Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping and structuring supramolecular gels

Abstract

Supramolecular gels assemble via non-covalent interactions between low-molecular-weight gelators (LMWGs). The gels form a solid-like nanoscale network spanning a liquid-like continuous phase, translating molecular-scale information into materials performance. However, gels based on LMWGs are often difficult to manipulate, easily destroyed and have poor rheological performance. The recurring image of newly discovered supramolecular gels is that of an inverted vial showing that the gel can support its own weight against gravity. Such images reflect the limitation that these gels simply fill the vessel in which they are made, with limited ability to be shaped. This property prevents supramolecular gels from having the same impact as polymer gels, despite greater synthetic tunability, reversibility and bio/environmental compatibility. In this Review, we evaluate strategies for imposing different shapes onto supramolecular gels and for patterning structures within them. We review fabrication methods including moulding, self-healing, 3D printing, photopatterning, diffusion and surface-mediated patterning. We discuss gelator chemistries amenable to each method, highlighting how a multicomponent approach can aid shaping and structuring. Supramolecular gels with defined shapes, or patterned structures with precisely controlled compositions, have the potential to intervene in applications, such as tissue engineering and nanoscale electronics, as well as opening up new technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of supramolecular gel assembly and strategies to achieve shaping and patterning of self-assembled gels.
Fig. 2: Some supramolecular gels formed from LMWGs are thixotropic as a consequence of molecular-scale mobility of the gel-forming components.
Fig. 3: Two approaches to 3D printing of supramolecular gels.
Fig. 4: Structuring of gels using photopatterning methods.
Fig. 5: Photopatterning of multicomponent and multidomain gels.
Fig. 6: Diffusion control of reactive components can yield patterned gels.
Fig. 7: Electrochemical surface patterning of self-assembled gels.
Fig. 8: Surface patterned gels assembled on patterned catalytic surfaces.

Similar content being viewed by others

References

  1. Weiss, R. G. The past, present, and future of molecular gels, what is the status of the field, and where is it going? J. Am. Chem. Soc. 136, 7519–7530 (2014).

    CAS  Google Scholar 

  2. Draper, E. R. & Adams, D. J. Low-molecular-weight gels: the state-of-the-art. Chem 3, 390–410 (2017).

    CAS  Google Scholar 

  3. Smith, D. K. in Molecular Gels: Structure and Dynamics (ed. Weiss, R. G.) 300–371 (Royal Society of Chemistry, 2018).

  4. Okesola, B. O., Vieira, V. M. P., Cornwell, D. J., Whitelaw, N. K. & Smith, D. K. 1,3:2,4-dibenzylidene-D-sorbitol (DBS) and its derivatives — efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter 11, 4768–4787 (2015).

    CAS  Google Scholar 

  5. Bohidar, H. B., Dubin, P. & Osada, Y. (eds) Polymer Gels: Fundamentals and Applications (American Chemical Society, 2002).

  6. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. & Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009).

    CAS  Google Scholar 

  7. Skilling, K. J., Citossi, F., Bradshaw, T. D., Ashford, M., Kellam, B. & Marlow, M. Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Soft Matter 10, 237–256 (2014).

    CAS  Google Scholar 

  8. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    CAS  Google Scholar 

  9. Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    CAS  Google Scholar 

  10. Buerkle, L. E. & Rowan, S. J. Supramolecular gels formed from multi-component low molecular weight species. Chem. Soc. Rev. 41, 6089–6102 (2012).

    CAS  Google Scholar 

  11. Draper, E. R. & Adams, D. J. How should multicomponent supramolecular gels be characterised? Chem. Soc. Rev. 47, 3395–3405 (2018).

    CAS  Google Scholar 

  12. Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J. P. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006).

    CAS  Google Scholar 

  13. Leijten, J. et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. R. 119, 1–35 (2017).

    Google Scholar 

  14. Suntornnond, R., An, J. & Chua, C. K. Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: a review. Macromol. Mater. Eng. 302, 1600266 (2017).

    Google Scholar 

  15. Vidyasagar, A., Handore, K. & Sureshan, K. M. Soft optical devices from self-healing gels formed by oil and sugar-based organogelators. Angew. Chem. Int. Ed. 50, 8021–8024 (2011).

    CAS  Google Scholar 

  16. John, G., Jadhav, S. R., Menon, V. M. & John, V. T. Flexible optics: recent developments in molecular gels. Angew. Chem. Int. Ed. 51, 1760–1762 (2012).

    CAS  Google Scholar 

  17. Sahoo, P., Sankolli, R., Lee, H.-Y., Raghavan, S. R. & Dastidar, P. Gel sculpture: moldable load-bearing and self-healing non-polymeric supramolecular gel derived from a simple organic salt. Chem. Eur. J. 18, 8057–8063 (2012).

    CAS  Google Scholar 

  18. Yan, L., Gou, S., Ye, Z., Zhang, S. & Ma, L. Self-healing and moldable material with the deformation recovery ability from self-assembled supramolecular metallogels. Chem. Commun. 50, 12847–12850 (2014).

    CAS  Google Scholar 

  19. Park, J. et al. Crown-ether-based moldable supramolecular gel with unusual mechanical properties and controllable electrical conductivity prepared by cation-mediated cross-linking. Polym. Chem. 9, 3900–3907 (2018).

    CAS  Google Scholar 

  20. Ruiz-Olles, J., Slavik, P. & Smith, D. K. Self-assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivity. Angew. Chem. Int. Ed. 58, 4173–4178 (2019).

    CAS  Google Scholar 

  21. Xu, Z. et al. Simple design but marvelous performances: molecular gels of superior strength and self-healing properties. Soft Matter 9, 1091–1099 (2013).

    CAS  Google Scholar 

  22. Gavel, P. K., Dev, D., Parmar, H. S., Bhasin, S. & Das, A. K. Investigations of peptide-based biocompatible injectable shape-memory hydrogels: differential biological effects on bacterial and human blood cells. ACS Appl. Mater. Interfaces 10, 10729–10740 (2018).

    CAS  Google Scholar 

  23. Cornwell, D. J. & Smith, D. K. Expanding the scope of gels — combining polymers with low-molecular-weight gelators to yield modified self-assembling smart materials with high-tech applications. Mater. Horiz. 2, 279–293 (2015).

    CAS  Google Scholar 

  24. Liu, X.-Y. & Sawant, P. D. Micro/nanoengineering of the self-organized three-dimensional fibrous structure of functional materials. Angew. Chem. Int. Ed. 41, 3641–3645 (2002).

    CAS  Google Scholar 

  25. Liu, X.-Y. et al. Creating new supramolecular materials by architecture of three-dimensional nanocrystal fiber networks. J. Am. Chem. Soc. 124, 15055–15063 (2002).

    CAS  Google Scholar 

  26. Li, J.-L. & Liu, X.-Y. Microengineering of soft functional materials by controlling the fiber network formation. J. Phys. Chem. B 113, 15467–15472 (2009).

    CAS  Google Scholar 

  27. Li, J.-L., Yuan, B., Liu, X.-Y., Wang, X.-G. & Wang, R.-Y. Kinetically controlled homogenization and transformation of crystalline fiber networks in supramolecular materials. Cryst. Growth Des. 11, 3227–3234 (2011).

    CAS  Google Scholar 

  28. Mahapatra, R. D., Dey, J. & Weiss, R. G. Poly(vinyl alcohol)-induced thixotropy of an L-carnosine-based cytocompatible, tripeptidic hydrogel. Soft Matter 15, 433–441 (2019).

    Google Scholar 

  29. Chen, L. et al. Low molecular weight gelator-dextran composites. Chem. Commun. 46, 6738–6740 (2010).

    CAS  Google Scholar 

  30. Pont, G., Chen, L., Spiller, D. G. & Adams, D. J. The effect of polymer additives on the rheological properties of dipeptide hydrogels. Soft Matter 8, 7797–7802 (2012).

    CAS  Google Scholar 

  31. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    CAS  Google Scholar 

  32. Dragan, E. S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 243, 572–590 (2014).

    CAS  Google Scholar 

  33. Wang, J. & Wang, Z. et al. Incorporation of supramolecular hydrogels into agarose hydrogels — a potential drug delivery carrier. J. Mater. Chem. 19, 7892–7896 (2009).

    CAS  Google Scholar 

  34. Cornwell, D. J., Okesola, B. O. & Smith, D. K. Hybrid polymer and low-molecular-weight gels — dynamic two-component soft materials with both responsive and robust nanoscale networks. Soft Matter 9, 8730–8736 (2013).

    CAS  Google Scholar 

  35. Okesola, B. O., Suravaram, S. K., Parkin, A. & Smith, D. K. Selective extraction and in situ reduction of precious metal salts from model waste to generate hybrid gels with embedded electrocatalytic nanoparticles. Angew. Chem. Int. Ed. 55, 183–187 (2016).

    CAS  Google Scholar 

  36. Slavik, P., Kurka, D. W. & Smith, D. K. Palladium-scavenging self-assembled hybrid hydrogels — reusable highly-active green catalysts for Suzuki–Miyaura cross-coupling reactions. Chem. Sci. 9, 8673–8681 (2019).

    Google Scholar 

  37. Vieira, V. M. P., Hay, L. L. & Smith, D. K. Multi-component hybrid hydrogels — understanding the extent of orthogonal assembly and its impact on controlled release. Chem. Sci. 8, 6981–6990 (2017).

    CAS  Google Scholar 

  38. Vieira, V. M. P., Lima, A. C., de Jong, M. & Smith, D. K. Commercially relevant orthogonal multi-component supramolecular hydrogels for programmed cell growth. Chem. Eur. J. 24, 15112–15118 (2018).

    CAS  Google Scholar 

  39. Chen, F. et al. General strategy to fabricate strong and tough low-molecular-weight gelator-based supramolecular hydrogels with double network structure. Chem. Mater. 30, 1743–1754 (2018).

    CAS  Google Scholar 

  40. Yu, X., Chen, L., Zhang, M. & Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem. Soc. Rev. 43, 5346–5371 (2014).

    CAS  Google Scholar 

  41. Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).

    CAS  Google Scholar 

  42. Lan, Y., Corradini, M. G., Weiss, R. G., Raghavan, S. R. & Rogers, M. A. To gel or not to gel: correlating molecular gelation with solvent parameters. Chem. Soc. Rev. 44, 6035–6058 (2015).

    CAS  Google Scholar 

  43. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    CAS  Google Scholar 

  44. Nandi, S. K., Maji, K. & Haldar, D. Self-healing hydrogel from a dipeptide and HCl sensing. ACS Omega 3, 3744–3751 (2018).

    CAS  Google Scholar 

  45. Li, J., Geng, L., Wang, G., Chu, H. & Wei, H. Self-healable gels for use in wearable devices. Chem. Mater. 29, 8932–8952 (2017).

    CAS  Google Scholar 

  46. Sharma, B., Singh, A., Sarma, T. K., Sardana, N. & Pal, A. Chirality control of multi-stimuli responsive and self-healing supramolecular metallo-hydrogels. New J. Chem. 42, 6427–6432 (2018).

    CAS  Google Scholar 

  47. Karan, C. K. & Bhattacharjee, M. Self-healing and moldable metallogels as the recyclable materials for selective dye adsorption and separation. ACS Appl. Mater. Interfaces 8, 5526–5535 (2016).

    CAS  Google Scholar 

  48. Yan, L. et al. Self-healing supramolecular heterometallic gels based on the synergistic effect of the constituent metal ions. Chem. Commun. 51, 17627–17629 (2015).

    CAS  Google Scholar 

  49. Feldner, T. et al. Supramolecular metallogel that imparts self-healing properties to other gel networks. Chem. Mater. 28, 3210–3217 (2016).

    CAS  Google Scholar 

  50. Lovrak, M., Picken, S. J., Eelkema, R. & van Esch, J. H. Supramolecular gluing of polymeric hydrogels. ChemNanoMat 4, 772–775 (2018).

    CAS  Google Scholar 

  51. Bera, S. & Haldar, D. A. Rechargeable self-healing safety fuel gel. J. Mater. Chem. A 4, 6933–6939 (2016).

    CAS  Google Scholar 

  52. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C. & Spence, D. M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240–3253 (2014).

    CAS  Google Scholar 

  53. Jungst, T., Smolan, W., Schacht, K., Scheibel, T. & Groll, J. Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 116, 1496–1539 (2016).

    CAS  Google Scholar 

  54. Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    CAS  Google Scholar 

  55. Yang, H., Zhang, S., Liu, K. & Fang, Y. Calix[4]arene-based low molecular mass gelators to form gels in organoalkoxysilanes. RSC Adv. 6, 109969–109977 (2016).

    CAS  Google Scholar 

  56. Nolan, M. C. et al. Optimising low molecular weight hydrogels for automated 3D printing. Soft Matter 13, 8426–8432 (2017).

    CAS  Google Scholar 

  57. Wei, Q. et al. Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. Chem. Sci. 7, 2748–2752 (2016).

    CAS  Google Scholar 

  58. Carlini, R., Toma, E., Odell, P. G. & Banning, J. H. Phase change inks containing curable trans-1,2-cyclohexane bis(urea-urethane) compounds. US patent 7,153,349 (2006).

  59. Chopra, N. et al. Curable inks comprising bis-urea gelators. US patent 9,328,248 (2016).

  60. Liu, K. et al. Coordination-triggered hierarchical folate/zinc supramolecular hydrogels leading to printable biomaterials. ACS Appl. Mater. Interfaces 10, 4530–4539 (2018).

    CAS  Google Scholar 

  61. Biswas, A., Malferran, S., Kalaskar, D. M. & Das, A. K. Arylboronate esters mediated self-healable and biocompatible dynamic G-quadruplex hydrogels as promising 3D-bioinks. Chem. Commun. 54, 1778–1781 (2018).

    CAS  Google Scholar 

  62. Zhong, R. et al. Self-assembly of enzyme-like nanofibrous G-moleular hydrogel for printed electrochemical sensors. Adv. Mater. 30, 1706887 (2018).

    Google Scholar 

  63. Rossi, S., Puglisi, A. & Benaglia, M. Additive manufacturing technologies: 3D printing in organic synthesis. ChemCatChem 10, 1512–1525 (2018).

    CAS  Google Scholar 

  64. Kitson, P. J. et al. Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018).

    CAS  Google Scholar 

  65. Brown, T. E. & Anseth, K. S. Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. 46, 6532–6552 (2017).

    CAS  Google Scholar 

  66. Dubal, D. P., Chodankar, N. R., Kim, D. H. & Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018).

    CAS  Google Scholar 

  67. Lu, W., Le, X., Zhang, J., Huang, Y. & Chen, T. Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem. Soc. Rev. 46, 1284–1294 (2017).

    CAS  Google Scholar 

  68. Eastoe, J., Sánchez-Dominguez, M., Wyatt, P. & Heenan, R. K. A. Photo-responsive organogel. Chem. Commun. 22, 2608–2609 (2004).

    Google Scholar 

  69. de Jong, J. J. D. et al. Light-driven dynamic pattern formation. Angew. Chem. Int. Ed. 44, 2373–2376 (2005).

    Google Scholar 

  70. Lee, S. et al. Stimulus-responsive azobenzene supramolecules: fibers, gels and hollow spheres. Langmuir 29, 5869–5877 (2013).

    CAS  Google Scholar 

  71. Matsumoto, S. et al. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Chem. Eur. J. 14, 3977–3986 (2008).

    CAS  Google Scholar 

  72. Komatsu, H., Tsukiji, S., Ikeda, M. & Hamachi, I. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells. Chem. Asian J. 6, 2368–2375 (2011).

    CAS  Google Scholar 

  73. Raeburn, J., McDonald, T. O. & Adams, D. J. Dipeptide hydrogelation triggered by ultraviolet light. Chem. Commun. 48, 9355–9357 (2012).

    CAS  Google Scholar 

  74. Maity, C., Hendriksen, W. E., van Esch, J. H. & Eelkema, R. Spatial structuring of a supramolecular hydrogel by using a visible-light triggered catalyst. Angew. Chem. Int. Ed. 54, 998–1001 (2015).

    CAS  Google Scholar 

  75. Li, X. et al. Photoinduced reversible phase transition in a dipeptide supramolecular assembly. Angew. Chem. Int. Ed. 57, 1903–1907 (2017).

    Google Scholar 

  76. Tung, S.-T. et al. Interlocked photo-degradable macrocycles allow one-off photo-triggerable gelation of organo- and hydrogelators. Chem. Eur. J. 24, 1522–1527 (2017).

    Google Scholar 

  77. Roth-Konforti, M. E. et al. UV light-responsive peptide-based supramolecular hydrogel for controlled drug delivery. Macromol. Rapid Commun. 39, e1800588 (2018).

    Google Scholar 

  78. van Herpt, J. T., Stuart, M. C. A., Browne, W. R. & Feringa, B. L. A. Dithienylethene-based rewritable hydrogelator. Chem. Eur. J. 20, 3077–3083 (2014).

    Google Scholar 

  79. Lee, J. H. et al. Ultraviolet patterned calixarene-derived supramolecular gels and films with spatially resolved mechanical and fluorescent properties. ACS Nano 11, 4155–4164 (2017).

    CAS  Google Scholar 

  80. Draper, E. R. et al. Reversible photoreduction as a trigger for photoresponsive gels. Chem. Mater. 28, 6336–6341 (2016).

    CAS  Google Scholar 

  81. Moriyama, M., Mizoshita, N., Yokota, T., Kishimoto, K. & Kato, T. Photoresponsive anisotropic soft solids: liquid crystalline physical gels based on a chiral photochromic gelator. Adv. Mater. 15, 1335–1338 (2003).

    CAS  Google Scholar 

  82. Moriyama, M., Mizoshita, N. & Kato, T. Photopattering of discotic liquid crystalline gels. Polym. J. 36, 661–664 (2004).

    CAS  Google Scholar 

  83. Cornwell, D. J., Okesola, B. O. & Smith, D. K. Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators. Angew. Chem. Int. Ed. 53, 12461–12465 (2014).

    CAS  Google Scholar 

  84. Chivers, P. R. A. & Smith, D. K. Spatially-resolved soft materials for controlled release — hybrid hydrogels combining a robust photo-activated polymer gel with an interactive supramolecular gel. Chem. Sci. 8, 7218–7227 (2017).

    CAS  Google Scholar 

  85. Cornwell, D. J., Daubney, O. J. & Smith, D. K. Photopatterned multidomain gels: multi-component self-assembled hydrogels based on partially self-sorting 1,3:2,4-dibenzylidene-D-sorbitol derivatives. J. Am. Chem. Soc. 137, 15486–15492 (2015).

    CAS  Google Scholar 

  86. Draper, E. R., Eden, E. G. B., McDonald, T. O. & Adams, D. J. Spatially resolved multicomponent gels. Nat. Chem. 7, 848–852 (2015).

    CAS  Google Scholar 

  87. Che, X. et al. Gelation behaviour and gel properties of two-component organogels containing a photoresponsive gelator. New J. Chem. 41, 8614–8619 (2017).

    CAS  Google Scholar 

  88. Amabilino, D. J., Smith, D. K. & Steed, J. W. Supramolecular materials. Chem. Soc. Rev. 46, 2404–2420 (2017).

    CAS  Google Scholar 

  89. Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    CAS  Google Scholar 

  90. Li, J.-L., Zhang, Z.-S. & Liu, X.-Y. in Molecular Gels: Structure and Dynamics (ed. Weiss, R. G.) 88–128 (Royal Society of Chemistry, 2018).

  91. Lovrak, M. et al. Free-standing supramolecular hydrogel objects by reaction-diffusion. Nat. Commun. 8, 15317 (2017).

    CAS  Google Scholar 

  92. Ruíz-Olles, J. & Smith, D. K. Diffusion across a gel-gel interface — molecular-scale mobility of self-assembled ‘solid-like’ gel nanofibres in multi-component supramolecular organogels. Chem. Sci. 9, 5541–5550 (2018).

    Google Scholar 

  93. Jaggers, R. W. & Bon, S. A. F. Temporal and spatial programming in soft composite hydrogel objects. J. Mater. Chem. B 5, 7491–7495 (2017).

    CAS  Google Scholar 

  94. Vigier-Carrière, C., Boulmedais, F., Schaaf, P. & Jierry, L. Surface-assisted self-assembly strategies leading to supramolecular hydrogels. Angew. Chem. Int. Ed. 57, 1448–1456 (2018).

    Google Scholar 

  95. Yang, B., Adams, D. J., Marlow, M. & Zelzer, M. Surface-mediated supramolecular self-assembly of protein, peptide, and nucleoside derivatives: from surface design to the underlying mechanism and tailored functions. Langmuir 34, 15109–15125 (2018).

    CAS  Google Scholar 

  96. Raeburn, J. et al. Electrochemically triggered spatially and temporally resolved multi-component gels. Mater. Horiz. 1, 241–246 (2014).

    CAS  Google Scholar 

  97. Piper, A., Alston, B. M., Adams, D. J. & Mount, A. R. Functionalised microscale nanoband edge electrode (MNEE) arrays: the systematic quantitative study of hydrogels grown on nanoelectrode biosensor arrays for enhanced sensing in biological media. Faraday Discuss. 210, 201–217 (2018).

    CAS  Google Scholar 

  98. Tam, A. Y.-Y. & Yam, V. W.-W. Recent advances in metallogels. Chem. Soc. Rev. 42, 1540–1567 (2013).

    CAS  Google Scholar 

  99. Olive, A. G. L. et al. Spatial and directional control over self-assembly using catalytic micropatterned surfaces. Angew. Chem. Int. Ed. 53, 4132–4136 (2014).

    CAS  Google Scholar 

  100. Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4, 19–24 (2009).

    CAS  Google Scholar 

  101. Conte, M. P., Lau, K. H. A. & Ulijn, R. V. Biocatalytic self-assembly using reversible and irreversible enzyme immobilisation. ACS Appl. Mater. Interfaces 9, 3266–3271 (2017).

    CAS  Google Scholar 

  102. Zelzer, M., Todd, S. J., Hirst, A. R., McDonald, T. O. & Ulijn, R. V. Enzyme responsive materials: design strategies and future developments. Biomater. Sci. 1, 11–39 (2013).

    CAS  Google Scholar 

  103. Fores, J. R. et al. Localized supramolecular peptide self-assembly directed by enzyme-induced proton gradients. Angew. Chem. Int. Ed. 56, 15984–15988 (2017).

    Google Scholar 

  104. Spitzer, D., Marichez, V., Formon, G. J. M., Besenius, P. & Hermans, T. M. Surface-assisted self-assembly of a hydrogel by proton diffusion. Angew. Chem. Int. Ed. 57, 11349–11353 (2018).

    CAS  Google Scholar 

  105. Marciel, A. B. et al. Fluidic-directed assembly of aligned oligopeptides with π-conjugated cores. Adv. Mater. 25, 6398–6404 (2013).

    CAS  Google Scholar 

  106. Seibt, S., With, S., Bernet, A., Schmidt, H. W. & Förster, S. Hydrogelation kinetics measured in a microfluidic device with in situ X-ray and fluorescence detection. Langmuir 34, 5535–5544 (2018).

    CAS  Google Scholar 

  107. Sevim, S. et al. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures. Chem. Soc. Rev. 47, 3788–3803 (2018).

    CAS  Google Scholar 

  108. Inostroza-Brito, K. E. et al. Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system. Nat. Chem. 7, 897–904 (2015).

    CAS  Google Scholar 

  109. Mendoza-Meinhardt, A., Botto, L. & Mata, A. A. Fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces. Sci. Rep. 8, 2900 (2018).

    Google Scholar 

  110. Hedegaard, C. L. et al. Hydrodynamically guided hierarchical self-assembly of peptide-protein bioinks. Adv. Funct. Mater. 28, 1703716 (2018).

    Google Scholar 

Download references

Acknowledgements

D.K.S. acknowledges the Engineering and Physical Sciences Research Council (EPSRC) for funding (EP/P03361X/1). P.R.A.C. acknowledges funding from the EPSRC and the University of York (Doctoral Training Partnership award).

Author information

Authors and Affiliations

Authors

Contributions

P.R.A.C. and D.K.S. carried out the literature search and the writing of the article. D.K.S. led the process of editorial revisions.

Corresponding author

Correspondence to David K. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chivers, P.R.A., Smith, D.K. Shaping and structuring supramolecular gels. Nat Rev Mater 4, 463–478 (2019). https://doi.org/10.1038/s41578-019-0111-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0111-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing