Atom-by-atom fabrication with electron beams

Abstract

Assembling matter atom-by-atom into functional devices is the ultimate goal of nanotechnology. The possibility of achieving this goal is intrinsically dependent on the ability to visualize matter at the atomic level, induce and control atomic-scale motion, facilitate and direct chemical reactions, and coordinate and guide fabrication processes towards desired structures atom-by-atom. In this Perspective, we summarize recent progress in chemical transformations, material alterations and atomic dynamics studies enabled by the converged, atomic-sized electron beam of an aberration-corrected scanning transmission electron microscope. We discuss how such top-down observations have led to the concept of controllable, beam-induced processes and then of bottom-up, atom-by-atom assembly via electron-beam control. The progress in this field, from electron-beam-induced material transformations to atomically precise doping and multi-atom assembly, is reviewed, as are the associated engineering, theoretical and big-data challenges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Several key examples of atomic-scale fabrication using electron beams.
Fig. 2: Applications of deep convolutional neural networks to atomic-scale image analysis.
Fig. 3: Conceptual schematic of a modern scanning transmission electron microscope updated to operate as an atom forge.
Fig. 4: Schematic representation of the increasingly complex milestone demonstrations on the road toward atom-by-atom device fabrication.

References

  1. 1.

    Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

  2. 2.

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

  3. 3.

    Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).

  4. 4.

    Huff, T. et al. Binary atomic silicon logic. Nat. Electron. 1, 636–643 (2018).

  5. 5.

    Oyabu, N. et al. Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. Phys. Rev. Lett. 90, 176102 (2003).

  6. 6.

    Sugimoto, Y. et al. Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4, 156–159 (2005).

  7. 7.

    Sugimoto, Y. et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science 322, 413–417 (2008).

  8. 8.

    Sugimoto, Y. et al. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy. Nat. Commun. 5, 4360 (2014).

  9. 9.

    Yamazaki, S. et al. Interplay between switching driven by the tunneling current and atomic force of a bistable four-atom Si quantum dot. Nano Lett. 15, 4356–4363 (2015).

  10. 10.

    Drexler, E. K. Engines of Creation: The Coming Era of Nanotechnology (Anchor Press, 1986).

  11. 11.

    Drexler, E. K. Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, 1991).

  12. 12.

    Nobel Prize. The Nobel Prize in Chemistry 2016. Nobel Prize https://www.nobelprize.org/prizes/chemistry/2016/press-release/ (2016).

  13. 13.

    Kalinin, S. V., Borisevich, A. & Jesse, S. Fire up the atom forge. Nature 539, 485–487 (2016).

  14. 14.

    Yankovich, A. B. et al. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. 5, 4155 (2014).

  15. 15.

    Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).

  16. 16.

    Kimoto, K. et al. Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy 110, 778–782 (2010).

  17. 17.

    Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

  18. 18.

    Jiang, N. Electron beam damage in oxides: a review. Rep. Prog. Phys. 79, 016501 (2016).

  19. 19.

    Jang, J. H. et al. In situ observation of oxygen vacancy dynamics and ordering in the epitaxial LaCoO3 system. ACS Nano 11, 6942–6949 (2017).

  20. 20.

    Kotakoski, J., Mangler, C. & Meyer, J. C. Imaging atomic-level random walk of a point defect in graphene. Nat. Commun. 5, 3991 (2014).

  21. 21.

    Ishikawa, R. et al. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch. Phys. Rev. Lett. 113, 155501 (2014).

  22. 22.

    Jesse, S. et al. Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic plane precision. Small 11, 5895–5900 (2015).

  23. 23.

    Jesse, S. et al. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. Nanotechnology 29, 255303 (2018).

  24. 24.

    Dyck, O. et al. Placing single atoms in graphene with a scanning transmission electron microscope. Appl. Phys. Lett. 111, 113104 (2017).

  25. 25.

    Tripathi, M. et al. Electron-beam manipulation of silicon dopants in graphene. Nano Lett. 18, 5319–5323 (2018).

  26. 26.

    Susi, T. et al. Silicon-carbon bond inversions driven by 60-keV electrons in graphene. Phys. Rev. Lett. 113, 115501 (2014).

  27. 27.

    Susi, T. et al. Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy 180, 163–172 (2017).

  28. 28.

    Dyck, O. et al. Building structures atom by atom via electron beam manipulation. Small 14, 1801771 (2018).

  29. 29.

    Pennycook, S. J. & Nellist, P. D. Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer Science & Business Media, 2011).

  30. 30.

    Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949).

  31. 31.

    Sawada, H. et al. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J. Electron. Microsc. 58, 357–361 (2009).

  32. 32.

    Erni, R. et al. Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009).

  33. 33.

    Hawkes, P. W. The correction of electron lens aberrations. Ultramicroscopy 156, A1–A64 (2015).

  34. 34.

    Hawkes, P. W. Advances in Imaging and Electron Physics: Aberration-Corrected Electron Microscopy (Elsevier Science, 2009).

  35. 35.

    Orloff, J. Handbook of Charged Particle Optics 2nd edn (CRC Press, 2008).

  36. 36.

    Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768 (1998).

  37. 37.

    Krivanek, O. L. et al. Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999).

  38. 38.

    Dellby, N. et al. Progress in aberration-corrected scanning transmission electron microscopy. J. Electron. Microsc. 50, 177–185 (2001).

  39. 39.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  40. 40.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  41. 41.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

  42. 42.

    Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

  43. 43.

    Chhowalla, M., Liu, Z. & Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44, 2584–2586 (2015).

  44. 44.

    Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

  45. 45.

    Martin, P. & Zdenek, S. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

  46. 46.

    Lalmi, B. et al. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010).

  47. 47.

    Dávila, M. E. et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014).

  48. 48.

    Zhao, J. et al. Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 343, 1228–1232 (2014).

  49. 49.

    Quang, H. T. et al. In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano 9, 11408–11413 (2015).

  50. 50.

    Xiaoxu, Z. et al. Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 30, 1707281 (2018).

  51. 51.

    Michael, N. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

  52. 52.

    Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

  53. 53.

    LeBeau, J. M. et al. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).

  54. 54.

    Hwang, J. et al. Three-dimensional imaging of individual dopant atoms in SrTiO3. Phys. Rev. Lett. 111, 266101 (2013).

  55. 55.

    Wei, X. et al. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5, 2916–2922 (2011).

  56. 56.

    Dorp, W. F. v. et al. Nanometer-scale lithography on microscopically clean graphene. Nanotechnology 22, 505303 (2011).

  57. 57.

    Lin, Y.-C. et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

  58. 58.

    Vicarelli, L. et al. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano 9, 3428–3435 (2015).

  59. 59.

    Kotakoski, J. et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011).

  60. 60.

    Hudak, B. M. et al. Directed atom-by-atom assembly of dopants in silicon. ACS Nano 12, 5873–5879 (2018).

  61. 61.

    Chuvilin, A. et al. From graphene constrictions to single carbon chains. New J. Phys. 11, 083019 (2009).

  62. 62.

    Jin, C. et al. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

  63. 63.

    Lin, Y.-C. et al. Unexpected huge dimerization ratio in one-dimensional carbon atomic chains. Nano Lett. 17, 494–500 (2017).

  64. 64.

    Cretu, O. et al. Experimental observation of boron nitride chains. ACS Nano 8, 11950–11957 (2014).

  65. 65.

    Xiao, Z. et al. Deriving phosphorus atomic chains from few-layer black phosphorus. Nano Res. 10, 2519–2526 (2017).

  66. 66.

    Lin, J. et al. Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9, 436–442 (2014).

  67. 67.

    Liu, X. et al. Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013).

  68. 68.

    Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 9, 3274–3283 (2015).

  69. 69.

    Lin, J. et al. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 10, 2782–2790 (2016).

  70. 70.

    Koh, A. L. et al. Torsional deformations in subnanometer MoS interconnecting wires. Nano Lett. 16, 1210–1217 (2016).

  71. 71.

    Lee, J. et al. Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore. Nat. Commun. 4, 1650 (2013).

  72. 72.

    Yang, Z. et al. Direct observation of atomic dynamics and silicon doping at a topological defect in graphene. Angew. Chem. 126, 9054–9058 (2014).

  73. 73.

    King, W. E. et al. Damage effects of high energy electrons on metals. Ultramicroscopy 23, 345–353 (1987).

  74. 74.

    Hobbs, L. W. The role of topology and geometry in the irradiation-induced amorphization of network structures. J. Non Cryst. Solids 182, 27–39 (1995).

  75. 75.

    Hobbs, L. W. et al. Radiation effects in ceramics. J. Nucl. Mater. 216, 291–321 (1994).

  76. 76.

    Bradley, C. R. & Zaluzec, N. J. Atomic sputtering in the analytical electron microscope. Ultramicroscopy 28, 335–338 (1989).

  77. 77.

    Egerton, R. F. Beam-induced motion of adatoms in the transmission electron microscope. Microsc. Microanal. 19, 479–486 (2013).

  78. 78.

    Egerton, R. F. & Watanabe, M. Characterization of single-atom catalysts by EELS and EDX spectroscopy. Ultramicroscopy 193, 111–117 (2018).

  79. 79.

    Wu, B. & Neureuther, A. R. Energy deposition and transfer in electron-beam lithography. J. Vac. Sci. Technol. B 19, 2508–2511 (2001).

  80. 80.

    Egerton, R. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer Science & Business Media, 2011).

  81. 81.

    Egerton, R. F. Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 72–87 (2019).

  82. 82.

    Krasheninnikov, A. V. & Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010).

  83. 83.

    Susi, T., Meyer, J. C. & Kotakoski, J. Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat. Rev. Phys. (in press).

  84. 84.

    Susi, T. et al. Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Mater. 4, 042004 (2017).

  85. 85.

    Susi, T. et al. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. ACS Nano 6, 8837–8846 (2012).

  86. 86.

    Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

  87. 87.

    Su, C. et al. Competing dynamics of single phosphorus dopant in graphene with electron irradiation. Preprint at arXiv https://arxiv.org/abs/1803.01369 (2018).

  88. 88.

    Komsa, H.-P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

  89. 89.

    Meyer, J. C. et al. Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 108, 196102 (2012).

  90. 90.

    Egerton, R. F. Control of radiation damage in the TEM. Ultramicroscopy 127, 100–108 (2013).

  91. 91.

    Shu, Y., Fales, B. S. & Levine, B. G. Defect-induced conical intersections promote nonradiative recombination. Nano Lett. 15, 6247–6253 (2015).

  92. 92.

    Bandara, H. M. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

  93. 93.

    Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 91, 415–436 (1991).

  94. 94.

    Turro, N. J. et al. Principles of Molecular Photochemistry: An Introduction (University Science Books, 2009).

  95. 95.

    David, L. et al. First principles determination of electronic excitations induced by charged particles. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.7726139 (2019).

  96. 96.

    Tsubonoya, K., Hu, C. & Watanabe, K. Time-dependent density-functional theory simulation of electron wave-packet scattering with nanoflakes. Phys. Rev. B 90, 035416 (2014).

  97. 97.

    Ueda, Y., Suzuki, Y. & Watanabe, K. Quantum dynamics of secondary electron emission from nanographene. Phys. Rev. B 94, 035403 (2016).

  98. 98.

    Tapavicza, E. et al. Ab initio non-adiabatic molecular dynamics. Phys. Chem. Chem. Phys. 15, 18336–18348 (2013).

  99. 99.

    Schleife, A., Kanai, Y. & Correa, A. A. Accurate atomistic first-principles calculations of electronic stopping. Phys. Rev. B 91, 014306 (2015).

  100. 100.

    Dutta, A. & Sherrill, C. D. Full configuration interaction potential energy curves for breaking bonds to hydrogen: an assessment of single-reference correlation methods. J. Chem. Phys. 118, 1610–1619 (2003).

  101. 101.

    Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

  102. 102.

    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, eaaa9886 (2015).

  103. 103.

    Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014).

  104. 104.

    van de Put, M. W. et al. Writing silica structures in liquid with scanning transmission electron microscopy. Small 11, 585–590 (2015).

  105. 105.

    Donev, E. U. et al. Substrate effects on the electron-beam-induced deposition of platinum from a liquid precursor. Nanoscale 3, 2709–2717 (2011).

  106. 106.

    Yin, L. et al. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology 23, 385302 (2012).

  107. 107.

    Unocic, R. R. et al. Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale 8, 15581–15588 (2016).

  108. 108.

    van Dorp, W. F. et al. Molecule-by-molecule writing using a focused electron beam. ACS Nano 6, 10076–10081 (2012).

  109. 109.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

  110. 110.

    Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016).

  111. 111.

    Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).

  112. 112.

    Ziatdinov, M., Maksov, A. & Kalinin, S. V. Learning surface molecular structures via machine vision. NPJ Comput. Mater. 3, 31 (2017).

  113. 113.

    Ziatdinov, M. et al. Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations. ACS Nano 11, 12742–12752 (2017).

  114. 114.

    Madsen, J. et al. A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images. Adv. Theory Simul. 0, 1800037 (2018).

  115. 115.

    Vasudevan, R. K. et al. Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. NPJ Comput. Mater. 4, 30 (2018).

  116. 116.

    Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer Science & Business Media, 2010).

  117. 117.

    Maksov, A. et al. Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. NPJ Comput. Mater. 5, 12 (2019).

  118. 118.

    Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).

  119. 119.

    Fischbein, M. D. & Drndic, M. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett. 7, 1329–1337 (2007).

  120. 120.

    Kondo, Y. & Takayanagi, K. Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 79, 3455–3458 (1997).

  121. 121.

    Fischbein, M. D. & Drndic, M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93, 113107 (2008).

  122. 122.

    Song, B. et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011).

  123. 123.

    Dyck, O. et al. E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. Nano Res. 11, 6217–6226 (2018).

  124. 124.

    Jencic, I. et al. Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974–982 (1995).

  125. 125.

    Bae, I.-T. et al. Electron-beam induced recrystallization in amorphous apatite. Appl. Phys. Lett. 90, 021912 (2007).

  126. 126.

    Jencic, I., Robertson, I. M. & Skvarc, J. Electron beam induced regrowth of ion implantation damage in Si and Ge. Nucl. Instrum. Methods Phys. Res. B 148, 345–349 (1999).

  127. 127.

    Becerril, M. et al. Crystallization from amorphous structure to hexagonal quantum dots induced by an electron beam on CdTe thin films. J. Cryst. Growth 311, 1245–1249 (2009).

  128. 128.

    Yang, X. et al. Low energy electron-beam-induced recrystallization of continuous GaAs amorphous foils. Mater. Sci. Eng. B 49, 5–13 (1997).

  129. 129.

    Xu, Z. W. & Ngan, A. H. W. TEM study of electron beam-induced crystallization of amorphous GeSi films. Phil. Mag. Lett. 84, 719–728 (2004).

  130. 130.

    Matsuda, J. et al. In situ observation on hydrogenation of Mg-Ni films using environmental transmission electron microscope with aberration correction. Appl. Phys. Lett. 105, 083903 (2014).

  131. 131.

    Shimojo, M. et al. Electron induced nanodeposition of tungsten using field emission scanning and transmission electron microscopes. J. Vac. Sci. Technol. B 22, 742–746 (2004).

  132. 132.

    Dyck, O. et al. Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. J. Vac. Sci. Technol. B 36, 011801 (2017).

Download references

Acknowledgements

This work was supported by the Laboratory Directed Research and Development program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy (O.D., M.Z., S.J.), Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a U.S. Department of Energy Office of Science user facility (D.L. R.R.U., S.V.K.) and the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering (B.M.H., A.R.L.).

Author information

O.D, M.Z, D.B.L. and R.R.U. researched data for the article, discussed the content, and wrote and edited the manuscript. A.R.L., S.J. and S.V.K. discussed the content and contributed to the writing and editing of the manuscript. B.M.H. contributed to the writing and editing of the manuscript.

Correspondence to Ondrej Dyck or Sergei V. Kalinin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dyck, O., Ziatdinov, M., Lingerfelt, D.B. et al. Atom-by-atom fabrication with electron beams. Nat Rev Mater 4, 497–507 (2019). https://doi.org/10.1038/s41578-019-0118-z

Download citation

Further reading