Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Atom-by-atom fabrication with electron beams

An Author Correction to this article was published on 20 February 2020

This article has been updated

Abstract

Assembling matter atom-by-atom into functional devices is the ultimate goal of nanotechnology. The possibility of achieving this goal is intrinsically dependent on the ability to visualize matter at the atomic level, induce and control atomic-scale motion, facilitate and direct chemical reactions, and coordinate and guide fabrication processes towards desired structures atom-by-atom. In this Perspective, we summarize recent progress in chemical transformations, material alterations and atomic dynamics studies enabled by the converged, atomic-sized electron beam of an aberration-corrected scanning transmission electron microscope. We discuss how such top-down observations have led to the concept of controllable, beam-induced processes and then of bottom-up, atom-by-atom assembly via electron-beam control. The progress in this field, from electron-beam-induced material transformations to atomically precise doping and multi-atom assembly, is reviewed, as are the associated engineering, theoretical and big-data challenges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Several key examples of atomic-scale fabrication using electron beams.
Fig. 2: Applications of deep convolutional neural networks to atomic-scale image analysis.
Fig. 3: Conceptual schematic of a modern scanning transmission electron microscope updated to operate as an atom forge.
Fig. 4: Schematic representation of the increasingly complex milestone demonstrations on the road toward atom-by-atom device fabrication.

Change history

  • 20 February 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  2. 2.

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  3. 3.

    Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).

    Article  CAS  Google Scholar 

  4. 4.

    Huff, T. et al. Binary atomic silicon logic. Nat. Electron. 1, 636–643 (2018).

    Article  Google Scholar 

  5. 5.

    Oyabu, N. et al. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003).

    Article  CAS  Google Scholar 

  6. 6.

    Sugimoto, Y. et al. Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4, 156–159 (2005).

    Article  Google Scholar 

  7. 7.

    Sugimoto, Y. et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322, 413–417 (2008).

    Article  CAS  Google Scholar 

  8. 8.

    Sugimoto, Y. et al. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy. Nat. Commun. 5, 4360 (2014).

    Article  CAS  Google Scholar 

  9. 9.

    Yamazaki, S. et al. Interplay between switching driven by the tunneling current and atomic force of a bistable four-atom Si quantum dot. Nano Lett. 15, 4356–4363 (2015).

    Article  CAS  Google Scholar 

  10. 10.

    Drexler, E. K. Engines of Creation: The Coming Era of Nanotechnology (Anchor Press, 1986).

  11. 11.

    Drexler, E. K. Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, 1991).

  12. 12.

    Nobel Prize. The Nobel Prize in Chemistry 2016. Nobel Prize https://www.nobelprize.org/prizes/chemistry/2016/press-release/ (2016).

  13. 13.

    Kalinin, S. V., Borisevich, A. & Jesse, S. Fire up the atom forge. Nature 539, 485–487 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Yankovich, A. B. et al. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. 5, 4155 (2014).

    Article  CAS  Google Scholar 

  15. 15.

    Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).

    Article  CAS  Google Scholar 

  16. 16.

    Kimoto, K. et al. Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy 110, 778–782 (2010).

    Article  CAS  Google Scholar 

  17. 17.

    Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  Google Scholar 

  18. 18.

    Jiang, N. Electron beam damage in oxides: a review. Rep. Prog. Phys. 79, 016501 (2016).

    Article  CAS  Google Scholar 

  19. 19.

    Jang, J. H. et al. In situ observation of oxygen vacancy dynamics and ordering in the epitaxial LaCoO3 system. ACS Nano 11, 6942–6949 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Kotakoski, J., Mangler, C. & Meyer, J. C. Imaging atomic-level random walk of a point defect in graphene. Nat. Commun. 5, 3991 (2014).

    Article  CAS  Google Scholar 

  21. 21.

    Ishikawa, R. et al. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch. Phys. Rev. Lett. 113, 155501 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    Jesse, S. et al. Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic plane precision. Small 11, 5895–5900 (2015).

    Article  CAS  Google Scholar 

  23. 23.

    Jesse, S. et al. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. Nanotechnology 29, 255303 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Dyck, O. et al. Placing single atoms in graphene with a scanning transmission electron microscope. Appl. Phys. Lett. 111, 113104 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Tripathi, M. et al. Electron-beam manipulation of silicon dopants in graphene. Nano Lett. 18, 5319–5323 (2018).

    Article  CAS  Google Scholar 

  26. 26.

    Susi, T. et al. Silicon-carbon bond inversions driven by 60-keV electrons in graphene. Phys. Rev. Lett. 113, 115501 (2014).

    Article  CAS  Google Scholar 

  27. 27.

    Susi, T. et al. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy 180, 163–172 (2017).

    Article  CAS  Google Scholar 

  28. 28.

    Dyck, O. et al. Building structures atom by atom via electron beam manipulation. Small 14, 1801771 (2018).

    Article  CAS  Google Scholar 

  29. 29.

    Pennycook, S. J. & Nellist, P. D. Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer Science & Business Media, 2011).

  30. 30.

    Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949).

    Article  CAS  Google Scholar 

  31. 31.

    Sawada, H. et al. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J. Electron. Microsc. 58, 357–361 (2009).

    Article  CAS  Google Scholar 

  32. 32.

    Erni, R. et al. Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009).

    Article  CAS  Google Scholar 

  33. 33.

    Hawkes, P. W. The correction of electron lens aberrations. Ultramicroscopy 156, A1–A64 (2015).

    Article  CAS  Google Scholar 

  34. 34.

    Hawkes, P. W. Advances in Imaging and Electron Physics: Aberration-Corrected Electron Microscopy (Elsevier Science, 2009).

  35. 35.

    Orloff, J. Handbook of Charged Particle Optics 2nd edn (CRC Press, 2008).

  36. 36.

    Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768 (1998).

    Article  CAS  Google Scholar 

  37. 37.

    Krivanek, O. L. et al. Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999).

    Article  CAS  Google Scholar 

  38. 38.

    Dellby, N. et al. Progress in aberration-corrected scanning transmission electron microscopy. J. Electron. Microsc. 50, 177–185 (2001).

    CAS  Google Scholar 

  39. 39.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  40. 40.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  41. 41.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  42. 42.

    Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    Article  CAS  Google Scholar 

  43. 43.

    Chhowalla, M., Liu, Z. & Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44, 2584–2586 (2015).

    Article  CAS  Google Scholar 

  44. 44.

    Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  45. 45.

    Martin, P. & Zdenek, S. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

    Article  CAS  Google Scholar 

  46. 46.

    Lalmi, B. et al. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010).

    Article  CAS  Google Scholar 

  47. 47.

    Dávila, M. E. et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).

    Article  CAS  Google Scholar 

  48. 48.

    Zhao, J. et al. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 343, 1228–1232 (2014).

    Article  CAS  Google Scholar 

  49. 49.

    Quang, H. T. et al. In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano 9, 11408–11413 (2015).

    Article  CAS  Google Scholar 

  50. 50.

    Xiaoxu, Z. et al. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 30, 1707281 (2018).

    Article  CAS  Google Scholar 

  51. 51.

    Michael, N. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  Google Scholar 

  52. 52.

    Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  CAS  Google Scholar 

  53. 53.

    LeBeau, J. M. et al. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).

    Article  CAS  Google Scholar 

  54. 54.

    Hwang, J. et al. Three-dimensional imaging of individual dopant atoms in SrTiO3. Phys. Rev. Lett. 111, 266101 (2013).

    Article  CAS  Google Scholar 

  55. 55.

    Wei, X. et al. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5, 2916–2922 (2011).

    Article  CAS  Google Scholar 

  56. 56.

    Dorp, W. F. v. et al. Nanometer-scale lithography on microscopically clean graphene. Nanotechnology 22, 505303 (2011).

    Article  CAS  Google Scholar 

  57. 57.

    Lin, Y.-C. et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  58. 58.

    Vicarelli, L. et al. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano 9, 3428–3435 (2015).

    Article  CAS  Google Scholar 

  59. 59.

    Kotakoski, J. et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011).

    Article  CAS  Google Scholar 

  60. 60.

    Hudak, B. M. et al. Directed atom-by-atom assembly of dopants in silicon. ACS Nano 12, 5873–5879 (2018).

    Article  CAS  Google Scholar 

  61. 61.

    Chuvilin, A. et al. From graphene constrictions to single carbon chains. New J. Phys. 11, 083019 (2009).

    Article  CAS  Google Scholar 

  62. 62.

    Jin, C. et al. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

    Article  CAS  Google Scholar 

  63. 63.

    Lin, Y.-C. et al. Unexpected huge dimerization ratio in one-dimensional carbon atomic chains. Nano Lett. 17, 494–500 (2017).

    Article  CAS  Google Scholar 

  64. 64.

    Cretu, O. et al. Experimental observation of boron nitride chains. ACS Nano 8, 11950–11957 (2014).

    Article  CAS  Google Scholar 

  65. 65.

    Xiao, Z. et al. Deriving phosphorus atomic chains from few-layer black phosphorus. Nano Res. 10, 2519–2526 (2017).

    Article  CAS  Google Scholar 

  66. 66.

    Lin, J. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9, 436–442 (2014).

    Article  CAS  Google Scholar 

  67. 67.

    Liu, X. et al. Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013).

    Article  CAS  Google Scholar 

  68. 68.

    Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 9, 3274–3283 (2015).

    Article  CAS  Google Scholar 

  69. 69.

    Lin, J. et al. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 10, 2782–2790 (2016).

    Article  CAS  Google Scholar 

  70. 70.

    Koh, A. L. et al. Torsional deformations in subnanometer MoS interconnecting wires. Nano Lett. 16, 1210–1217 (2016).

    Article  CAS  Google Scholar 

  71. 71.

    Lee, J. et al. Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore. Nat. Commun. 4, 1650 (2013).

    Article  CAS  Google Scholar 

  72. 72.

    Yang, Z. et al. Direct observation of atomic dynamics and silicon doping at a topological defect in graphene. Angew. Chem. 126, 9054–9058 (2014).

    Article  Google Scholar 

  73. 73.

    King, W. E. et al. Damage effects of high energy electrons on metals. Ultramicroscopy 23, 345–353 (1987).

    Article  CAS  Google Scholar 

  74. 74.

    Hobbs, L. W. The role of topology and geometry in the irradiation-induced amorphization of network structures. J. Non Cryst. Solids 182, 27–39 (1995).

    Article  CAS  Google Scholar 

  75. 75.

    Hobbs, L. W. et al. Radiation effects in ceramics. J. Nucl. Mater. 216, 291–321 (1994).

    Article  CAS  Google Scholar 

  76. 76.

    Bradley, C. R. & Zaluzec, N. J. Atomic sputtering in the analytical electron microscope. Ultramicroscopy 28, 335–338 (1989).

    Article  Google Scholar 

  77. 77.

    Egerton, R. F. Beam-induced motion of adatoms in the transmission electron microscope. Microsc. Microanal. 19, 479–486 (2013).

    Article  CAS  Google Scholar 

  78. 78.

    Egerton, R. F. & Watanabe, M. Characterization of single-atom catalysts by EELS and EDX spectroscopy. Ultramicroscopy 193, 111–117 (2018).

    Article  CAS  Google Scholar 

  79. 79.

    Wu, B. & Neureuther, A. R. Energy deposition and transfer in electron-beam lithography. J. Vac. Sci. Technol. B 19, 2508–2511 (2001).

    Article  CAS  Google Scholar 

  80. 80.

    Egerton, R. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer Science & Business Media, 2011).

  81. 81.

    Egerton, R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 72–87 (2019).

    Article  CAS  Google Scholar 

  82. 82.

    Krasheninnikov, A. V. & Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010).

    Article  CAS  Google Scholar 

  83. 83.

    Susi, T., Meyer, J. C. & Kotakoski, J. Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat. Rev. Phys. (in press).

  84. 84.

    Susi, T. et al. Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Mater. 4, 042004 (2017).

    Article  CAS  Google Scholar 

  85. 85.

    Susi, T. et al. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. ACS Nano 6, 8837–8846 (2012).

    Article  CAS  Google Scholar 

  86. 86.

    Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    Article  CAS  Google Scholar 

  87. 87.

    Su, C. et al. Competing dynamics of single phosphorus dopant in graphene with electron irradiation. Preprint at arXiv https://arxiv.org/abs/1803.01369 (2018).

  88. 88.

    Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  CAS  Google Scholar 

  89. 89.

    Meyer, J. C. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).

    Article  CAS  Google Scholar 

  90. 90.

    Egerton, R. F. Control of radiation damage in the TEM. Ultramicroscopy 127, 100–108 (2013).

    Article  CAS  Google Scholar 

  91. 91.

    Shu, Y., Fales, B. S. & Levine, B. G. Defect-induced conical intersections promote nonradiative recombination. Nano Lett. 15, 6247–6253 (2015).

    Article  CAS  Google Scholar 

  92. 92.

    Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    Article  CAS  Google Scholar 

  93. 93.

    Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 91, 415–436 (1991).

    Article  CAS  Google Scholar 

  94. 94.

    Turro, N. J. et al. Principles of Molecular Photochemistry: An Introduction (University Science Books, 2009).

  95. 95.

    David, L. et al. First principles determination of electronic excitations induced by charged particles. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.7726139 (2019).

  96. 96.

    Tsubonoya, K., Hu, C. & Watanabe, K. Time-dependent density-functional theory simulation of electron wave-packet scattering with nanoflakes. Phys. Rev. B 90, 035416 (2014).

    Article  CAS  Google Scholar 

  97. 97.

    Ueda, Y., Suzuki, Y. & Watanabe, K. Quantum dynamics of secondary electron emission from nanographene. Phys. Rev. B 94, 035403 (2016).

    Article  CAS  Google Scholar 

  98. 98.

    Tapavicza, E. et al. Ab initio non-adiabatic molecular dynamics. Phys. Chem. Chem. Phys. 15, 18336–18348 (2013).

    Article  CAS  Google Scholar 

  99. 99.

    Schleife, A., Kanai, Y. & Correa, A. A. Accurate atomistic first-principles calculations of electronic stopping. Phys. Rev. B 91, 014306 (2015).

    Article  CAS  Google Scholar 

  100. 100.

    Dutta, A. & Sherrill, C. D. Full configuration interaction potential energy curves for breaking bonds to hydrogen: an assessment of single-reference correlation methods. J. Chem. Phys. 118, 1610–1619 (2003).

    Article  CAS  Google Scholar 

  101. 101.

    Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

    Article  CAS  Google Scholar 

  102. 102.

    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, eaaa9886 (2015).

    Article  CAS  Google Scholar 

  103. 103.

    Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014).

    Article  CAS  Google Scholar 

  104. 104.

    van de Put, M. W. et al. Writing silica structures in liquid with scanning transmission electron microscopy. Small 11, 585–590 (2015).

    Article  CAS  Google Scholar 

  105. 105.

    Donev, E. U. et al. Substrate effects on the electron-beam-induced deposition of platinum from a liquid precursor. Nanoscale 3, 2709–2717 (2011).

    Article  CAS  Google Scholar 

  106. 106.

    Yin, L. et al. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology 23, 385302 (2012).

    Article  CAS  Google Scholar 

  107. 107.

    Unocic, R. R. et al. Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale 8, 15581–15588 (2016).

    Article  CAS  Google Scholar 

  108. 108.

    van Dorp, W. F. et al. Molecule-by-molecule writing using a focused electron beam. ACS Nano 6, 10076–10081 (2012).

    Article  CAS  Google Scholar 

  109. 109.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  110. 110.

    Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016).

    Article  CAS  Google Scholar 

  111. 111.

    Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).

    Article  CAS  Google Scholar 

  112. 112.

    Ziatdinov, M., Maksov, A. & Kalinin, S. V. Learning surface molecular structures via machine vision. NPJ Comput. Mater. 3, 31 (2017).

    Article  CAS  Google Scholar 

  113. 113.

    Ziatdinov, M. et al. Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations. ACS Nano 11, 12742–12752 (2017).

    Article  CAS  Google Scholar 

  114. 114.

    Madsen, J. et al. A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images. Adv. Theory Simul. 0, 1800037 (2018).

    Article  CAS  Google Scholar 

  115. 115.

    Vasudevan, R. K. et al. Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. NPJ Comput. Mater. 4, 30 (2018).

    Article  CAS  Google Scholar 

  116. 116.

    Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer Science & Business Media, 2010).

  117. 117.

    Maksov, A. et al. Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. NPJ Comput. Mater. 5, 12 (2019).

    Article  CAS  Google Scholar 

  118. 118.

    Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).

    Article  Google Scholar 

  119. 119.

    Fischbein, M. D. & Drndic, M. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett. 7, 1329–1337 (2007).

    Article  CAS  Google Scholar 

  120. 120.

    Kondo, Y. & Takayanagi, K. Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 79, 3455–3458 (1997).

    Article  CAS  Google Scholar 

  121. 121.

    Fischbein, M. D. & Drndic, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93, 113107 (2008).

    Article  CAS  Google Scholar 

  122. 122.

    Song, B. et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011).

    Article  CAS  Google Scholar 

  123. 123.

    Dyck, O. et al. E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. Nano Res. 11, 6217–6226 (2018).

    Article  CAS  Google Scholar 

  124. 124.

    Jencic, I. et al. Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974–982 (1995).

    Article  CAS  Google Scholar 

  125. 125.

    Bae, I.-T. et al. Electron-beam induced recrystallization in amorphous apatite. Appl. Phys. Lett. 90, 021912 (2007).

    Article  CAS  Google Scholar 

  126. 126.

    Jencic, I., Robertson, I. M. & Skvarc, J. Electron beam induced regrowth of ion implantation damage in Si and Ge. Nucl. Instrum. Methods Phys. Res. B 148, 345–349 (1999).

    Article  CAS  Google Scholar 

  127. 127.

    Becerril, M. et al. Crystallization from amorphous structure to hexagonal quantum dots induced by an electron beam on CdTe thin films. J. Cryst. Growth 311, 1245–1249 (2009).

    Article  CAS  Google Scholar 

  128. 128.

    Yang, X. et al. Low energy electron-beam-induced recrystallization of continuous GaAs amorphous foils. Mater. Sci. Eng. B 49, 5–13 (1997).

    Article  Google Scholar 

  129. 129.

    Xu, Z. W. & Ngan, A. H. W. TEM study of electron beam-induced crystallization of amorphous GeSi films. Phil. Mag. Lett. 84, 719–728 (2004).

    Article  CAS  Google Scholar 

  130. 130.

    Matsuda, J. et al. In situ observation on hydrogenation of Mg-Ni films using environmental transmission electron microscope with aberration correction. Appl. Phys. Lett. 105, 083903 (2014).

    Article  CAS  Google Scholar 

  131. 131.

    Shimojo, M. et al. Electron induced nanodeposition of tungsten using field emission scanning and transmission electron microscopes. J. Vac. Sci. Technol. B 22, 742–746 (2004).

    Article  CAS  Google Scholar 

  132. 132.

    Dyck, O. et al. Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. J. Vac. Sci. Technol. B 36, 011801 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (B.M.H., A.R.L. S.V.K.), the Laboratory Directed Research and Development program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy (O.D., M.Z., S.J.), and Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy Office of Science user facility (D.L. R.R.U.).

Author information

Affiliations

Authors

Contributions

O.D, M.Z, D.B.L. and R.R.U. researched data for the article, discussed the content, and wrote and edited the manuscript. A.R.L., S.J. and S.V.K. discussed the content and contributed to the writing and editing of the manuscript. B.M.H. contributed to the writing and editing of the manuscript.

Corresponding authors

Correspondence to Ondrej Dyck or Sergei V. Kalinin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dyck, O., Ziatdinov, M., Lingerfelt, D.B. et al. Atom-by-atom fabrication with electron beams. Nat Rev Mater 4, 497–507 (2019). https://doi.org/10.1038/s41578-019-0118-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing