Nonlinear optical effects in epsilon-near-zero media

Abstract

Efficient nonlinear optical interactions are essential for many applications in modern photonics. However, they typically require intense laser sources and long interaction lengths, requirements that often render nonlinear optics incompatible with new nanophotonic architectures in integrated optics and metasurface devices. Obtaining materials with stronger nonlinear properties is a crucial step towards applications that require lower powers and smaller footprints. Recently, a new class of materials with a vanishing permittivity, known as epsilon-near-zero (ENZ) materials, has been reported to exhibit unprecedented ultrafast nonlinear efficiencies within sub-wavelength propagation lengths. In this Review, we survey the work that has been performed on ENZ materials and the related near-zero-index materials, focusing on the observation of various nonlinear phenomena (such as intensity-dependent refraction, four-wave mixing and harmonic generation), the identification of unique field-enhancement mechanisms and the study of non-equilibrium dynamics. Degenerately doped semiconductors (such as tin-doped indium oxide and aluminium-doped zinc oxide) are particularly promising candidates for ENZ-enhanced nonlinear optical applications. We conclude by pointing towards possible future research directions, such as the search for ENZ materials with low optical losses and the elucidation of the mechanisms underlying nonlinear enhancements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Maximum changes in refractive index.
Fig. 2: Mechanisms underlying nonlinearity and enhancement.
Fig. 3: Field enhancement in the epsilon-near-zero mode.
Fig. 4: Epsilon-near-zero and near-zero-index materials.
Fig. 5: Intensity-dependent refraction in indium tin oxide.
Fig. 6: Non-degenerate nonlinearities in aluminium-doped zinc oxide.
Fig. 7: Harmonic generation in epsilon-near-zero materials.
Fig. 8: Voltage-controlled permittivity.
Fig. 9: Other nonlinear phenomena in epsilon-near-zero and near-zero-index materials.

References

  1. 1.

    Garmire, E. Nonlinear optics in daily life. Opt. Express 21, 30532–30544 (2013).

  2. 2.

    Cotter, D. et al. Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999).

  3. 3.

    Glezer, E. N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).

  4. 4.

    Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1999).

  5. 5.

    Leach, J. et al. Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662–665 (2010).

  6. 6.

    Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein–Podolsky–Rosen paradox using momentum-and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

  7. 7.

    Boyd, R. W. Nonlinear Optics. 3rd edn (Academic, 2008).

  8. 8.

    Miller, D. A. B. Are optical transistors the logical next step? Nat. Photonics 4, 3–5 (2010).

  9. 9.

    Kinsey, N. et al. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2, 616–622 (2015).

  10. 10.

    Luk, T. S. et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett. 106, 151103 (2015).

  11. 11.

    Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett. 40, 1500–1503 (2015).

  12. 12.

    Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

  13. 13.

    Caspani, L. et al. Enhanced nonlinear refractive index in ϵ-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

  14. 14.

    Yang, Y. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photonics 11, 390–395 (2017).

  15. 15.

    Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

  16. 16.

    Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

  17. 17.

    Edwards, B., Alù, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

  18. 18.

    Molesky, S., Dewalt, C. J. & Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 21, A96–A110 (2013).

  19. 19.

    Engheta, N. Pursuing near-zero response. Science 340, 286–287 (2013).

  20. 20.

    Niu, X., Hu, X., Chu, S. & Gong, Q. Epsilon-near-zero photonics: a new platform for integrated devices. Adv. Opt. Mater. 6, 1701292 (2018).

  21. 21.

    Liberal, I. & Engheta, N. The rise of near-zero-index technologies. Science 358, 1540–1541 (2017).

  22. 22.

    Liberal, I. & Engheta, N. Zero-index platforms: where light defies geometry. Opt. Photon. News 27, 26–33 (2016).

  23. 23.

    Liberal, I. & Engheta, N. Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017).

  24. 24.

    Vulis, D. I., Reshef, O., Camayd-Muñoz, P. & Mazur, E. Manipulating the flow of light using Dirac-cone zero-index metamaterials. Rep. Prog. Phys. 82, 012001 (2019).

  25. 25.

    Ciattoni, A., Rizza, C. & Palange, E. Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity. Phys. Rev. A 81, 043839 (2010).

  26. 26.

    Ciattoni, A., Rizza, C. & Palange, E. Transmissivity directional hysteresis of a nonlinear metamaterial slab with very small linear permittivity. Opt. Lett. 35, 2130–2132 (2010).

  27. 27.

    Vincenti, M. A., de Ceglia, D., Ciattoni, A. & Scalora, M. Singularity-driven second-and third-harmonic generation at ϵ-near-zero crossing points. Phys. Rev. A 84, 63826 (2011).

  28. 28.

    Ciattoni, A. & Spinozzi, E. Efficient second-harmonic generation in micrometer-thick slabs with indefinite permittivity. Phys. Rev. A 85, 043806 (2012).

  29. 29.

    Argyropoulos, C., Chen, P.-Y., D’Aguanno, G., Engheta, N. & Alù, A. Boosting optical nonlinearities in ϵ-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012).

  30. 30.

    Argyropoulos, C., D’Aguanno, G. & Alù, A. Giant second-harmonic generation efficiency and ideal phase matching with a double ϵ-near-zero cross-slit metamaterial. Phys. Rev. B 89, 235401 (2014).

  31. 31.

    Harbold, J. M. et al. Highly nonlinear As–S–Se glasses for all-optical switching. Opt. Lett. 27, 119–121 (2002).

  32. 32.

    Slusher, R. E. et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B 21, 1146–1155 (2004).

  33. 33.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011).

  34. 34.

    Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

  35. 35.

    Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics 2, 1584–1591 (2015).

  36. 36.

    Clerici, M. et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat. Commun. 8, 15829 (2017).

  37. 37.

    Carnemolla, E. G. et al. Giant nonlinear frequency shift in epsilon-near-zero aluminum zinc oxide thin films. Conference on Lasers and Electro-Optics, SM4D.7. (OSA, 2018).

  38. 38.

    Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

  39. 39.

    Huang, Y.-w et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

  40. 40.

    Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

  41. 41.

    Wood, M. G. et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica 5, 233–236 (2018).

  42. 42.

    Li, E., Gao, Q., Chen, R. T. & Wang, A. X. Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume. Nano Lett. 18, 1075–1081 (2018).

  43. 43.

    Liu, X. et al. Epsilon-near-zero Si slot-waveguide modulator. ACS Photonics 5, 4484–4490 (2018).

  44. 44.

    Li, Y. et al. On-chip zero-index metamaterials. Nat. Photonics 9, 738–742 (2015).

  45. 45.

    Noginov, M. A. et al. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 2009–2012 (2011).

  46. 46.

    Stegeman, G. I., Wright, E. M., Finlayson, N., Zanoni, R. & Seaton, C. T. Third order nonlinear integrated optics. J. Light. Technol. 6, 953–970 (1988).

  47. 47.

    Eggleton, B. J. et al. Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photonics Rev. 6, 97–114 (2012).

  48. 48.

    Reshef, O. et al. Beyond the perturbative description of the nonlinear optical response of low-index materials. Opt. Lett. 42, 3225–3228 (2017).

  49. 49.

    Maier, S. A. Plasmonics: Fundamentals and Applications. (Springer, 2007).

  50. 50.

    Derkachova, A., Kolwas, K. & Demchenko, I. Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11, 941–951 (2016).

  51. 51.

    Guo, P. et al. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nat. Commun. 7, 12892 (2016).

  52. 52.

    Carnemolla, E. G. et al. Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. Opt. Mater. Express 8, 3392–3400 (2018).

  53. 53.

    Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nat. Commun. 8, 472 (2017).

  54. 54.

    Liu, X. et al. Tuning of plasmons in transparent conductive oxides by carrier accumulation. ACS Photonics 5, 1493–1498 (2018).

  55. 55.

    Elim, H. I., Ji, W. & Zhu, F. Carrier concentration dependence of optical Kerr nonlinearity in indium tin oxide films. Appl. Phys. B 82, 439–442 (2006).

  56. 56.

    Liu, X. et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Appl. Phys. Lett. 105, 181117 (2014).

  57. 57.

    Guo, P., Schaller, R. D., Ketterson, J. B. & Chang, R. P. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat. Photonics 10, 267–273 (2016).

  58. 58.

    de Ceglia, D. et al. Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms. Sci. Rep. 8, 9335 (2018).

  59. 59.

    Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954–2956 (2003).

  60. 60.

    Kaipurath, R. M. et al. Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterials. Sci. Rep. 6, 27700 (2016).

  61. 61.

    Lee, Y. U. et al. Strong nonlinear optical response in the visible spectral range with epsilon-near-zero organic thin films. Adv. Opt. Mater. 6, 1701400 (2018).

  62. 62.

    Vezzoli, S. et al. Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2017).

  63. 63.

    Campione, S., de Ceglia, D., Vincenti, M. A., Scalora, M. & Capolino, F. Electric field enhancement in ϵ-near-zero slabs under TM-polarized oblique incidence. Phys. Rev. B 87, 035120 (2013).

  64. 64.

    Kamandi, M., Guclu, C., Luk, T. S., Wang, G. T. & Capolino, F. Giant field enhancement in longitudinal epsilon-near-zero films. Phys. Rev. B 95, 161105(R) (2017).

  65. 65.

    Vincenti, M. A. et al. Second-harmonic generation in longitudinal epsilon-near-zero materials. Phys. Rev. B 96, 045438 (2017).

  66. 66.

    Taliercio, T., Guilengui, V. N., Cerutti, L., Tournié, E. & Greffet, J.-J. Brewster ‘mode' in highly doped semiconductor layers: an all-optical technique to monitor doping concentration. Opt. Express 22, 24294–24303 (2014).

  67. 67.

    Vassant, S., Hugonin, J.-P., Marquier, F. & Greffet, J.-J. Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–23977 (2012).

  68. 68.

    Luk, T. S. et al. Directional perfect absorption using deep subwavelength low-permittivity films. Phys. Rev. B 90, 085411 (2014).

  69. 69.

    Newman, W. D. et al. Ferrell–Berreman modes in plasmonic epsilon-near-zero media. ACS Photonics 2, 2–7 (2014).

  70. 70.

    Bello, F. et al. Combining ϵ-near-zero behavior and stopped light energy bands for ultra-low reflection and reduced dispersion of slow light. Sci. Rep. 7, 8702 (2017).

  71. 71.

    Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).

  72. 72.

    Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 1, 484–588 (2009).

  73. 73.

    Silveirinha, M. G. & Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ-near-zero metamaterials. Phys. Rev. B 76, 245109 (2007).

  74. 74.

    Javani, M. H. & Stockman, M. I. Real and imaginary properties of epsilon-near-zero materials. Phys. Rev. Lett. 117, 107404 (2016).

  75. 75.

    Hamachi, Y., Kubo, S. & Baba, T. Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. Opt. Lett. 34, 1072–1074 (2009).

  76. 76.

    Monat, C. et al. Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt. Express 18, 22915–22927 (2010).

  77. 77.

    Boyd, R. W. Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited]. J. Opt. Soc. Am. B 28, A38–A44 (2011).

  78. 78.

    Powell, D. A. et al. Nonlinear control of tunneling through an epsilon-near-zero channel. Phys. Rev. B 79, 245135 (2009).

  79. 79.

    Marini, A. & Garcia De Abajo, F. J. Self-organization of frozen light in near-zero-index media with cubic nonlinearity. Sci. Rep. 6, 20088 (2016).

  80. 80.

    Khurgin, J. B. Everything is slow light. In Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology vol. 10934, 109340 W (International Society for Optics and Photonics, 2019).

  81. 81.

    Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

  82. 82.

    Johnson, P. & Christy, R. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 9, 5056–5070 (1974).

  83. 83.

    Reutzel, M., Li, A., Gumhalter, B. & Petek, H. Excitation of two-photon photoemission where epsilon is near zero on Ag (111). Preprint at arXiv https://arxiv.org/abs/1809.02101 (2018).

  84. 84.

    West, P. R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010).

  85. 85.

    Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

  86. 86.

    Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011).

  87. 87.

    Pradhan, A. K. et al. Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications. Sci. Rep. 4, 6415 (2014).

  88. 88.

    Calzolari, A., Ruini, A. & Catellani, A. Transparent conductive oxides as near-IR plasmonic materials: the case of Al-doped ZnO derivatives. ACS Photonics 1, 703–709 (2014).

  89. 89.

    Riley, C. T. et al. High-quality, ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials. Small 12, 892–901 (2016).

  90. 90.

    Guo, Q. et al. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv. Mater. 29, 1700754 (2017).

  91. 91.

    Wang, Y. et al. Tunability of indium tin oxide materials for mid-infrared plasmonics applications. Opt. Mater. Express 7, 2727–2739 (2017).

  92. 92.

    Shkondin, E. et al. Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials. Opt. Mater. Express 7, 1606–1627 (2017).

  93. 93.

    Anopchenko, A., Tao, L., Arndt, C. & Lee, H. W. H. Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness. ACS Photonics 5, 2631–2637 (2018).

  94. 94.

    Anopchenko, A., Gurung, S., Tao, L., Arndt, C. & Lee, H. W. H. Atomic layer deposition of ultra-thin and smooth Al-doped ZnO for zero-index photonics. Mater. Res. Express 5, 014012 (2018).

  95. 95.

    Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

  96. 96.

    Zhang, L. et al. Correlated metals as transparent conductors. Nat. Mater. 15, 204–210 (2016).

  97. 97.

    Wen, X. et al. Doubly enhanced second harmonic generation through structural and epsilon-near-zero resonances in TiN nanostructures. ACS Photonics 5, 2087–2093 (2018).

  98. 98.

    Gu, L., Livenere, J., Zhu, G., Narimanov, E. E. & Noginov, M. A. Quest for organic plasmonics. Appl. Phys. Lett. 103, 021104 (2013).

  99. 99.

    Woo, B. H. et al. Dispersion control of excitonic thin films for tailored superabsorption in the visible region. ACS Photonics 4, 1138–1145 (2017).

  100. 100.

    Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414–420 (2015).

  101. 101.

    Spitzer, W. G., Kleinman, D. & Walsh, D. Infrared properties of hexagonal silicon carbide. Phys. Rev. 113, 127–132 (1959).

  102. 102.

    Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016).

  103. 103.

    Kischkat, J. et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789–6798 (2012).

  104. 104.

    Shahsafi, A. et al. Mid-infrared optics using dielectrics with refractive indices below unity. Phys. Rev. Appl. 10, 034019 (2018).

  105. 105.

    Ou, J.-Y. et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 5, 5139 (2014).

  106. 106.

    Braic, L. et al. Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl. Mater. Interfaces 9, 29857–29862 (2017).

  107. 107.

    Pollard, R. J. et al. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009).

  108. 108.

    Lepeshkin, N. N., Schweinsberg, A., Piredda, G., Bennink, R. S. & Boyd, R. W. Enhanced nonlinear optical response of one-dimensional metal–dielectric photonic crystals. Phys. Rev. Lett. 93, 123902 (2004).

  109. 109.

    Subramania, G., Fischer, A. J. & Luk, T. S. Optical properties of metal–dielectric based epsilon near zero metamaterials. Appl. Phys. Lett. 101, 241107 (2012).

  110. 110.

    Yang, X. et al. Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs. Opt. Express 21, 23631–23639 (2013).

  111. 111.

    Maas, R., Parsons, J., Engheta, N. & Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 7, 907–912 (2013).

  112. 112.

    Cai, W. & Shalaev, V. Optical Metamaterials (Springer, 2010).

  113. 113.

    Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 7, 958–967 (2013).

  114. 114.

    Caligiuri, V., Palei, M., Imran, M., Manna, L. & Krahne, R. Planar double-epsilon-near-zero cavities for spontaneous emission and Purcell effect enhancement. ACS Photonics 5, 2287–2294 (2018).

  115. 115.

    Pendry, J., Holden, A., Robbins, D. & Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

  116. 116.

    Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

  117. 117.

    Yun, S. et al. Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano 6, 4475–4482 (2012).

  118. 118.

    Pendry, J., Brien, S. O. & Pendry, J. B. Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002).

  119. 119.

    Holloway, C. L., Kuester, E. F., Baker-Jarvis, J. & Kabos, P. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

  120. 120.

    Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

  121. 121.

    Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

  122. 122.

    Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 7, 791–795 (2013).

  123. 123.

    Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

  124. 124.

    Vulis, D. I. et al. Monolithic CMOS-compatible zero-index metamaterials. Opt. Express 25, 12381–12399 (2017).

  125. 125.

    Kita, S. et al. On-chip all-dielectric fabrication-tolerant zero-index metamaterials. Opt. Express 25, 8326–8334 (2017).

  126. 126.

    Reshef, O. et al. Direct observation of phase-free propagation in a silicon waveguide. ACS Photonics 4, 2385–2389 (2017).

  127. 127.

    Schulz, S. A. et al. Optical response of dipole antennas on an epsilon-near-zero substrate. Phys. Rev. A 93, 063846 (2016).

  128. 128.

    Alam, M. Z., Schulz, S. A., Upham, J., De Leon, I. & Boyd, R. W. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics 12, 79–83 (2018).

  129. 129.

    Hendrickson, J. R. et al. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photonics 5, 776–781 (2018).

  130. 130.

    Guo, P., Chang, R. P. & Schaller, R. D. Transient negative optical nonlinearity of indium oxide nanorod arrays in the full-visible range. ACS Photonics 4, 1494–1500 (2017).

  131. 131.

    Taghinejad, M. et al. Ultrafast control of phase and polarization of light expedited by hot-electron transfer. Nano Lett. 18, 5544–5551 (2018).

  132. 132.

    Howes, A., Wang, W., Kravchenko, I. & Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787–792 (2018).

  133. 133.

    Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B. & Engheta, N. Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017).

  134. 134.

    Kern, C. et al. Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets. Appl. Phys. A 104, 15–21 (2011).

  135. 135.

    Neira, A. D. et al. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015).

  136. 136.

    Bennink, R. S., Yoon, Y.-K., Boyd, R. W. & Sipe, J. E. Accessing the optical nonlinearity of metals with metal–dielectric photonic bandgap structures. Opt. Lett. 24, 1416–1418 (1999).

  137. 137.

    Ferrera, M. & Carnemolla, E. G. Ultra-fast transient plasmonics using transparent conductive oxides. J. Opt. 20, 024007 (2018).

  138. 138.

    Benis, S., Hagan, D. J. & Van Stryland, E. W. Enhancement mechanism of nonlinear optical response of transparent conductive oxides at epsilon-near-zero. Conference on Lasers and Electro-Optics, FF2E.1 (OSA, 2018).

  139. 139.

    Ferdinandus, M. R., Hu, H., Reichert, M., Hagan, D. J. & Van Stryland, E. W. Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction. Opt. Lett. 38, 3518–3521 (2013).

  140. 140.

    Ferdinandus, M. R., Reed, J. M., Averett, K. L., Hopkins, F. K. & Urbas, A. Analysis of beam deflection measurements in the presence of linear absorption. Opt. Mater. Express 7, 1598–1605 (2017).

  141. 141.

    Vincenti, M. A., de Ceglia, D., Haus, J. W. & Scalora, M. Harmonic generation in multiresonant plasma films. Phys. Rev. A 88, 043812 (2013).

  142. 142.

    Vincenti, M. A., de Ceglia, D., Angelis, C. D. & Scalora, M. Surface-plasmon excitation of second-harmonic light: emission and absorption. J. Opt. Soc. Am. B 34, 633–641 (2017).

  143. 143.

    Scalora, M. et al. Harmonic generation from metal–oxide and metal–metal boundaries. Phys. Rev. A 98, 023837 (2018).

  144. 144.

    de Ceglia, D., Vincenti, M. A., Akozbek, N., Bloemer, M. J. & Scalora, M. Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions. Opt. Express 25, 3980–3990 (2017).

  145. 145.

    Sundgren, J. E., Johansson, B. O., Karlsson, S. E. & Hentzell, H. T. G. Mechanisms of reactive sputtering of titanium nitride I: influence of process parameters on film. Thin Solid Films 105, 367–384 (1983).

  146. 146.

    Batzill, M. & Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005).

  147. 147.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

  148. 148.

    Michaeli, L., Keren-Zur, S., Avayu, O., Suchowski, H. & Ellenbogen, T. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett. 118, 243904 (2017).

  149. 149.

    Hendrickson, J. R. et al. Plasmonic enhancement of epsilon-near-zero modes. Advanced Photonics Congress NpTh4C.2 (OSA, 2018).

  150. 150.

    Taghinejad, M. et al. Hot-electron-assisted femtosecond all-optical modulation in plasmonics. Adv. Mater. 30, 1704915 (2018).

  151. 151.

    Kim, J. et al. Dynamic control of nano-cavities with tunable metal oxides. Nano Lett. 18, 740–746 (2017).

  152. 152.

    Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

  153. 153.

    Mattiucci, N., Bloemer, M. J. & D’Aguanno, G. Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal. Opt. Express 22, 6381–6390 (2014).

  154. 154.

    Reshef, O. et al. Phase-matching in Dirac-cone-based zero-index metamaterials. CLEO: Applicatins and Technology, jTu5A.53. (OSA, 2016).

  155. 155.

    Vincenti, M. A., de Ceglia, D. & Scalora, M. Nonlinear dynamics in low permittivity media: the impact of losses. Opt. Express 21, 29949–29954 (2013).

  156. 156.

    Kim, K. H. Unity-order nonlinear optical index change in epsilon-near-zero composite materials of gain media and metal nanoparticles. Ann. Phys. 530, 1700259 (2018).

  157. 157.

    Berini, P. & De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 6, 16–24 (2012).

  158. 158.

    De Leon, I. & Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4, 382–387 (2010).

  159. 159.

    Campione, S. & Capolino, F. Composite material made of plasmonic nanoshells with quantum dot cores: Loss-compensation and ϵ-near-zero physical properties. Nanotechnology 23, 235703 (2012).

  160. 160.

    Vincenti, M. A., Campione, S., De Ceglia, D., Capolino, F. & Scalora, M. Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells. New J. Phys. 14, 103016 (2012).

  161. 161.

    Rizza, C., Ciattoni, A. & Palange, E. Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero. Phys. Rev. A 83, 053805 (2011).

  162. 162.

    Fleury, R. & Alù, A. Enhanced superradiance in epsilon-near-zero plasmonic channels. Phys. Rev. B 87, 201101 (2013).

  163. 163.

    Prain, A., Vezzoli, S., Westerberg, N., Roger, T. & Faccio, D. Spontaneous photon production in time-dependent epsilon-near-zero materials. Phys. Rev. Lett. 118, 133904 (2017).

  164. 164.

    Jahani, S., Zhao, H. & Jacob, Z. Switching Purcell effect with nonlinear epsilon-near-zero media. Appl. Phys. Lett. 113, 021103 (2018).

  165. 165.

    Ciattoni, A., Marini, A. & Rizza, C. All-optical modulation in wavelength-sized epsilon-near-zero media. Opt. Lett. 41, 3102–3105 (2016).

  166. 166.

    Neira, A., Wurtz, G. & Zayats, A. All-optical switching in Si photonic waveguides with epsilon-near-zero resonant cavity. Photonics Res. 6, B1–B5 (2017).

  167. 167.

    Ciattoni, A., Rizza, C. & Palange, E. All-optical active plasmonic devices with memory and power-switching functionalities based on ϵ-near-zero nonlinear metamaterials. Phys. Rev. A 83, 43813 (2011).

  168. 168.

    Abdelatty, M. Y., Badr, M. M. & Swillam, M. A. High-speed hybrid plasmonic electro-optical absorption modulator exploiting epsilon-near-zero effect in indium-tin-oxide. J. Nanophotonics 12, 036011 (2018).

  169. 169.

    Qiu, X., Ruan, X., Li, Y. & Zhang, F. Multi-layer MOS capacitor based polarization insensitive electro-optic intensity modulator. Opt. Express 26, 13902–13914 (2018).

  170. 170.

    Sinatkas, G. & Kriezis, E. E. Silicon-photonic electro-optic phase modulators integrating transparent conducting oxides. IEEE J. Quantum Electron. 54, 8400208 (2018).

  171. 171.

    Ricard, D., Roussignol, P. & Flytzanis, C. Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett. 10, 511–513 (1985).

  172. 172.

    Vogel, E. M., Weber, M. J. & Krol, D. Nonlinear optical phenomena in glass. Phys. Chem. Glass. 32, 231–254 (1991).

  173. 173.

    Bloembergen, N., Burns, W. K. & Matsuoka, M. Reflected third harmonic generated by picosecond laser pulses. Opt. Commun. 1, 195–198 (1969).

  174. 174.

    Smith, D. D. et al. z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys. 86, 6200–6205 (1999).

  175. 175.

    De Leon, I., Shi, Z., Liapis, A. C. & Boyd, R. W. Measurement of the complex nonlinear optical response of a surface plasmon-polariton. Opt. Lett. 39, 2274–2277 (2014).

  176. 176.

    Ueda, N. et al. Third-order nonlinear optical susceptibilities of electroconductive oxide thin films. Appl. Phys. Lett. 59, 502–503 (1991).

  177. 177.

    Sheik-Bahae, M., Said, A. A. & Van Stryland, E. W. High-sensitivity, single-beam n 2 measurements. Opt. Lett. 14, 955–957 (1989).

  178. 178.

    Sheik-Bahae, M., Said, A., Wei, T.-H., Hagan, D. & Van Stryland, E. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

Download references

Acknowledgements

The authors acknowledge support through the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs programme and the Canada First Research Excellence Fund. O.R. acknowledges the support of the Banting Postdoctoral Fellowship of the NSERC. I.D.L. acknowledges support from CONACyT (Ciencia Básica) grant no. 286150. R.W.B. also acknowledges support from the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) Nascent programme and from the US Army Research Office.

Author information

O.R., I.D.L. and M.Z.A. researched data for the article. O.R., I.D.L., M.Z.A. and R.W.B. contributed to manuscript preparation, revision and editing.

Correspondence to Orad Reshef or Robert W. Boyd.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reshef, O., De Leon, I., Alam, M.Z. et al. Nonlinear optical effects in epsilon-near-zero media. Nat Rev Mater 4, 535–551 (2019). https://doi.org/10.1038/s41578-019-0120-5

Download citation

Further reading