Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photonics with hexagonal boron nitride

Abstract

For more than seven decades, hexagonal boron nitride (hBN) has been employed as an inert, thermally stable engineering ceramic; since 2010, it has also been used as the optimal substrate for graphene in nanoelectronic and optoelectronic devices. Recent research has revealed that hBN exhibits a unique combination of optical properties that enable novel (nano)photonic functionalities. Specifically, hBN is a natural hyperbolic material in the mid-IR range, in which photonic material options are sparse. Furthermore, hBN hosts defects that can be engineered to obtain room-temperature, single-photon emission; exhibits strong second-order nonlinearities with broad implications for practical devices; and is a wide-bandgap semiconductor well suited for deep UV emitters and detectors. Inspired by these promising attributes, research on the properties of hBN and the development of large-area bulk and thin-film growth techniques has dramatically expanded. This Review offers a snapshot of current research exploring the properties underlying the use of hBN for future photonics functionalities and potential applications, and covers some of the remaining obstacles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of hBN-based applications.
Fig. 2: Natural hyperbolic properties of hBN in the mid-IR.
Fig. 3: Applications of hyperbolic polaritons within hBN.
Fig. 4: Room-temperature, single-photon emission in hBN.
Fig. 5: Dependence of second-harmonic generation upon hBN stacking and thickness.
Fig. 6: Phonon-assisted recombination in hBN.
Fig. 7: Methods for growing hBN.
Fig. 8: Moiré heterostructures incorporating hBN.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  3. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  4. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  5. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  6. Kretinin, A. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    CAS  Google Scholar 

  7. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS  Google Scholar 

  8. Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron-nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    CAS  Google Scholar 

  9. Woessner, A. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Google Scholar 

  10. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    CAS  Google Scholar 

  11. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Google Scholar 

  12. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    CAS  Google Scholar 

  13. Watanabe, K., Taniguchi, K. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystals. Nat. Mater. 3, 404–409 (2004).

    CAS  Google Scholar 

  14. Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10, 682–686 (2015).

    CAS  Google Scholar 

  15. Tran, T.-T. D., Bray, V. W., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS  Google Scholar 

  16. Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10, 262–266 (2016).

    CAS  Google Scholar 

  17. Kim, C.-J. et al. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett. 13, 5660–5665 (2013).

    CAS  Google Scholar 

  18. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    CAS  Google Scholar 

  19. Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    CAS  Google Scholar 

  20. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    CAS  Google Scholar 

  21. Yu, H. Y., Liu, G. B., Tang, J. J., Xu, X. D. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Google Scholar 

  22. Giles, A. J. et al. Ultra-low-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    CAS  Google Scholar 

  23. Vuong, T. Q. P. et al. Isotope engineering of van der Waals interactions in hexagonal boron nitride. Nat. Mater. 17, 152–158 (2018).

    CAS  Google Scholar 

  24. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    CAS  Google Scholar 

  25. Du, X. Z., Li, J., Lin, J. Y. & Jiang, H. X. The origins of near band-edge transitions in hexagonal boron nitride epilayers. Appl. Phys. Lett. 108, 052106 (2016).

    Google Scholar 

  26. Cho, Y.-J. et al. Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy. Sci. Rep. 6, 34474 (2016).

    CAS  Google Scholar 

  27. Vuong, T. Q. P. et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy. 2D Mater. 4, 021023 (2017).

    Google Scholar 

  28. Folland, T. G., Nordin, L., Wasserman, D. & Caldwell, J. D. Probing polaritons in the mid- to far-infrared. J. Appl. Phys. 125, 191102 (2019).

  29. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

  30. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics with surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS  Google Scholar 

  31. Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2017).

    Google Scholar 

  32. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    CAS  Google Scholar 

  33. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).

    CAS  Google Scholar 

  34. Caldwell, J. D. & Novoselov, K. S. Mid-infrared nanophotonics. Nat. Mater. 14, 364–365 (2015).

    CAS  Google Scholar 

  35. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photonics 10, 244–247 (2016).

    CAS  Google Scholar 

  36. Adachi, S. Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles 33–61 (Springer Science+Business Media, 1999).

  37. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013).

    CAS  Google Scholar 

  38. Caldwell, J. D., Vurgaftman, I. & Tischler, J. G. Probing hyperbolic polaritons. Nat. Photonics 9, 638–640 (2015).

    CAS  Google Scholar 

  39. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674–678 (2015).

    CAS  Google Scholar 

  40. Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    CAS  Google Scholar 

  41. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    CAS  Google Scholar 

  42. Guo, Y., Newman, W., Cortes, C. L. & Jacob, Z. Applications of hyperbolic metamaterial substrates. Adv. Optoelectron. 2012, 452502 (2012).

    Google Scholar 

  43. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    CAS  Google Scholar 

  44. Argyropoulos, C., Estakhri, N. M., Monticone, F. & Alu, A. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt. Express 21, 15037–15047 (2013).

    Google Scholar 

  45. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).

    CAS  Google Scholar 

  46. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Google Scholar 

  47. Lin, X. et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).

    CAS  Google Scholar 

  48. Qian, C. et al. Multifrequency superscattering from subwavelength hyperbolic structures. ACS Photonics 5, 1506–1511 (2018).

    CAS  Google Scholar 

  49. Cortes, C. L., Newman, W., Molesky, S. & Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 063001 (2012).

    Google Scholar 

  50. Giles, A. J. et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016).

    CAS  Google Scholar 

  51. Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    CAS  Google Scholar 

  52. Folland, T. G. et al. Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy. MRS Commun. 8, 1418–1425 (2018).

    CAS  Google Scholar 

  53. Dai, S. et al. Internal nanostructure diagnosis with hyperbolic phonon polaritons in hexagonal boron nitride. Nano Lett. 18, 5205–5210 (2018).

    CAS  Google Scholar 

  54. Brown, L. V. et al. Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures. Nano Lett. 18, 1628–1636 (2018).

    CAS  Google Scholar 

  55. Sun, Z., Gutierrez-Rubio, A., Basov, D. N. & Fogler, M. M. Hamiltonian optics of hyperbolic polaritons in nanogranules. Nano Lett. 15, 4455–4460 (2015).

    CAS  Google Scholar 

  56. Li, P. et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    CAS  Google Scholar 

  57. Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    CAS  Google Scholar 

  58. Michel, A.-K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

    CAS  Google Scholar 

  59. Dunkelberger, A. D. et al. Active tuning of surface phonon polariton resonances via carrier photoinjection. Nat. Photonics 12, 50–56 (2018).

    CAS  Google Scholar 

  60. Spann, B. T. et al. Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys. Rev. B 93, 085205 (2016).

    Google Scholar 

  61. Caldwell, J. D. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotechnol. 11, 9–15 (2016).

    CAS  Google Scholar 

  62. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    CAS  Google Scholar 

  63. Wang, T. et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 4, 1753–1760 (2017).

    CAS  Google Scholar 

  64. Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. USA 106, 19227–19232 (2009).

    CAS  Google Scholar 

  65. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    CAS  Google Scholar 

  66. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Google Scholar 

  67. Folland, T. G. & Caldwell, J. D. Precise control of infrared polarization using crystal vibrations. Nature 562, 499–501 (2018).

    CAS  Google Scholar 

  68. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).

    CAS  Google Scholar 

  69. Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

    CAS  Google Scholar 

  70. Jungwirth, N. R. et al. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett. 16, 6052–6057 (2016).

    CAS  Google Scholar 

  71. Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).

    CAS  Google Scholar 

  72. Shotan, Z. et al. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics 3, 2490–2496 (2016).

    CAS  Google Scholar 

  73. Abdi, M., Chou, J.-P., Gali, A. & Plenio, M. B. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics 5, 1967–1976 (2018).

    CAS  Google Scholar 

  74. Tawfik, S. A. et al. First-principles investigation of quantum emission from hBN defects. Nanoscale 9, 13575–13582 (2017).

    CAS  Google Scholar 

  75. Martínez, L. J. et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys. Rev. B 94, 121405 (2016).

    Google Scholar 

  76. Tran, T. T. et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys. Rev. Appl. 5, 034005 (2016).

    Google Scholar 

  77. Chejanovsky, N. et al. Quantum light in curved low dimensional hexagonal boron nitride systems. Sci. Rep. 7, 14758 (2017).

    Google Scholar 

  78. Koperski, M., Nogajewski, K. & Potemski, M. Single photon emitters in boron nitride: more than a supplementary material. Opt. Commun. 411, 158–165 (2018).

    CAS  Google Scholar 

  79. Hernández-Mínguez, A., Lähnemann, J., Nakhaie, S., Lopes, J. M. J. & Santos, P. V. Luminescent defects in a few-layer h-BN film grown by molecular beam epitaxy. Phys. Rev. Appl. 10, 044031 (2018).

    Google Scholar 

  80. Mendelson, N. et al. Bottom up engineering of near-identical quantum emitters in atomically thin materials. Preprint at arXiv https://arxiv.org/abs/1806.01199 (2019).

  81. Stern, H. L. et al. Spectrally resolved photodynamics of individual emitters in large-area monolayers of hexagonal boron nitride. ACS Nano 13, 4548–4547 (2019).

    Google Scholar 

  82. Choi, S. et al. Engineering and localization of quantum emitters in large hexagonal boron nitride layers. ACS Appl. Mater. Interfaces 8, 29642–29648 (2016).

    CAS  Google Scholar 

  83. Ngoc My Duong, H. et al. Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride. ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).

    CAS  Google Scholar 

  84. Proscia, N. V. et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).

    CAS  Google Scholar 

  85. Xu, Z.-Q. et al. Single photon emission from plasma treated 2D hexagonal boron nitride. Nanoscale 10, 7957–7965 (2018).

    CAS  Google Scholar 

  86. Jungwirth, N. R. & Fuchs, G. D. Optical absorption and emission mechanisms of single defects in hexagonal boron nitride. Phys. Rev. Lett. 119, 057401 (2017).

    Google Scholar 

  87. Schell, A. W., Tran, T. T., Takashima, H., Takeuchi, S. & Aharonovich, I. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics 1, 091302 (2016).

    Google Scholar 

  88. Wang, Q. et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 18, 6898–6905 (2018).

    CAS  Google Scholar 

  89. Bourrellier, R. et al. Bright UV single photon emission at point defects in h-BN. Nano Lett. 16, 4317–4321 (2016).

    CAS  Google Scholar 

  90. Sontheimer, B. et al. Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy. Phys. Rev. B 96, 121202 (2017).

    Google Scholar 

  91. Tran, T. T. et al. Resonant excitation of quantum emitters in hexagonal boron nitride. ACS Photonics 5, 295–300 (2018).

    CAS  Google Scholar 

  92. Dietrich, A. et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys. Rev. B 98, 081414 (2018).

    CAS  Google Scholar 

  93. Konthasinghe, K. et al. Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter. Optica 6, 542–548 (2019).

    Google Scholar 

  94. Noh, G. et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett. 18, 4710–4715 (2018).

    CAS  Google Scholar 

  95. Nikolay, N. et al. Very large and reversible Stark-shift tuning of single emitters in layered hexagonal boron nitride. Phys. Rev. Appl. 11, 041001 (2019).

    CAS  Google Scholar 

  96. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

    Google Scholar 

  97. Xue, Y. et al. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano 12, 7127–7133 (2018).

    CAS  Google Scholar 

  98. Tran, T. T. et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 17, 2634–2639 (2017).

    CAS  Google Scholar 

  99. Nguyen, M. et al. Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres. Nanoscale 10, 2267–2274 (2018).

    CAS  Google Scholar 

  100. Schell, A. W., Takashima, H., Tran, T. T., Aharonovich, I. & Takeuchi, S. Coupling quantum emitters in 2D materials with tapered fibers. ACS Photonics 4, 761–767 (2017).

    CAS  Google Scholar 

  101. Kim, S. et al. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9, 2623 (2018).

    Google Scholar 

  102. Fröch, J. E., Hwang, Y., Kim, S., Aharonovich, I. & Toth, M. Photonic nanostructures from hexagonal boron nitride. Adv. Opt. Mater. 7, 1801344 (2018).

    Google Scholar 

  103. Liu, C.-H. et al. Ultrathin van der Waals metalenses. Nano Lett. 18, 6961–6966 (2018).

    CAS  Google Scholar 

  104. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS  Google Scholar 

  105. Toledo, J. R. et al. Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride. Phys. Rev. B 98, 155203 (2018).

    CAS  Google Scholar 

  106. Exarhos, A. L., Hopper, D. A., Patel, R. N., Doherty, M. W. & Bassett, L. C. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).

    Google Scholar 

  107. Feng, J. et al. Imaging of optically active defects with nanometer resolution. Nano Lett. 18, 1739–1744 (2018).

    CAS  Google Scholar 

  108. Comtet, J. et al. Wide-field spectral super-resolution mapping of optically active defects in hexagonal boron nitride. Nano Lett. 19, 2516–2523 (2019).

    CAS  Google Scholar 

  109. Kianinia, M. et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun. 9, 874 (2018).

    Google Scholar 

  110. Liu, C-h., Zheng, J., Chen, Y., Fryett, T. & Majumdar, A. Van der Waals materials integrated nanophotonic devices [Invited]. Opt. Mater. Express 9, 384–399 (2019).

    Google Scholar 

  111. Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljacic, M. Making two-photon processes dominate on-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).

    CAS  Google Scholar 

  112. Watanabe, K. et al. Hexagonal boron nitride as a new ultraviolet luminescent material and its application — fluorescence properties of hBN single-crystal powder. Diam. Relat. Mater. 20, 849–852 (2011).

    CAS  Google Scholar 

  113. Watanabe, K., Taniguchi, K., Niiyama, T., Miya, K. & Taniguchi, M. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 3, 591–594 (2009).

    CAS  Google Scholar 

  114. Nanishi, Y. Nobel Prize in Physics: the birth of the blue LED. Nat. Photonics 8, 884–886 (2014).

    CAS  Google Scholar 

  115. Drost, R. J. & Sadler, B. M. Survey of ultraviolet non-line-of-sight communications. Semicond. Sci. Technol. 29, 084006 (2014).

    Google Scholar 

  116. Gil, B. Physics of Wurtzite Nitrides and Oxides (Springer, 2014).

  117. Vuong, T. Q. P. et al. Phonon symmetries in hexagonal boron nitride probed by incoherent light emission. 2D Mater. 4, 011004 (2017).

    Google Scholar 

  118. Xu, Y.-N. & Ching, W. Y. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B 44, 7787–7798 (1991).

    CAS  Google Scholar 

  119. Furthmuller, J., Hafner, J. & Kresse, G. Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Phys. Rev. B 50, 15606–15622 (1994).

    CAS  Google Scholar 

  120. Blase, X., Rubio, A., Louie, S. G. & Cohen, M. L. Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B 51, 6868–6875 (1995).

    CAS  Google Scholar 

  121. Arnaud, B., Lebegue, S., Rabiller, P. & Alouani, M. Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett. 96, 026402 (2006).

    CAS  Google Scholar 

  122. Gao, S.-P. Crystal structures and band gap characters of hBN polytypes predicted by dispersion corrected DFT and GW method. Solid State Commun. 152, 1817–1820 (2012).

    CAS  Google Scholar 

  123. Schuster, R., Habenicht, C., Ahmad, M., Knupfer, M. & Buchner, B. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride. Phys. Rev. B 97, 041201 (2018).

    CAS  Google Scholar 

  124. Vuong, T. Q. P. et al. Overtones of interlayer shear modes in the phonon-assisted emission spectrum of hexagonal boron nitride. Phys. Rev. B 95, 045207 (2017).

    Google Scholar 

  125. Toyozawa, Y. Theory of line-shapes of the exciton absorption bands. Progress Theor. Phys. 20, 53–81 (1958).

    CAS  Google Scholar 

  126. Vuong, T. Q. P. et al. Exciton-phonon interaction in the strong-coupling regime in hexagonal boron nitride. Phys. Rev. B 95, 211202(R) (2017).

    Google Scholar 

  127. Watanabe, K., Taniguchi, K., Kuroda, T. & Tsuda, O. Time-resolved photoluminescence in band-edge region of hexagonal boron nitride single crystals. Diam. Relat. Mater. 17, 830–832 (2008).

    CAS  Google Scholar 

  128. Cao, X. K., Clubine, B., Edgar, J. H., Lin, J. Y. & Jiang, H. X. Two-dimensional excitons in three-dimensional hexagonal boron nitride. Appl. Phys. Lett. 103, 191106 (2013).

    Google Scholar 

  129. Cassabois, G., Valvin, P. & Gil, B. Intervalley scattering in hexagonal boron nitride. Phys. Rev. B 93, 035207 (2016).

    Google Scholar 

  130. Chichibu, S. F., Ishikawa, Y., Kominami, H. & Hara, K. Nearly temperature-independent ultraviolet light emission intensity of indirect excitons in hexagonal BN microcrystals. J. Appl. Phys. 123, 065104 (2018).

    Google Scholar 

  131. Schue, L. et al. Direct and indirect excitons with high binding energies in hBN. Phys. Rev. Lett. 122, 067401 (2018).

    Google Scholar 

  132. Cannuccia, E., Monserrat, B. & Attaccalite, C. Theory of phonon-assisted luminescence in solids: application to hexagonal boron nitride. Phys. Rev. B 99, 081109(R) (2018).

    Google Scholar 

  133. Paleari, F., Miranda, H. P. C., Molina-Sanchez, A. & Wirtz, L. Exciton-phonon coupling in the UV absorption and emission spectra of bulk hexagonal boron nitride. Phys. Rev. Lett. 122, 187401 (2018).

    Google Scholar 

  134. Paleari, F. et al. Excitons in few-layer hexagonal boron nitride: Davydov splitting and surface localization. 2D Mater. 5, 045017 (2018).

    Google Scholar 

  135. Elias, C. et al. Direct band-gap crossover in epitaxial monolayer boron nitride. Nat. Commun. 10, 2639 (2019).

  136. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  137. Al Balushi, Z. Y. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166–1171 (2016).

    CAS  Google Scholar 

  138. Schue, L. et al. Dimensionality effects on the luminescence properties of hBN. Nanoscale 8, 6986–6993 (2016).

    CAS  Google Scholar 

  139. Akamaru, H., Onodera, A., Endo, T. & Mishima, O. Pressure dependence of the optical-absorption edge of AlN and graphite-type BN. J. Phys. Chem. Solids 63, 887–894 (2002).

    CAS  Google Scholar 

  140. Koskelo, J. et al. Excitons in van der Waals materials: from monolayer to bulk hexagonal boron nitride. Phys. Rev. B 95, 035125 (2017).

    Google Scholar 

  141. Vinogradov, V. L. & Kostanovskii, A. V. Determination of the melting parameters of boron-nitride [in Russian]. High Temp. 29, 901–908 (1991).

    Google Scholar 

  142. Kubota, Y., Watanabe, K., Tsuda, O. & Taniguchi, K. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007).

    CAS  Google Scholar 

  143. Kubota, Y., Watanabe, K., Tsuda, O. & Taniguchi, K. Hexagonal boron nitride single crystal growth at atmospheric pressure using Ni-Cr solvent. Chem. Mater. 20, 1661–1663 (2008).

    CAS  Google Scholar 

  144. Liu, S. et al. Large scale growth of high quality hexagonal boron nitride crystals at atmospheric pressure from an iron-chromium flux. Cryst. Growth Des. 17, 4932–4935 (2017).

    CAS  Google Scholar 

  145. Liu, S. et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    CAS  Google Scholar 

  146. Yuan, C. et al. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2, 43 (2019).

    Google Scholar 

  147. Cusco, R. et al. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: isotopically pure hexagonal boron nitride. Phys. Rev. B 97, 155435 (2018).

    CAS  Google Scholar 

  148. Maity, A., Grenadier, S. L., Li, J., Lin, J. Y. & Jiang, H. X. Hexagonal boron nitride neutron detectors with high detection efficiencies. J. Appl. Phys. 123, 044501 (2018).

    Google Scholar 

  149. Sun, J. et al. Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chem. Soc. Rev. 47, 4242–4257 (2018).

    CAS  Google Scholar 

  150. Wang, H.-Z., Zhao, Y., Xie, Y., Ma, X. & Zhang, X. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond. 38, 031003 (2017).

    Google Scholar 

  151. Laleyan, D. A. et al. Effect of growth temperature on the structural and optical properties of few-layer hexagonal boron nitride by molecular beam epitaxy. Opt. Express 26, 23031–23039 (2018).

    CAS  Google Scholar 

  152. Chubarov, M. et al. Epitaxial CVD growth of sp2-hybridized boron nitride using aluminum nitride as buffer layer. Phys. Status Solidi Rapid Res. Lett. 5, 397–399 (2011).

    CAS  Google Scholar 

  153. Henry, A., Chubarov, M., Czigany, Z., Garbrecht, M. & Hogberg, H. Early stages of growth and crystal structure evolution of boron nitride thin films. Jpn. J. Appl. Phys. 55, 05FD06 (2016).

    Google Scholar 

  154. Dahal, R. et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett. 98, 211110 (2011).

    Google Scholar 

  155. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    CAS  Google Scholar 

  156. Tan, L. et al. Self-aligned single-crystalline hexagonal boron nitride arrays: toward higher integrated electronic devices. Adv. Electron. Mater. 1, 1500223 (2015).

    Google Scholar 

  157. Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).

    CAS  Google Scholar 

  158. Makimoto, T., Kumakura, K., Kobayashi, Y., Akasaka, T. & Yamamoto, H. A vertical InGaN/GaN light-emitting diode fabricated on a flexible substrate by a mechanical transfer method using BN. Appl. Phys. Express 5, 072102 (2012).

    Google Scholar 

  159. Ayari, T. et al. Heterogeneous integration of thin-film InGaN-based solar cells on foreign substrates with enhanced performance. ACS Photonics 5, 3003–3008 (2018).

    Google Scholar 

  160. Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    CAS  Google Scholar 

  161. Schue, L., Stenger, I., Fossard, F., Loiseau, A. & Barjon, J. Characterization methods dedicated to nanometer-thick hBN layers. 2D Mater. 4, 015028 (2017).

    Google Scholar 

  162. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Google Scholar 

  163. Castellanos-Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photonics 10, 202–204 (2016).

    CAS  Google Scholar 

  164. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Electrically tunable transverse magnetic focusing in graphene. Nat. Phys. 9, 225–229 (2013).

    CAS  Google Scholar 

  165. Yankowitz, M., Xue, J. & LeRoy, B. J. Graphene on hexagonal boron nitride. J. Phys. Condens. Matter 26, 303201 (2014).

    Google Scholar 

  166. Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019).

    Google Scholar 

  167. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    CAS  Google Scholar 

  168. Xue, J. M. et al. Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    CAS  Google Scholar 

  169. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    CAS  Google Scholar 

  170. Tang, S. et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci. Rep. 3, 2666 (2013).

    Google Scholar 

  171. Li, G., Luican, A. & Andrei, E. Y. Scanning tunneling spectroscopy of graphene on graphite. Phys. Rev. Lett. 102, 176804 (2009).

    Google Scholar 

  172. Shi, Z. et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat. Photonics 10, 743–747 (2014).

    CAS  Google Scholar 

  173. Tomadin, A., Guinea, F. & Polini, M. Generation and morphing of plasmons in graphene superlattices. Phys. Rev. B 90, 161406(R) (2014).

    Google Scholar 

  174. Xian, L., Kennes, D. M., Tancogne-Dejean, N., Altarelli, M. & Rubio, A. Multi-flat bands and strong correlations in twisted bilayer boron nitride. Preprint at arXiv https://arxiv.org/abs/1812.08097 (2018).

  175. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  176. Schmidt, H. et al. Tunable graphene system with two decoupled monolayers. Appl. Phys. Lett. 93, 172108 (2008).

    Google Scholar 

  177. Sanchez-Yamagishi, J. et al. Quantum Hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene. Phys. Rev. Lett. 108, 076601 (2012).

    Google Scholar 

  178. Luican, A. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Google Scholar 

  179. Lee, D. S. et al. Quantum Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 107, 216602 (2011).

    Google Scholar 

  180. Sanchez-Yamagishi, J. et al. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer. Nat. Nanotechnol. 12, 118–122 (2017).

    CAS  Google Scholar 

  181. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    CAS  Google Scholar 

  182. Barbier, M., Vasilopoulos, P. & Peeters, F. M. Extra Dirac points in the energy spectrum for superlattices on single-layer graphene. Phys. Rev. B 81, 075438 (2010).

    Google Scholar 

  183. Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS  Google Scholar 

  184. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS  Google Scholar 

  185. Yeh, P.-C. et al. Direct measurement of the tunable electronic structure of bilayer MoS2 by interlayer twist. Nano Lett. 16, 953–959 (2016).

    CAS  Google Scholar 

  186. Chari, T., Ribeiro-Palau, R., Dean, C. R. & Shepard, K. Resistivity of rotated graphite-graphene contacts. Nano Lett. 16, 4477–4482 (2016).

    CAS  Google Scholar 

  187. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    CAS  Google Scholar 

  188. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

J.D.C. acknowledges the support of Vanderbilt University for its financial support of his effort in this work. Additionally, J.D.C. and D.N.B. offer their sincere thanks to Misha Fogler for his code, used to calculate the hyperbolic dispersion of hBN in Fig. 2. J.D.C. expresses his thanks to Joseph Matson for his efforts in improving the hyperbolic polariton image in Fig. 1 and for Fig. 2b. J.H.E. appreciates support for crystal growth from the National Science Foundation, award number CMMI 1538127. This work was financially supported by the network GaNeX (ANR-11-LABX-0014). GaNeX belongs to the publicly funded ‘Investissements d’Avenir’ programme managed by the French ANR agency. I.A. gratefully acknowledges financial support from the Australian Research Council (via DP180100077), the Asian Office of Aerospace Research and Development grant FA2386-17-1-4064 and the Office of Naval Research Global under grant number N62909-18-1-2025. The work at Columbia University on van der Waals materials and heterostructures is supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. Research on photonic circuits is supported by AFOSR: FA9550-15-1-0478. Research on hybrid polaritonic structures is supported by ONR-N000014-18-1-2722. Development of nano-optics instrumentation at Columbia is supported by DOE-BES DE-SC0018218. D.N.B. is a Gordon and Betty Moore Foundation investigator under EPiQS Initiative Grant GBMF4533.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Joshua D. Caldwell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldwell, J.D., Aharonovich, I., Cassabois, G. et al. Photonics with hexagonal boron nitride. Nat Rev Mater 4, 552–567 (2019). https://doi.org/10.1038/s41578-019-0124-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0124-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing