Semenova, E. S. & Lavrinenko, A. V. Enhancing optical forces in InP-based waveguides. Sci. Rep. 7, 3106 (2017).

    Article  CAS  Google Scholar 

  228. 228.

    Passler, N. C. et al. Strong coupling of epsilon-near-zero phonon polaritons in polar dielectric heterostructures. Nano Lett. 18, 4285–4292 (2018).

    CAS  Article  Google Scholar 

  229. 229.

    Liberal, I. & Engheta, N. Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies. Proc. Natl. Acad. Sci. USA 115, 2878–2883 (2018).

    CAS  Article  Google Scholar 

  230. 230.

    Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B. & Engheta, N. Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017).

    CAS  Article  Google Scholar 

  231. 231.

    Jun, Y. C., Luk, T. S., Robert Ellis, A., Klem, J. F. & Brener, I. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films. Appl. Phys. Lett. 105, 131109 (2014).

    Article  CAS  Google Scholar 

  232. 232.

    Rodríguez-Fortuño, F. J., Vakil, A. & Engheta, N. Electric levitation using ϵ-near-zero metamaterials. Phys. Rev. Lett. 112, 033902 (2014).

    Article  CAS  Google Scholar 

  233. 233.

    Jacob, Z. Hyperbolic phonon–polaritons. Nat. Mater. 13, 1081–1083 (2014).

    CAS  Article  Google Scholar 

  234. 234.

    Dunkelberger, A. D. et al. Active tuning of surface phonon polariton resonances via carrier photoinjection. Nat. Photonics 12, 50–56 (2018).

    CAS  Article  Google Scholar 

  235. 235.

    Ou, J. Y. et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 5, 5139 (2014).

    CAS  Article  Google Scholar 

  236. 236.

    Boyd, R. Nonlinear Optics. (Elsevier, 2008).

  237. 237.

    Popov, S. V. et al. Intensity-activated birefringence zero-crossing shift in CuAlSe2 crystal. Opt. Lett. 15, 993–995 (1990).

    CAS  Article  Google Scholar 

  238. 238.

    Kinsey, N. & Khurgin, J. Nonlinear epsilon-near-zero materials explained: opinion. Opt. Mater. Express 9, 2793–2796 (2019).

    Article  Google Scholar 

  239. 239.

    Reshef, O. et al. Beyond the perturbative description of the nonlinear optical response of low-index materials. Opt. Lett. 42, 3225–3228 (2017).

    CAS  Article  Google Scholar 

  240. 240.

    Argyropoulos, C., D’Aguanno, G. & Alù, A. Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Phys. Rev. B 89, 235401 (2014).

    Article  CAS  Google Scholar 

  241. 241.

    Wen, X. et al. Doubly enhanced second harmonic generation through structural and epsilon-near-zero resonances in TiN nanostructures. ACS Photonics 5, 2087–2093 (2018).

    CAS  Article  Google Scholar 

  242. 242.

    Hendrickson, J. R. et al. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photonics 5, 776–781 (2018).

    CAS  Article  Google Scholar 

  243. 243.

    Hendrickson, J. R. et al. Plasmonic enhancement of epsilon-near-zero modes. in Adv. Photonics NpTh4C.2 https://doi.org/10.1364/NP.2018.NpTh4C.2 (OSA, 2018).

  244. 244.

    Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012).

    CAS  Article  Google Scholar 

  245. 245.

    Scalora, M. et al. Harmonic generation from metal-oxide and metal-metal boundaries. Phys. Rev. A 98, 023837 (2018).

    CAS  Article  Google Scholar 

  246. 246.

    De Ceglia, D., Campione, S., Vincenti, M. A., Capolino, F. & Scalora, M. Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties. Phys. Rev. B 87, 155140 (2013).

    Article  CAS  Google Scholar 

  247. 247.

    Argyropoulos, C., Chen, P.-Y., D’Aguanno, G., Engheta, N. & Alù, A. Boosting optical nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012).

    Article  CAS  Google Scholar 

  248. 248.

    Argyropoulos, C., Chen, P.-Y. & Alù, A. Enhanced nonlinear effects in metamaterials and plasmonics. Adv. Electromagn. 1, 46–51 (2012).

    Article  Google Scholar 

  249. 249.

    Yang, Y. et al. High-harmonic generation from an epsilon-near-zero material. Nat. Phys. (2019).

  250. 250.

    Vezzoli, S. et al. Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2018).

    CAS  Article  Google Scholar 

  251. 251.

    Pendry, J. B. Time reversal and negative refraction. Science 322, 71–73 (2008).

    CAS  Article  Google Scholar 

  252. 252.

    Yang, Y. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 11, 390–395 (2017).

    CAS  Article  Google Scholar 

  253. 253.

    Kaipurath, R. M. et al. Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials. Sci. Rep. 6, 27700 (2016).

    CAS  Article  Google Scholar 

  254. 254.

    Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459–2467 (2015).

    Article  Google Scholar 

  255. 255.

    Ferdinandus, M. R., Gengler, J., Kinsey, N. & Urbas, A. Epsilon near-zero nonlinear optical measurements of titanium nitride thin films. in Conf. Lasers Electro-Optics JTu2A.130 https://doi.org/10.1364/CLEO_AT.2018.JTu2A.130 (OSA, 2018).

  256. 256.

    Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014).

    Article  CAS  Google Scholar 

  257. 257.

    Shcherbakov, M. R. et al. Nonlinear manifestations of photon acceleration in rapidly evolving semiconductor metasurfaces. in Conf. Lasers Electro-Optics FTh1D.2 https://doi.org/10.1364/CLEO_QELS.2018.FTh1D.2 (OSA, 2018).

  258. 258.

    Khurgin, J. B. & Kinsey, N. Adiabatic frequency conversion: it is all about group velocity. arXiv 1906, 04849 (2019).

    Google Scholar 

  259. 259.

    Ciracì, C., Pendry, J. B. & Smith, D. R. Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem. ChemPhysChem 14, 1109–1116 (2013).

    Article  CAS  Google Scholar 

  260. 260.

    Ginzburg, P., Krasavin, A. V., Wurtz, G. A. & Zayats, A. V. Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2, 8–13 (2015).

    CAS  Article  Google Scholar 

  261. 261.

    Westerberg, N., Cacciatori, S., Belgiorno, F., Piazza, F. D. & Faccio, D. Experimental quantum cosmology in time-dependent optical media. New J. Phys. 16, 075003 (2014).

    Article  CAS  Google Scholar 

  262. 262.

    Faccio, D. Laser pulse analogues for gravity and analogue Hawking radiation. Contemp. Phys. 53, 97–112 (2012).

    Article  Google Scholar 

  263. 263.

    Butera, S., Westerberg, N., Faccio, D. & Öhberg, P. Curved spacetime from interacting gauge theories. Class. Quantum Gravity 36, 034002 (2019).

    CAS  Article  Google Scholar 

  264. 264.

    Fleury, R. & Alù, A. Enhanced superradiance in epsilon-near-zero plasmonic channels. Phys. Rev. B 87, 201101 (2013).

    Article  CAS  Google Scholar 

  265. 265.

    Minkov, M., Williamson, I. A. D., Xiao, M. & Fan, S. Zero-index bound states in the continuum. Phys. Rev. Lett. 121, 263901 (2018).

    CAS  Google Scholar 

  266. 266.

    Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017).

    CAS  Article  Google Scholar 

  267. 267.

    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    CAS  Article  Google Scholar 

  268. 268.

    Monticone, F., Doeleman, H. M., Den Hollander, W., Koenderink, A. F. & Alù, A. Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials. Laser Photon. Rev. 12, 1700220 (2018).

    Article  CAS  Google Scholar 

  269. 269.

    Cai, W. & Shalaev, V. M. Optical Metamaterials: Fundamentals and Applications. (Springer, 2009).

  270. 270.

    Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013).

    CAS  Article  Google Scholar 

  271. 271.

    Gao, J. et al. Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers. Appl. Phys. Lett. 103, 051111 (2013).

    Article  CAS  Google Scholar 

  272. 272.

    Vassant, S., Hugonin, J.-P., Marquier, F. & Greffet, J.-J. Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–23977 (2012).

    Article  Google Scholar 

  273. 273.

    Taliercio, T., Guilengui, V. N., Cerutti, L., Tournié, E. & Greffet, J.-J. Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration. Opt. Express 22, 24294–24303 (2014).

    CAS  Article  Google Scholar 

  274. 274.

    Vassant, S. et al. Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett. 109, 237401 (2012).

    CAS  Article  Google Scholar 

  275. 275.

    Baranov, D. G., Krasnok, A., Shegai, T., Alù, A. & Chong, Y. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017).

    CAS  Article  Google Scholar 

  276. 276.

    Minn, K., Anopchenko, A., Yang, J. & Lee, H. W. H. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber. Sci. Rep. 8, 2342 (2018).

    Article  CAS  Google Scholar 

  277. 277.

    Shrestha, S. et al. Indium tin oxide broadband metasurface absorber. ACS Photonics 5, 3526–3533 (2018).

    CAS  Article  Google Scholar 

  278. 278.

    Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

    CAS  Article  Google Scholar 

  279. 279.

    Schuller, J. A., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    Article  CAS  Google Scholar 

  280. 280.

    Filonov, D. S. et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl. Phys. Lett. 100, 201113 (2012).

    Article  CAS  Google Scholar 

  281. 281.

    Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

    CAS  Article  Google Scholar 

  282. 282.

    Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  Google Scholar 

  283. 283.

    Cai, W. et al. Metamagnetics with rainbow colors. Opt. Express 15, 3333–3341 (2007).

    Article  Google Scholar 

  284. 284.

    Wang, H. et al. Extended Drude model for intraband-transition-induced optical nonlinearity. Phys. Rev. Appl. 11, 064062 (2019).

    CAS  Article  Google Scholar 

  285. 285.

    Conforti, M. & Della Valle, G. Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response. Phys. Rev. B 85, 245423 (2012).

    Article  CAS  Google Scholar 

  286. 286.

    Del Fatti, N. et al. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61, 16956 (2000).

    Article  Google Scholar 

  287. 287.

    Shin, T., Teitelbaum, S. W., Wolfson, J., Kandyla, M. & Nelson, K. A. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation. J. Chem. Phys. 143, 194705 (2015).

    Article  CAS  Google Scholar 

  288. 288.

    Zavelani-Rossi, M. et al. Transient optical response of a single gold nanoantenna: the role of plasmon detuning. ACS Photonics 2, 521–529 (2015).

    CAS  Article  Google Scholar 

  289. 289.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn. (Wiley, 2006).

  290. 290.

    Strauss, U., Rühle, W. W. & Köhler, K. Auger recombination in intrinsic GaAs. Appl. Phys. Lett. 62, 55–57 (1993).

    CAS  Article  Google Scholar 

  291. 291.

    Shcherbakov, M. R. et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun. 8, 17 (2017).

    Article  CAS  Google Scholar 

  292. 292.

    Bennett, B. R., Soref, R. A. & Del Alamo, J. A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990).

    CAS  Article  Google Scholar 

  293. 293.

    Benjamin, S. D., Loka, H. S., Othonos, A. & Smith, P. W. E. Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs. Appl. Phys. Lett. 68, 2544–2546 (1996).

    CAS  Article  Google Scholar 

  294. 294.

    Gupta, S. et al. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Appl. Phys. Lett. 59, 3276–3278 (1991).

    CAS  Article  Google Scholar 

  295. 295.

    Ortiz, V., Nagle, J., Lampin, J.-F., Péronne, E. & Alexandrou, A. Low-temperature-grown GaAs: Modeling of transient reflectivity experiments. J. Appl. Phys. 102, 043515 (2007).

    Article  CAS  Google Scholar 

  296. 296.

    Zhao, H., Wang, Y., Capretti, A., Negro, L. D. & Klamkin, J. Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide. IEEE J. Sel. Top. Quantum Electron. 21, 192–198 (2015).

    Article  CAS  Google Scholar 

  297. 297.

    Ginn, J. C., Jarecki, R. L., Shaner, E. A. & Davids, P. S. Infrared plasmons on heavily-doped silicon. J. Appl. Phys. 110, 043110 (2011).

    Article  CAS  Google Scholar 

  298. 298.

    Kehr, S. C. et al. Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling. Nat. Commun. 2, 249 (2011).

    CAS  Article  Google Scholar 

  299. 299.

    Kyoung, J. et al. Epsilon-near-zero meta-lens for high resolution wide-field imaging. Opt. Express 22, 31875–31883 (2014).

    CAS  Article  Google Scholar 

  300. 300.

    Streyer, W. et al. Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide. Appl. Phys. Lett. 104, 131105 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.K. would like to acknowledge support from the Air Force Office of Scientific Research Young Investigator Program (FA9550-18-1-0151), the Virginia Microelectronics Consortium Seed Grant and the Virginia Commonwealth University Presidential Research Quest Fund. The Purdue team acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0017717 (A.B. and V.M.S.) and the Air Force Office of Scientific Research under award FA9550-18-1-0002 (C.D.).

Author information

Affiliations

Authors

Contributions

N.K. and C.D. compiled and prepared the manuscript. All authors contributed to the editing and revision of the manuscript.

Corresponding authors

Correspondence to Nathaniel Kinsey or Vladimir M. Shalaev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kinsey, N., DeVault, C., Boltasseva, A. et al. Near-zero-index materials for photonics. Nat Rev Mater 4, 742–760 (2019). https://doi.org/10.1038/s41578-019-0133-0

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing