Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Material design for lymph node drug delivery

Abstract

A significant fraction of the total immune cells in the body are located in several hundred lymph nodes, in which lymphocyte accumulation, activation and proliferation are organized. Therefore, targeting lymph nodes provides the possibility to directly deliver drugs to lymphocytes and lymph node-resident cells and thus to modify the adaptive immune response. However, owing to the structure and anatomy of lymph nodes, as well as the distinct localization and migration of the different cell types within the lymph node, it is difficult to access specific cell populations by delivering free drugs. Materials can be used as instructive delivery vehicles to achieve accumulation of drugs in the lymph nodes and to target specific lymph node-resident cell subtypes. In this Review, we describe the compartmental architecture of lymph nodes and the cell and fluid transport mechanisms to and from lymph nodes. We discuss the different entry routes into lymph nodes and how they can be explored for drug delivery, including the lymphatics, blood capillaries, high endothelial venules, cell-mediated pathways, homing of circulating lymphocytes and direct lymph node injection. We examine different nanoscale and microscale materials for the targeting of specific immune cells and highlight their potential for the treatment of immune dysfunction and for cancer immunotherapy. Finally, we give an outlook to the field, exploring how lymph node targeting can be improved by the use of materials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Lymph node structure and physiology.
Fig. 2: Targeting dendritic cells.
Fig. 3: Targeting B cells.
Fig. 4: Targeting T cells.
Fig. 5: Route of administration into lymph nodes.

References

  1. 1.

    Sainte-Marie, G. The lymph node revisited: development, morphology, functioning, and role in triggering primary immune responses. Anat. Rec. 293, 320–337 (2010).

    Article  Google Scholar 

  2. 2.

    Kaldjian, E. P., Gretz, J. E., Anderson, A. O., Shi, Y. & Shaw, S. Spatial and molecular organization of lymph node T cell cortex: a labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membrane-like extracellular matrix. Int. Immunol. 13, 1243–1253 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).

    Article  Google Scholar 

  4. 4.

    Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway’s Immunobiology 8th edn (Garland Science, 2012).

  5. 5.

    Jeanbart, L. et al. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res. 2, 436–447 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Kourtis, I. C. et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLOS ONE 8, e61646 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Schudel, A., Sestito, L. F. & Thomas, S. N. Winner of the society for biomaterials young investigator award for the annual meeting of the society for biomaterials, April 11–14, 2018, Atlanta, GA: S-nitrosated poly(propylene sulfide) nanoparticles for enhanced nitric oxide delivery to lymphatic tissues. J. Biomed. Mater. Res. A 106, 1463–1475 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Keller, S. et al. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J. Control. Release 191, 24–33 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Foster, S., Duvall, C. L., Crownover, E. F., Hoffman, A. S. & Stayton, P. S. Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T cell production and prophylactic vaccine efficacy. Bioconjug. Chem. 21, 2205–2212 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Leleux, J. A., Pradhan, P. & Roy, K. Biophysical attributes of CpG presentation control TLR9 signaling to differentially polarize systemic immune responses. Cell Rep. 18, 700–710 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Kaminskas, L. M. et al. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J. Control. Release 140, 108–116 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Ryan, G. M. et al. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J. Control. Release 172, 128–136 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    An, M., Li, M., Xi, J. & Liu, H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl. Mater. Interfaces 9, 23466–23475 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Kang, S. et al. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J. Control. Release 256, 56–67 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Wang, C. et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine 32, 5475–5483 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Delemarre, F. G., Kors, N., Kraal, G. & van Rooijen, N. Repopulation of macrophages in popliteal lymph nodes of mice after liposome-mediated depletion. J. Leukoc. Biol. 47, 251–257 (1990).

    CAS  Article  Google Scholar 

  17. 17.

    Singh, I., Swami, R., Khan, W. & Sistla, R. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin. Drug Deliv. 11, 211–229 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Nune, S. K., Gunda, P., Majeti, B. K., Thallapally, P. K. & Forrest, M. L. Advances in lymphatic imaging and drug delivery. Adv. Drug Delivery Rev. 63, 876–885 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Tacken, P. J., de Vries, I. J., Torensma, R. & Figdor, C. G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7, 790–802 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Gray, E. E. & Cyster, J. G. Lymph node macrophages. J. Innate Immun. 4, 424–436 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Ahsan, F., Rivas, I. P., Khan, M. A. & Torres Suarez, A. I. Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J. Control. Release 79, 29–40 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    Lederman, M. M. & Margolis, L. The lymph node in HIV pathogenesis. Semin. Immunol. 20, 187–195 (2008).

  23. 23.

    Thomas, S. N., Rohner, N. A. & Edwards, E. E. Implications of lymphatic transport to lymph nodes in immunity and immunotherapy. Annu. Rev. Biomed. Engineer. 18, 207–233 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Rohner, N. A. et al. Lymph node biophysical remodeling is associated with melanoma lymphatic drainage. FASEB J. 29, 4512–4522 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Pereira, E. R., Jones, D., Jung, K. & Padera, T. P. The lymph node microenvironment and its role in the progression of metastatic cancer. Semin. Cell Dev. Biol. 38, 98–105 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Miyaji, K. et al. The stiffness of lymph nodes containing lung carcinoma metastases: a new diagnostic parameter measured by a tactile sensor. Cancer 80, 1920–1925 (1997).

    CAS  Article  Google Scholar 

  27. 27.

    Chung, M. K. et al. Lymphatic vessels and high endothelial venules are increased in the sentinel lymph nodes of patients with oral squamous cell carcinoma before the arrival of tumor cells. Ann. Surg. Oncol. 19, 1595–1601 (2012).

    Article  Google Scholar 

  28. 28.

    Nathanson, S. D. & Mahan, M. Sentinel lymph node pressure in breast cancer. Ann. Surg. Oncol. 18, 3791–3796 (2011).

    Article  Google Scholar 

  29. 29.

    Nathanson, S. D., Shah, R., Chitale, D. A. & Mahan, M. Intraoperative clinical assessment and pressure measurements of sentinel lymph nodes in breast cancer. Ann. Surg. Oncol. 21, 81–85 (2014).

    Article  Google Scholar 

  30. 30.

    Qian, C. N. et al. Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 66, 10365–10376 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. Toxicol. Pathol. 34, 409–424 (2006).

    Article  Google Scholar 

  32. 32.

    Kelly, R. H. Functional anatomy of lymph nodes. I. The paracortical cords. Int. Arch. Allergy Appl. Immunol. 48, 836–849 (1975).

    CAS  Article  Google Scholar 

  33. 33.

    Forkert, P. G., Thliveris, J. A. & Bertalanffy, F. D. Structure of sinuses in the human lymph node. Cell Tissue Res. 183, 115–130 (1977).

    CAS  Article  Google Scholar 

  34. 34.

    Gretz, J. E., Kaldjian, E. P., Anderson, A. O. & Shaw, S. Sophisticated strategies for information encounter in the lymph node: the reticular network as a conduit of soluble information and a highway for cell traffic. J. Immunol. 157, 495–499 (1996).

    CAS  Google Scholar 

  35. 35.

    Gretz, J. E., Anderson, A. O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997).

    CAS  Article  Google Scholar 

  36. 36.

    MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  Article  Google Scholar 

  37. 37.

    Kroese, F. G., Timens, W. & Nieuwenhuis, P. Germinal center reaction and B lymphocytes: morphology and function. Curr. Top. Pathol. 84, 103–148 (1990).

    Article  Google Scholar 

  38. 38.

    Romani, N. et al. Migration of dendritic cells into lymphatics-the Langerhans cell example: routes, regulation, and relevance. Int. Rev. Cytol. 207, 237–270 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    Belisle, C. & Sainte-Marie, G. Tridimensional study of the deep cortex of the rat lymph node. III. Morphology of the deep cortex units. Anat. Rec. 199, 213–226 (1981).

    CAS  Article  Google Scholar 

  40. 40.

    Girard, J. P., Moussion, C. & Forster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Randolph, G. J., Ivanov, S., Zinselmeyer, B. H. & Scallan, J. P. The lymphatic system: integral roles in immunity. Annu. Rev. Immunol. 35, 31–52 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50, 3–20 (2001).

    CAS  Article  Google Scholar 

  44. 44.

    Schmid-Schonbein, G. W. Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch. Histol Cytol. 53 (Suppl), 107–114 (1990).

    Article  Google Scholar 

  45. 45.

    Kastenmuller, W., Torabi-Parizi, P., Subramanian, N., Lammermann, T. & Germain, R. N. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150, 1235–1248 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Rantakari, P. et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat. Immunol. 16, 386–396 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    CAS  Article  Google Scholar 

  49. 49.

    Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    CAS  Article  Google Scholar 

  50. 50.

    Thomas, S. N. & Schudel, A. Overcoming transport barriers for interstitial-, lymphatic-, and lymph node-targeted drug delivery. Curr. Opin. Chem. Eng. 7, 65–74 (2015).

    Article  Google Scholar 

  51. 51.

    Rohner, N. A. & Thomas, S. N. Flexible macromolecule versus rigid particle retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS Biomater. Sci. Eng. 3, 153–159 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Stroh, M. et al. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion. Nat. Mater. 3, 489–494 (2004).

    CAS  Article  Google Scholar 

  53. 53.

    Reddy, S. T., Berk, D. A., Jain, R. K. & Swartz, M. A. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J. Appl. Physiol. 101, 1162–1169 (2006).

    CAS  Article  Google Scholar 

  54. 54.

    Rohner, N. A. & Thomas, S. N. Melanoma growth effects on molecular clearance from tumors and biodistribution into systemic tissues versus draining lymph nodes. J. Control. Release 223, 99–108 (2016). This study details quantification of the relative efficiency of nanocarrier versus microcarrier accumulation within lymph nodes versus systemic tissues after administration in the periphery and investigation of the effects of disease on the extent of specific targeting.

    CAS  Article  Google Scholar 

  55. 55.

    Reddy, S. T., Rehor, A., Schmoekel, H. G., Hubbell, J. A. & Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 112, 26–34 (2006).

    CAS  Article  Google Scholar 

  56. 56.

    Rao, D. A., Forrest, M. L., Alani, A. W., Kwon, G. S. & Robinson, J. R. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J. Pharm. Sci. 99, 2018–2031 (2010).

    CAS  Article  Google Scholar 

  57. 57.

    Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Srinivasan, S., Vannberg, F. O. & Dixon, J. B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 6, 24436 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Reddy, S. T., Swartz, M. A. & Hubbell, J. A. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 27, 573–579 (2006).

    CAS  Article  Google Scholar 

  61. 61.

    Sunshine, J. C., Perica, K., Schneck, J. P. & Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35, 269–277 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    Wibroe, P. P. et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat. Nanotechnol. 12, 589–594 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Kumar, S., Anselmo, A. C., Banerjee, A., Zakrewsky, M. & Mitragotri, S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 220, 141–148 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    Ryan, G. M. et al. A comparison of the pharmacokinetics and pulmonary lymphatic exposure of a generation 4 PEGylated dendrimer following intravenous and aerosol administration to rats and sheep. Pharm. Res. 33, 510–525 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Agarwal, R. et al. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl Acad. Sci. USA 110, 17247–17252 (2013).

    CAS  Article  Google Scholar 

  66. 66.

    Foged, C., Brodin, B., Frokjaer, S. & Sundblad, A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298, 315–322 (2005).

    CAS  Article  Google Scholar 

  67. 67.

    Thomas, S. N., Vokali, E., Lund, A. W., Hubbell, J. A. & Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35, 814–824 (2014). This study provides a demonstration of the principle and therapeutic benefit of lymph node targeting using lymphatic-draining nanoparticles in mediating delivery of immune-stimulatory small molecule adjuvants to tumour-draining lymph nodes to potentiate adaptive immune responses against endogenously produced tumour antigen co-draining to targeted lymph nodes.

    CAS  Article  Google Scholar 

  68. 68.

    Rehor, A., Hubbell, J. A. & Tirelli, N. Oxidation-sensitive polymeric nanoparticles. Langmuir 21, 411–417 (2005).

    CAS  Article  Google Scholar 

  69. 69.

    Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014). This study details the engineering of a modified subunit vaccine, specifically a lipid-modified peptide and adjuvant oligonucleotide CpG that leverage endogenous albumin transport of hydrophobic lipids to the lymph node to improve vaccine effects.

    CAS  Article  Google Scholar 

  70. 70.

    Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017). This paper details an investigation of a variety of liposomal formulations to achieve high mRNA encapsulation and cytosolic delivery to APCs for mRNA vaccines, achieving high transfection rates at the site of injection and in the draining lymph node.

    CAS  Article  Google Scholar 

  71. 71.

    Karabin, N. B. et al. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat. Commun. 9, 624 (2018).

    Article  CAS  Google Scholar 

  72. 72.

    Nuhn, L. et al. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc. Natl Acad. Sci. USA 113, 8098–8103 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    Zhang, F., Zhu, L., Huang, X., Niu, G. & Chen, X. Differentiation of reactive and tumor metastatic lymph nodes with diffusion-weighted and SPIO-enhanced MRI. Mol. Imaging Biol. 15, 40–47 (2013).

    CAS  Article  Google Scholar 

  74. 74.

    Liang, C. et al. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv. Mater. 26, 5646–5652 (2014).

    CAS  Article  Google Scholar 

  75. 75.

    Oladipo, A. O. et al. A novel treatment for metastatic lymph nodes using lymphatic delivery and photothermal therapy. Sci. Rep. 7, 45459 (2017).

    CAS  Article  Google Scholar 

  76. 76.

    Gonzalez, S. F., Pitcher, L. A., Mempel, T., Schuerpf, F. & Carroll, M. C. B cell acquisition of antigen in vivo. Curr. Opin. Immunol. 21, 251–257 (2009).

    CAS  Article  Google Scholar 

  77. 77.

    Catron, D. M., Pape, K. A., Fife, B. T., van Rooijen, N. & Jenkins, M. K. A protease-dependent mechanism for initiating T-dependent B cell responses to large particulate antigens. J. Immunol. 184, 3609–3617 (2010).

    CAS  Article  Google Scholar 

  78. 78.

    Heyman, B. Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu. Rev. Immunol. 18, 709–737 (2000).

    CAS  Article  Google Scholar 

  79. 79.

    Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007).

    CAS  Article  Google Scholar 

  80. 80.

    Phan, T. G., Green, J. A., Gray, E. E., Xu, Y. & Cyster, J. G. Immune complex relay by subcapsular sinus macrophages and non-cognate B cells drives antibody affinity maturation. Nat. Immunol. 10, 786–793 (2009).

    CAS  Article  Google Scholar 

  81. 81.

    Gonzalez, S. F. et al. Complement-dependent transport of antigen into B cell follicles. J. Immunol. 185, 2659–2664 (2010).

    CAS  Article  Google Scholar 

  82. 82.

    Heesters, B. A. et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38, 1164–1175 (2013).

    CAS  Article  Google Scholar 

  83. 83.

    Roozendaal, R. & Carroll, M. C. Complement receptors CD21 and CD35 in humoral immunity. Immunol. Rev. 219, 157–166 (2007).

    CAS  Article  Google Scholar 

  84. 84.

    Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    CAS  Article  Google Scholar 

  85. 85.

    Carrasco, Y. R. & Batista, F. D. B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27, 160–171 (2007).

    CAS  Article  Google Scholar 

  86. 86.

    Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352, 242–246 (2016).

    CAS  Article  Google Scholar 

  87. 87.

    Saunderson, S. C., Dunn, A. C., Crocker, P. R. & McLellan, A. D. CD169 mediates the capture of exosomes in spleen and lymph node. Blood 123, 208–216 (2014).

    CAS  Article  Google Scholar 

  88. 88.

    Bernhard, C. A., Ried, C., Kochanek, S. & Brocker, T. CD169+macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells. Proc. Natl Acad. Sci. USA 112, 5461–5466 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    van Rooijen, N. & Hendrikx, E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol. Biol. 605, 189–203 (2010).

    Article  CAS  Google Scholar 

  90. 90.

    Hettiaratchi, M. H. et al. A rapid method for determining protein diffusion through hydrogels for regenerative medicine applications. APL Bioeng. 2, 026110 (2018).

    Article  CAS  Google Scholar 

  91. 91.

    van Rooijen, N. & van Kesteren-Hendrikx, E. Clodronate liposomes: perspectives in research and therapeutics. J. Liposome Res. 12, 81–94 (2002).

    Article  Google Scholar 

  92. 92.

    Bahmani, B. et al. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J. Clin. Invest. 128, 4770–4786 (2018). This paper shows that intravenously administered nanoparticles carrying therapeutic anti-CD3 monoclonal antibodies are directed to lymph nodes via targeting of high endothelial venules with an anti-MECA-79 monoclonal antibody to prolong cardiac allograft survival compared with unmodified, drug-laden nanoparticles or free drug.

    Article  Google Scholar 

  93. 93.

    Azzi, J. et al. Targeted delivery of immunomodulators to lymph nodes. Cell Rep. 15, 1202–1213 (2016). This paper exploits the same targeting methods used in the work by Bahmani et al. (directed delivery to adhesive ligand that T cells use to home to the lymph node) using microparticles encapsulating immunomodulators to improve allograft survival.

    CAS  Article  Google Scholar 

  94. 94.

    Cabral, H. et al. Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano 9, 4957–4967 (2015). This paper describes the investigation of the effects of the size of sub-100 nm nanoparticles on lymph node accumulation versus delivery to lymph node-localized metastatic tumour foci to improve antitumour therapeutic effects.

    CAS  Article  Google Scholar 

  95. 95.

    Zheng, Y. et al. In vivo targeting of adoptively transferred T cells with antibody- and cytokine-conjugated liposomes. J. Control. Release 172, 426–435 (2013).

    CAS  Article  Google Scholar 

  96. 96.

    Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  Article  Google Scholar 

  97. 97.

    Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    CAS  Article  Google Scholar 

  98. 98.

    Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23, 445–449 (2002).

    CAS  Article  Google Scholar 

  99. 99.

    Joffre, O., Nolte, M. A., Sporri, R. & Reis e Sousa, C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).

    CAS  Article  Google Scholar 

  100. 100.

    Gallo, P. M. & Gallucci, S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front. Immunol. 4, 138 (2013).

    Article  CAS  Google Scholar 

  101. 101.

    Rescigno, M., Granucci, F., Citterio, S., Foti, M. & Ricciardi-Castagnoli, P. Coordinated events during bacteria-induced DC maturation. Immunol. Today 20, 200–203 (1999).

    CAS  Article  Google Scholar 

  102. 102.

    Cyster, J. G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    CAS  Article  Google Scholar 

  103. 103.

    Braun, P., Foldi, M., Kisfaludy, S. & Szabo, G. Free amino-acid content of the lymph. Nature 177, 1133–1134 (1956).

    CAS  Article  Google Scholar 

  104. 104.

    Kaplan, D. H. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 31, 446–451 (2010).

    CAS  Article  Google Scholar 

  105. 105.

    Zaric, M. et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7, 2042–2055 (2013).

    CAS  Article  Google Scholar 

  106. 106.

    Seneschal, J., Jiang, X. & Kupper, T. S. Langerin+dermal DC, but not Langerhans cells, are required for effective CD8-mediated immune responses after skin scarification with vaccinia virus. J. Invest. Dermatol. 134, 686–694 (2014).

    CAS  Article  Google Scholar 

  107. 107.

    Nagao, K. et al. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc. Natl Acad. Sci. USA 106, 3312–3317 (2009).

    CAS  Article  Google Scholar 

  108. 108.

    Guilliams, M., Lambrecht, B. N. & Hammad, H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 6, 464–473 (2013).

    CAS  Article  Google Scholar 

  109. 109.

    Kopf, M., Schneider, C. & Nobs, S. P. The development and function of lung-resident macrophages and dendritic cells. Nat. Immunol. 16, 36–44 (2015).

    CAS  Article  Google Scholar 

  110. 110.

    Kim, T. H. & Lee, H. K. Differential roles of lung dendritic cell subsets against respiratory virus infection. Immune Netw. 14, 128–137 (2014).

    Article  Google Scholar 

  111. 111.

    Wang, S., Liu, H., Zhang, X. & Qian, F. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell 6, 480–503 (2015).

    Article  CAS  Google Scholar 

  112. 112.

    Liu, L. M. & MacPherson, G. G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J. Exp. Med. 177, 1299–1307 (1993).

    CAS  Article  Google Scholar 

  113. 113.

    Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    CAS  Article  Google Scholar 

  114. 114.

    Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J. Gen. Virol. 83, 267–271 (2002).

    CAS  Article  Google Scholar 

  115. 115.

    Macpherson, A. J. & Smith, K. Mesenteric lymph nodes at the center of immune anatomy. J. Exp. Med. 203, 497–500 (2006).

    CAS  Article  Google Scholar 

  116. 116.

    Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).

    CAS  Article  Google Scholar 

  117. 117.

    Liu, Y. et al. In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vaccines in mice. Biomacromolecules 15, 3836–3845 (2014).

    CAS  Article  Google Scholar 

  118. 118.

    Singh, A., Suri, S. & Roy, K. In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials 30, 5187–5200 (2009).

    CAS  Article  Google Scholar 

  119. 119.

    Mahe, B. et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J. Invest. Dermatol. 129, 1156–1164 (2009).

    CAS  Article  Google Scholar 

  120. 120.

    Baleeiro, R. B. et al. Topical vaccination with functionalized particles targeting dendritic cells. J. Invest. Dermatol. 133, 1933–1941 (2013).

    CAS  Article  Google Scholar 

  121. 121.

    Cruz, L. J. et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J. Control. Release 192, 209–218 (2014).

    CAS  Article  Google Scholar 

  122. 122.

    Fromen, C. A. et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine 12, 677–687 (2016).

    CAS  Article  Google Scholar 

  123. 123.

    Blank, F. et al. Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am. J. Respir. Cell. Mol. Biol. 49, 67–77 (2013). This paper investigates the effects of inhaled particle size on association with APCs in regional lymph nodes draining the lung airway.

    CAS  Article  Google Scholar 

  124. 124.

    Choi, H. S. et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 28, 1300–1303 (2010).

    CAS  Article  Google Scholar 

  125. 125.

    Hardy, C. L. et al. Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. J. Immunol. 191, 5278–5290 (2013).

    CAS  Article  Google Scholar 

  126. 126.

    Seydoux, E. et al. Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4(+) T cell proliferation. Nanomedicine 12, 1815–1826 (2016).

    CAS  Article  Google Scholar 

  127. 127.

    Xie, Y. & Merkel, O. M. Pulmonary delivery of siRNA via polymeric vectors as therapies of asthma. Arch. Pharm. 348, 681–688 (2015).

    CAS  Article  Google Scholar 

  128. 128.

    Fromen, C. A. et al. Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc. Natl Acad. Sci. USA 112, 488–493 (2015).

    CAS  Article  Google Scholar 

  129. 129.

    Sabin, A. B. Oral poliovirus vaccine: history of its development and use and current challenge to eliminate poliomyelitis from the world. J. Infect. Dis. 151, 420–436 (1985).

    CAS  Article  Google Scholar 

  130. 130.

    Lavelle, E. C. & O’Hagan, D. T. Delivery systems and adjuvants for oral vaccines. Expert Opin. Drug Deliv. 3, 747–762 (2006).

    CAS  Article  Google Scholar 

  131. 131.

    Florence, A. T. Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov. Today Technol. 2, 75–81 (2005).

    CAS  Google Scholar 

  132. 132.

    Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14, 781–803 (2015).

    CAS  Article  Google Scholar 

  133. 133.

    Ager, A. High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front. Immunol. 8, 45 (2017).

    Article  CAS  Google Scholar 

  134. 134.

    von Andrian, U. H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation 3, 287–300 (1996).

    Article  Google Scholar 

  135. 135.

    Anderson, A. O. & Shaw, S. T cell adhesion to endothelium: the FRC conduit system and other anatomic and molecular features which facilitate the adhesion cascade in lymph node. Semin. Immunol. 5, 271–282 (1993).

    CAS  Article  Google Scholar 

  136. 136.

    Takeda, A., Sasaki, N. & Miyasaka, M. The molecular cues regulating immune cell trafficking. Proc. Jpn Acad. Ser. B 93, 183–195 (2017).

    CAS  Article  Google Scholar 

  137. 137.

    Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat. Rev. Immunol. 4, 360–370 (2004).

    CAS  Article  Google Scholar 

  138. 138.

    Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    CAS  Article  Google Scholar 

  139. 139.

    Huang, B. et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl Med. 7, 291ra94 (2015). In this paper, chemotherapy-loaded nanocapsules with sustained release over 3 days are backpacked onto T cell surfaces capable of lymph node homing, achieving improved drug delivery to the lymph node-resident tumour.

    Article  CAS  Google Scholar 

  140. 140.

    Wu, A. A., Drake, V., Huang, H.-S., Chiu, S. & Zheng, L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 4, e1016700 (2015).

    Article  CAS  Google Scholar 

  141. 141.

    Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8, 1747 (2017). This paper highlights the concept that cells that are the target of a drug can also be its carrier to enable targeted drug delivery.

    Article  CAS  Google Scholar 

  142. 142.

    McHugh, M. D. et al. Paracrine co-delivery of TGF-beta and IL-2 using CD4-targeted nanoparticles for induction and maintenance of regulatory T cells. Biomaterials 59, 172–181 (2015).

    CAS  Article  Google Scholar 

  143. 143.

    Tanis, P. J., Nieweg, O. E., Valdes Olmos, R. A., Th Rutgers, E. J. & Kroon, B. B. History of sentinel node and validation of the technique. Breast Cancer Res. 3, 109–112 (2001).

    CAS  Article  Google Scholar 

  144. 144.

    Maloy, K. J. et al. Intralymphatic immunization enhances DNA vaccination. Proc. Natl Acad. Sci. USA 98, 3299–3303 (2001).

    CAS  Article  Google Scholar 

  145. 145.

    Johansen, P. et al. Direct intralymphatic injection of peptide vaccines enhances immunogenicity. Eur. J. Immunol. 35, 568–574 (2005).

    CAS  Article  Google Scholar 

  146. 146.

    Smith, K. A. et al. Enhancing DNA vaccination by sequential injection of lymph nodes with plasmid vectors and peptides. Vaccine 27, 2603–2615 (2009).

    CAS  Article  Google Scholar 

  147. 147.

    Ribas, A. et al. Intra-lymph node prime-boost vaccination against Melan A and tyrosinase for the treatment of metastatic melanoma: results of a phase 1 clinical trial. Clin. Cancer Res. 17, 2987–2996 (2011).

    CAS  Article  Google Scholar 

  148. 148.

    Mohanan, D. et al. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J. Control. Release 147, 342–349 (2010).

    CAS  Article  Google Scholar 

  149. 149.

    Jewell, C. M., Bustamante López, S. C. & Irvine, D. J. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl Acad. Sci. USA 108, 15745–15750 (2011).

    CAS  Article  Google Scholar 

  150. 150.

    Tostanoski, L. H. et al. Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. Cell Rep. 16, 2940–2952 (2016).

    CAS  Article  Google Scholar 

  151. 151.

    Arata-Kawai, H. et al. Functional contributions of N and O-glycans to L-selectin ligands in murine and human lymphoid organs. Am. J. Pathol. 178, 423–433 (2011).

    CAS  Article  Google Scholar 

  152. 152.

    Hirakawa, J. et al. Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N and O-glycans in lymphocyte homing. J. Biol. Chem. 285, 40864–40878 (2010).

    CAS  Article  Google Scholar 

  153. 153.

    Allan, R. S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    CAS  Article  Google Scholar 

  154. 154.

    Hu, L. et al. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, avoid first-pass metabolism, and enhance oral bioavailability. Angew. Chem. 55, 13700–13705 (2016).

    CAS  Article  Google Scholar 

  155. 155.

    Han, S. et al. Constitutive triglyceride turnover into the mesenteric lymph is unable to support efficient lymphatic transport of a biomimetic triglyceride prodrug. J. Pharm. Sci. 105, 786–796 (2016).

    CAS  Article  Google Scholar 

  156. 156.

    de Titta, A. et al. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl Acad. Sci. USA 110, 19902–19907 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grant R01CA207619, a CCR15330478 grant from Susan G. Komen and US Department of Defense grant CA150523.

Author information

Affiliations

Authors

Contributions

All authors contributed to manuscript planning, writing and editing.

Corresponding author

Correspondence to Susan N. Thomas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schudel, A., Francis, D.M. & Thomas, S.N. Material design for lymph node drug delivery. Nat Rev Mater 4, 415–428 (2019). https://doi.org/10.1038/s41578-019-0110-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing