Review Article | Published:

High-entropy alloys

Abstract

Alloying has long been used to confer desirable properties to materials. Typically, it involves the addition of relatively small amounts of secondary elements to a primary element. For the past decade and a half, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high-entropy alloys has been in vogue. The multi-dimensional compositional space that can be tackled with this approach is practically limitless, and only tiny regions have been investigated so far. Nevertheless, a few high-entropy alloys have already been shown to possess exceptional properties, exceeding those of conventional alloys, and other outstanding high-entropy alloys are likely to be discovered in the future. Here, we review recent progress in understanding the salient features of high-entropy alloys. Model alloys whose behaviour has been carefully investigated are highlighted and their fundamental properties and underlying elementary mechanisms discussed. We also address the vast compositional space that remains to be explored and outline fruitful ways to identify regions within this space where high-entropy alloys with potentially interesting properties may be lurking.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

  2. 2.

    Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004).

  3. 3.

    Cantor, B. Multicomponent and high entropy alloys. Entropy 16, 4749–4768 (2014).

  4. 4.

    Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

  5. 5.

    Huang, P. K., Yeh, J. W., Shun, T. T. & Chen, S. K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74–78 (2004).

  6. 6.

    Tong, C. J. et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multi-principal elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 881–893 (2005).

  7. 7.

    Zhou, Y. J., Zhang, Y., Wang, Y. L. & Chen, G. L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).

  8. 8.

    Wang, F. J. & Zhang, Y. Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater. Sci. Eng. A 496, 214–216 (2008).

  9. 9.

    Shun, T. T., Hung, C. H. & Lee, C. F. Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J. Alloys. Compd. 493, 105–109 (2010).

  10. 10.

    Singh, S., Wanderka, N., Murty, B. S., Glatzel, U. & Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182–190 (2011).

  11. 11.

    Yardley, V. & Povstugar, V. et al. On local phase equilibria and appearance of nanoparticles in the microstructure of single-crystal Ni-base superalloys. Adv. Eng. Mater. 18, 1556–1567 (2016).

  12. 12.

    Zhang, C., Zhang, F., Chen, S. & Cao, W. Computational thermodynamics aided high-entropy alloy design. JOM 64, 839–845 (2012).

  13. 13.

    Zhang, F. et al. An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45, 1–10 (2014).

  14. 14.

    Gao, M. C. et al. Thermodynamics of concentrated solid solution alloys. Curr. Opin. Sol. State Mater. Sci. 21, 238–251 (2017).

  15. 15.

    Mao, H. H., Chen, H. L. & Chen, Q. TCHEA1: a thermodynamic database not limited for “high entropy” alloys. J. Phase Equilibria Diffus. 38, 353–368 (2017).

  16. 16.

    Gorsse, S. & Tancret, F. Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys. J. Mater. Res. 33, 2899–2923 (2018).

  17. 17.

    Gorsse, S. & Senkov, O. N. About the reliability of CALPHAD predictions in multicomponent systems. Entropy 20, 899 (2018).

  18. 18.

    Abu-Odeh, A. et al. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater. 152, 41–57 (2018).

  19. 19.

    Chen, H. L., Mao, H. H. & Chen, Q. Database development and CALPHAD calculations for high entropy alloys: challenges, strategies, and tips. Mater. Chem. Phys. 210, 279–290 (2018).

  20. 20.

    Borkar, T. et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63–76 (2016).

  21. 21.

    Borkar, T. & Chaudhary, V. et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi. Adv. Eng. Mater. 19, 1700048 (2017).

  22. 22.

    Kauffmann, A. et al. Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni. Surf. Coat. Technol. 325, 174–180 (2017).

  23. 23.

    Li, Y. J., Kostka, A., Savan, A., Stein, H. S. & Ludwig, A. Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Mater. Horizons. 5, 86–92 (2018).

  24. 24.

    Li, Y. J., Kostka, A., Savan, A. & Ludwig, A. Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi alloy thin films. J. Alloys. Compd. 766, 1080–1085 (2018).

  25. 25.

    Otto, F. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743–5755 (2013).

  26. 26.

    Deng, Y. et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124–133 (2015).

  27. 27.

    Li, Z. & Raabe, D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. JOM 69, 2099–2106 (2017).

  28. 28.

    Jo, Y. H. et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 8, 15719 (2017).

  29. 29.

    Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).

  30. 30.

    Li, Z., Körmann, F., Grabowski, B., Neugebauer, J. & Raabe, D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 136, 262–270 (2017).

  31. 31.

    Huang, H. L. et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).

  32. 32.

    Otto, F., Yang, Y., Bei, H. & George, E. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013).

  33. 33.

    Poletti, M. G. & Battezzati, L. Electronic and thermodynamic criteria for the occurrence of high-entropy alloys in metallics systems. Acta Mater. 75, 297–306 (2014).

  34. 34.

    Ma, D., Grabowski, B., Körmann, F., Neugebauer, J. & Raabe, D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015).

  35. 35.

    Schön, C. G., Duong, T., Wang, Y. & Arróyave, R. Probing the entropy hypothesis in highly concentrated alloys. Acta Mater. 148, 263–279 (2018).

  36. 36.

    Schuh, B. et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015).

  37. 37.

    Pickering, E. J., Munoz-Moreno, R., Stone, H. J. & Jones, N. G. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106–109 (2016).

  38. 38.

    Otto, F. et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52 (2016).

  39. 39.

    Schuh, B. et al. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 142, 201–212 (2018).

  40. 40.

    Stepanov, N. D., Yurchenko, N. Yu., Zherebtsov, S. V., Tikhonovsky, M. A. & Salishchev, G. A. Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87–90 (2018).

  41. 41.

    Ma, D. et al. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 98, 288–296 (2015).

  42. 42.

    Tian, F. et al. Structural stability of NiCoFeCrAl high-entropy alloy from ab initio theory. Phys. Rev. B 88, 085128 (2013).

  43. 43.

    van de Walle, A. & Asta, M. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams. Model. Simul. Mat. Sci. Eng. 10, 521–538 (2002).

  44. 44.

    Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD 50, 32–48 (2015).

  45. 45.

    Senkov, O. N. et al. CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr. J. Alloys. Compd. 783, 729–742 (2019).

  46. 46.

    Yeh, J. W. Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759–1771 (2013).

  47. 47.

    Tsai, M. H. & Yeh, J. W. High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014).

  48. 48.

    Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014).

  49. 49.

    Troparevsky, M. C., Morris, J. R., Kent, P. R. C., Lupini, A. R. & Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

  50. 50.

    Troparevsky, M. C. et al. Beyond atomic sizes and Hume-Rothery rules: understanding and predicting high-entropy alloys. JOM 67, 2350–2363 (2015).

  51. 51.

    King, D. J. M., Middleburgh, S. C., McGregor, A. G. & Cortie, M. B. Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172–179 (2016).

  52. 52.

    Pickering, E. J. & Jones, N. G. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183–202 (2016).

  53. 53.

    Gali, A. & George, E. P. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013).

  54. 54.

    Tsai, K. Y., Tsai, M. H. & Yeh, J. W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887–4897 (2013).

  55. 55.

    Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G. & Lu, Z. P. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526–529 (2013).

  56. 56.

    He, J. Y. et al. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics 55, 9–14 (2014).

  57. 57.

    Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

  58. 58.

    Otto, F., Hanold, N. L. & George, E. P. Microstructural evolution after thermomechanical processing in an equiatomic single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics 54, 39–48 (2014).

  59. 59.

    Wu, Z., Bei, H., Pharr, G. M. & George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).

  60. 60.

    Haglund, A., Koehler, M., Catoor, D., George, E. P. & Keppens, V. Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics 58, 62–64 (2015).

  61. 61.

    Laplanche, G. et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys. Compd. 623, 348–353 (2015).

  62. 62.

    Laurent-Brocq, M. et al. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 88, 355–365 (2015).

  63. 63.

    Laplanche, G., Horst, O., Otto, F., Eggeler, G. & George, E. P. Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing. J. Alloys. Compd. 647, 548–557 (2015).

  64. 64.

    Laplanche, G., Kostka, A., Horst, O. M., Eggeler, G. & George, E. P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152–163 (2016).

  65. 65.

    Bracq, G. et al. The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 128, 327–336 (2017).

  66. 66.

    Laplanche, G., Bonneville, J., Varvenne, C., Curtin, W. A. & George, E. P. Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy. Acta Mater. 143, 257–264 (2018).

  67. 67.

    Laplanche, G. et al. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Mater. 161, 338–351 (2018).

  68. 68.

    Haas, S. et al. Entropy determination of single-phase high entropy alloys with different crystal structures over a wide temperature range. Entropy 20, 654 (2018).

  69. 69.

    Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010).

  70. 70.

    Senkov, O. N. & Woodward, C. F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 529, 311–320 (2011).

  71. 71.

    Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011).

  72. 72.

    Senkov, O. N., Scott, J. M., Senkova, S. V., Miracle, D. B. & Woodward, C. F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys. Compd. 509, 6043–6048 (2011).

  73. 73.

    Senkov, O. N. et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062–4074 (2012).

  74. 74.

    Senkov, O. N., Senkova, S. V. & Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014).

  75. 75.

    Senkov, O. N. & Semiatin, S. L. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys. Compd. 649, 1110–1123 (2015).

  76. 76.

    Juan, C. C. et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76–83 (2015).

  77. 77.

    Couzinié, J. P. et al. On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng. A 645, 255–263 (2015).

  78. 78.

    Sheikh, S. et al. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902 (2016).

  79. 79.

    Takeuchi, A., Amiya, K., Wada, T., Yubuta, K. & Zhang, W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984–1992 (2014).

  80. 80.

    Feuerbacher, M., Heidelmann, M. & Thomas, C. Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1–6 (2015).

  81. 81.

    Zhao, Y. J. et al. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater. Des. 96, 10–15 (2016).

  82. 82.

    Soler, R. et al. Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure. Acta Mater. 156, 86–96 (2018).

  83. 83.

    Qiao, J. W. et al. Rare-earth high entropy alloys with hexagonal close-packed structure. J. Appl. Phys. 124, 195101 (2018).

  84. 84.

    Lilensten, L. et al. New structure in refractory high-entropy alloys. Mater. Lett. 132, 123–125 (2014).

  85. 85.

    Bhattacharjee, P. P. et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys. Compd. 587, 544–552 (2014).

  86. 86.

    Salishchev, G. A. et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys. Compd. 591, 11–21 (2014).

  87. 87.

    Stepanov, N. D. et al. High temperature deformation behavior and dynamic recrystallization in CoCrFeMnNi high entropy alloy. Mater. Sci. Eng. A 636, 188–195 (2015).

  88. 88.

    Ding, J., Yu, Q., Asta, M. & Ritchie, R. O. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl. Acad. Sci. USA 115, 8819–8924 (2018).

  89. 89.

    Tracy, C. L. et al. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017).

  90. 90.

    Zhang, F. et al. Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).

  91. 91.

    Okamoto, N. L. et al. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).

  92. 92.

    Zaddach, A. J., Niu, C., Koch, C. C. & Irving, D. L. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65, 1780–1789 (2013).

  93. 93.

    Smith, T. M. et al. Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Mater. 110, 352–362 (2016).

  94. 94.

    Zhang, Z. J. et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 6, 10143 (2015).

  95. 95.

    Meyers, M. A., Vöhringer, O. & Lubarda, V. A. The onset of twinning in metals: a constitutive description. Acta Mater. 49, 4025–4039 (2001).

  96. 96.

    Abuzaid, W. & Sehitoglu, H. Critical resolved shear stress for slip and twin nucleation in single crystalline FeNiCoCrMn high entropy alloy. Mater. Char. 129, 288–299 (2017).

  97. 97.

    Kireeva, I. V., Chumlyakov, Yu. I., Pobedennaya, Z. V., Kuksgausen, I. V. & Karaman, I. Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 707, 176–181 (2017).

  98. 98.

    Wu, Y., Bönisch, M., Alkan, S., Abuzaid, W. & Sehitoglu, H. Experimental determination of latent hardening coefficients in FeMnNiCoCr. Int. J. Plastic. 105, 239–260 (2018).

  99. 99.

    Kireeva, I. V., Chumlyakov, Yu. I., Pobedennaya, Z. V., Vyrodova, A. V. & Karaman, I. Twinning in [001]-oriented single crystals of CoCrFeMnNi high-entropy alloy at tensile deformation. Mater. Sci. Eng. A 713, 253–259 (2018).

  100. 100.

    Bönisch, M., Wu, Y. & Sehitoglu, H. Hardening by slip-twin and twin-twin interactions in FeMnNiCoCr. Acta Mater. 153, 391–403 (2018).

  101. 101.

    Stepanov, N. et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8–17 (2015).

  102. 102.

    Patriarca, L., Ojha, A., Sehitoglu, H. & Chumlyakov, Y. I. Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scr. Mater. 112, 54–57 (2016).

  103. 103.

    Koppenaal, T. J. & Fine, M. E. Solid solution strengthening in alpha Cu-Al single crystals. Trans. Metall. Soc. AIME 224, 347–353 (1962).

  104. 104.

    Basinski, Z. S., Foxall, R. A. & Pascual, R. Stress equivalence of solution hardening. Scr. Metall. 6, 807–814 (1972).

  105. 105.

    Traub, H., Neuhäuser, H. & Schwink, Ch. Investigation of yield region of concentrated Cu-Ge and Cu-Zn single crystals. 1. Critical resolved shear-stress, slip line formation and true strain rate. Acta Metall. 25, 437–446 (1977).

  106. 106.

    Butt, M. Z. & Feltham, P. Solid-solution hardening. Acta Metall. 26, 167–173 (1978).

  107. 107.

    Wille, Th. & Schwink, Ch. Precision measurements of critical resolved shear-stress in CuMn alloys. Acta Metall. 34, 1059–1069 (1986).

  108. 108.

    Wille, Th, Gieseke, W. & Schwink, Ch Quantitative analysis of solution hardening in selected copper alloys. Acta Metall. 35, 2679–2693 (1987).

  109. 109.

    Varvenne, C., Aitor, L. & Curtin, W. A. Theory of strengthening in fcc high entropy alloys. Acta Mater. 118, 164–176 (2016).

  110. 110.

    Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. Solute strengthening in random alloys. Acta Mater. 124, 660–683 (2017).

  111. 111.

    Haasen, P. Plastic deformation of nickel single crystals at low temperatures. Philos. Mag. 3, 384–418 (1958).

  112. 112.

    Okamoto, N. L., Yuge, K., Tanaka, K., Inui, H. & George, E. P. Atomic displacement in the CrMnFeCoNi high-entropy alloy – a scaling factor to predict solid solution strengthening. AIP Adv. 6, 125008 (2016).

  113. 113.

    Zhang, Z. J. et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 8, 14390 (2017).

  114. 114.

    Zhao, Y. L. et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 138, 72–82 (2017).

  115. 115.

    Sohn, S. S. et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 31, 1807142 (2019).

  116. 116.

    Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

  117. 117.

    Laplanche, G. et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292–303 (2017).

  118. 118.

    Yang, M. et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. USA 115, 7224–7229 (2018).

  119. 119.

    Slone, C. E., Miao, J., George, E. P. & Mills, M. J. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. Acta Mater. 165, 497–507 (2019).

  120. 120.

    Tasan, C. C. et al. Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system. JOM 66, 1993–2001 (2014).

  121. 121.

    Wang, M., Li, Z. & Raabe, D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Mater. 147, 236–246 (2018).

  122. 122.

    Li, Z., Tasan, C. C., Springer, H., Gault, B. & Raabe, D. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).

  123. 123.

    Pradeep, K. G. et al. Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng. A 648, 183–192 (2015).

  124. 124.

    Lu, W., Liebscher, C. H., Dehm, G., Raabe, D. & Li, Z. Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys. Adv. Mater. 30, 1804727 (2018).

  125. 125.

    Su, J., Raabe, D. & Li, Z. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Mater. 163, 40–54 (2019).

  126. 126.

    Dirras, G. et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng. A 654, 30–38 (2016).

  127. 127.

    Song, H., Tian, F. & Wang, D. Thermodynamic properties of refractory high entropy alloys. J. Alloys. Compd. 682, 773–777 (2016).

  128. 128.

    Couzinié, J. P. et al. Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 126, 285–287 (2014).

  129. 129.

    Lin, C.-M., Juan, C.-C., Chang, C.-H., Tsai, C.-W. & Yeh, J.-W. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J. Alloys. Compd. 624, 100–107 (2015).

  130. 130.

    Dirras, G. et al. Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Char. 108, 1–7 (2015).

  131. 131.

    Juan, C.-C. et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater. Lett. 184, 200–203 (2016).

  132. 132.

    Lilensten, L. et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 5, 110–116 (2017).

  133. 133.

    Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

  134. 134.

    Li, Z., Ludwig, A., Savan, A., Springer, H. & Raabe, D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 33, 3156–3169 (2018).

  135. 135.

    Holdren, J. P. Materials Genome Initiative for Global Competitiveness (National Science and Technology Council, Washington, 2011).

  136. 136.

    Kennedy, K., Stefansky, T., Dvy, G., Zackay, V. F. & Parker, E. R. Rapid method for determining ternary-alloy phase diagrams. J. Appl. Phys. 36, 3808–3810 (1965).

  137. 137.

    Hanak, J. J. The “multiple-sample concept” in materials research: synthesis, compositional analysis, and testing of entire multicomponent systems. J. Mater. Sci. 5, 964–971 (1970).

  138. 138.

    Xiang, X.-D. et al. A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995).

  139. 139.

    Specht, E. D. et al. Rapid structural and chemical characterization of ternary phase diagrams using synchrotron radiation. J. Mater. Res. 18, 2522–2527 (2003).

  140. 140.

    Collins, P. C., Banerjee, R., Banerjee, S. & Fraser, H. L. Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys. Mater. Sci. Eng. A 352, 118–128 (2003).

  141. 141.

    Rar, A. et al. PVD synthesis and high-throughput property characterization of Ni-Fe-Cr alloy libraries. Meas. Sci. Technol. A 16, 46–53 (2005).

  142. 142.

    Wilson, P., Field, R. & Kaufman, M. The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co–Cr–Fe–Mn–Ni high entropy alloy system. Intermetallics 75, 15–24 (2016).

  143. 143.

    Springer, H. & Raabe, D. Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn−1.2 C–xAl triplex steels. Acta Mater. 60, 4950–4959 (2012).

  144. 144.

    Zhao, J.-C., Zheng, X. & Cahill, D. G. High-throughput diffusion multiples. Mater. Today 8, 28–37 (2005).

  145. 145.

    Zhao, J.-C. Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mater. Sci. 51, 557–631 (2006).

  146. 146.

    Knoll, H. et al. Combinatorial alloy design by laser additive manufacturing. Steel Res. Int. 88, 1600416 (2017).

  147. 147.

    Mertens, R., Sun, Z. M., Music, D. & Schneider, J. M. Effect of the composition on the structure of Cr-Al-C investigated by combinatorial thin film synthesis and ab initio calculations. Adv. Eng. Mater. 6, 903–907 (2004).

  148. 148.

    Ludwig, A., Zarnetta, R., Hamann, S., Savan, A. & Thienhaus, S. Development of multifunctional thin films using high-throughput experimentation methods. Int. J. Mater. Res. 99, 1144–1149 (2008).

  149. 149.

    Dobbelstein, H., Gurevich, E. L., George, E. P., Ostendorf, A. & Laplanche, G. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Addit. Manuf. 25, 252–262 (2019).

  150. 150.

    Bleck, W., Raabe, D., Tasan, C. C., Springer, H. & Bausch, M. From high-entropy alloys to high-entropy steels. J. Steel Res. Int. 86 1127–1138 (2015).

  151. 151.

    Raabe, D. et al. Ab initio-guided design of twinning-induced plasticity steels. MRS Bull. 41, 320–325 (2016).

  152. 152.

    Christian, J. W. & Mahajan, S. Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995).

  153. 153.

    Steinmetz, D. R. et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Mater. 6, 494–510 (2013).

  154. 154.

    Venables, J. A. Deformation Twinning (Gordon & Breach, NY, 1964).

  155. 155.

    Friedel, J. Dislocations (Pergamon Press, Oxford, 1965).

  156. 156.

    Mahajan, S. Twin-slip and twin-twin interactions in Mo-35 at.% Re alloy. Philos. Mag. 23, 781–794 (1971).

  157. 157.

    Mahajan, S. & Chin, G. Y. Formation of deformation twins in FCC crystals. Acta Metall. 21, 1353–1363 (1973).

  158. 158.

    Gutierrez-Urrutia, I. & Raabe, D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. Acta Mater. 60, 5791–5802 (2012).

  159. 159.

    Huang, S. et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 44–47 (2015).

  160. 160.

    Li, Z. & Raabe, D. Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater. Chem. Phys. 210, 29–36 (2018).

  161. 161.

    Li, Z., Tasan, C. C., Pradeep, K. G. & Raabe, D. A. TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323–335 (2017).

  162. 162.

    Basu, S., Li, Z., Pradeep, K. G. & Raabe, D. Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy. Front. Mater. 5, 30 (2018).

  163. 163.

    Nene, S. S. et al. Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci. Rep. 7, 16167 (2017).

  164. 164.

    Luo, H., Li, Z. & Raabe, D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).

  165. 165.

    Luo, H. et al. Beating hydrogen with its own weapon: nano-twin gradients enhance embrittlement resistance of a high-entropy alloy. Mater. Today 21, 1003–1009 (2018).

  166. 166.

    Kozelj, K. et al. Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).

  167. 167.

    Vrtnik, S. et al. Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys. J. Alloys. Compd. 695, 3530–3540 (2017).

  168. 168.

    Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

  169. 169.

    Berardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).

  170. 170.

    Berardan, D., Franger, S., Dragoe, D., Meena, A. K. & Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi Rapid Res. Lett. 10, 328–333 (2016).

  171. 171.

    Berardan, D., Meena, A. K., Franger, S., Herrero, C. & Dragoe, N. Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides. J. Alloys. Compd. 704, 693–700 (2017).

  172. 172.

    Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).

  173. 173.

    Anand, G., Wynn, A. P., Handley, C. M. & Freeman, C. L. Phase stability and distortion in high-entropy oxides. Acta Mater. 146, 119–125 (2018).

  174. 174.

    Jiang, S. et al. A new class of high-entropy perovskite oxides. Scr. Mater. 142, 116–120 (2018).

  175. 175.

    Malinovskis, P. et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater. Des. 149, 51–62 (2018).

  176. 176.

    Zhou, J. et al. High-entropy carbide: a novel class of multicomponent ceramics. Ceram. Int. 44, 22014–22018 (2018).

  177. 177.

    Dusza, J. et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J. Eur. Ceram. Soc. 38, 4303–4307 (2018).

  178. 178.

    Harrington, T. J. et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 166, 271–280 (2019).

  179. 179.

    Feng, L., Fahrenholtz, W. G., Hilmas, G. E. & Zhou, Y. Synthesis of single-phase high-entropy carbide powders. Scr. Mater. 162, 90–93 (2019).

  180. 180.

    Demirskyi, D. et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scr. Mater. 164, 12–16 (2019).

  181. 181.

    Hsieh, T. H., Hsu, C. H., Wu, C. Y., Kao, J. Y. & Hsu, C. Y. Effects of deposition parameters on the structure and mechanical properties of high-entropy alloy nitride films. Curr. Appl. Phys. 18, 512–518 (2018).

  182. 182.

    Mayrhofer, P. H., Kirnbauer, A., Ertelthaler, Ph. & Koller, C. M. High-entropy ceramic thin films: a case study on transition metal diborides. Scr. Mater. 149, 93–97 (2018).

  183. 183.

    Tallarita, G., Licheri, R., Garroni, S., Orru, R. & Cao, G. Novel processing route for the fabrication of bulk high-entropy metal diborides. Scr. Mater. 158, 100–104 (2019).

  184. 184.

    Li, Q.-L. Sheng, H. & Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Preprint at arXiv https://arxiv.org/abs/1904.07681 (2019).

  185. 185.

    Zhang, F. X. et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett. 118, 205501 (2017).

  186. 186.

    Su, J., Wu, X., Raabe, D. & Li, Z. Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy. Acta Mater. 167, 23–39 (2019).

  187. 187.

    Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

  188. 188.

    Kireeva, I. et al. Mechanisms of plastic deformation in [111]-oriented single crystals of FeNiMnCrCo high entropy alloy. AIP Conf. Proc. 1783, 020090 (2016).

Download references

Acknowledgements

This study was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, through the Materials Science and Technology Division at the Oak Ridge National Laboratory (E.P.G.) and the Materials Sciences Division at the Lawrence Berkeley National Laboratory (R.O.R.). D.R. was supported by the European Research Council (ERC) through the 7th Framework Programme (FP7/2007–2013) ERC Advanced Grant SMARMET (grant agreement 290998) and through the German Research Foundation (DFG) through the Priority Programme ‘Compositionally Complex Alloys – High Entropy Alloys (CCA-HEA)’ (special priority programme (SPP) no. 2006).

Author information

The authors contributed equally to all aspects of the article.

Competing interests

The authors declare no competing interests.

Correspondence to Easo P. George.

Rights and permissions

Reprints and Permissions

About this article

Fig. 1: Possible mixing reactions for three alloying elements.
Fig. 2: Damage-tolerant properties of the Cantor CrMnFeCoNi alloy.
Fig. 3: Tuning the stacking-fault energy and the phases in a set of non-equimolar derivatives of the Cantor alloy.
Fig. 4: A mechanistic approach to the design of high-entropy alloys.
Fig. 5: Mechanical properties of the dual-phase, high-entropy, transformation-induced plasticity alloy Fe50Mn30Co10Cr10.
Fig. 6: Role of local chemical ordering on the stacking-fault energy calculated by density functional theory for solid-solution CrCoNi alloys.