Cancer nanomedicine for combination cancer immunotherapy


Cancer immunotherapy is revolutionizing oncology. However, dose-limiting toxicities and low patient response rates remain major challenges in the clinic. Cancer nanomedicine in combination with immunotherapies offers the possibility to amplify antitumour immune responses and to sensitize tumours to immunotherapies in a safe and effective manner. In this Review, we discuss opportunities for combination immunotherapy based on nanoparticle platforms designed for chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy and gene therapy. We highlight how nanoparticles can be used to reprogramme the immunosuppressive tumour microenvironment and to trigger systemic antitumour immunity, synergizing with immunotherapies against advanced cancer. Finally, we discuss strategies to improve tumour and immune cell targeting while minimizing toxicity and immune-related adverse events, and we explore the potential of theranostic nanoparticles for combination immunotherapy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Potential clinical benefits of combination nano-immunotherapy.
Fig. 2: Nanomedicine approaches for combination cancer immunotherapy.
Fig. 3: Immune cells in the tumour microenvironment as potential targets for nano-immunotherapy.


  1. 1.

    McCarthy, E. F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 26, 154–158 (2006).

  2. 2.

    Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

  3. 3.

    Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

  4. 4.

    Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

  5. 5.

    Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

  6. 6.

    Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

  7. 7.

    Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

  8. 8.

    Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

  9. 9.

    Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

  10. 10.

    Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

  11. 11.

    Friedman, C. F., Proverbs-Singh, T. A. & Postow, M. A. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2, 1346–1353 (2016).

  12. 12.

    Weber, J. S. et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 17, 943–955 (2016).

  13. 13.

    Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

  14. 14.

    Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

  15. 15.

    Matsumura, Y. & Maeda, H. A. New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392 (1986).

  16. 16.

    Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

  17. 17.

    Chou, L. Y. T., Ming, K. & Chan, W. C. W. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

  18. 18.

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

  19. 19.

    Venditto, V. J. & Szoka, F. C. Jr. Cancer nanomedicines: so many papers and so few drugs! Adv. Drug Deliv. Rev. 65, 80–88 (2013).

  20. 20.

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

  21. 21.

    Ojha, T. et al. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv. Drug Deliv. Rev. 119, 44–60 (2017).

  22. 22.

    Golombek, S. K. et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018).

  23. 23.

    Grippin, A. J., Sayour, E. J. & Mitchell, D. A. Translational nanoparticle engineering for cancer vaccines. Oncoimmunology 6, e1290036 (2017).

  24. 24.

    Fan, Y. & Moon, J. J. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines (Basel) 3, 662–685 (2015).

  25. 25.

    Lee, I.-H. et al. Targeted chemoimmunotherapy using drug-loaded aptamer–dendrimer bioconjugates. J. Control. Release 155, 435–441 (2011).

  26. 26.

    Conde, J. et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv. Funct. Mater. 25, 4183–4194 (2015).

  27. 27.

    Sato, K. et al. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci. Transl Med. 8, 352ra110 (2016).

  28. 28.

    Zhen, Z. et al. Protein nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett. 17, 862–869 (2017).

  29. 29.

    Liu, L. et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 26, 45–55 (2018).

  30. 30.

    Ochyl, L. J. et al. PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials 182, 157–166 (2018).

  31. 31.

    Liu, Y., Hardie, J., Zhang, X. & Rotello, V. M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 34, 25–32 (2017).

  32. 32.

    Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018).

  33. 33.

    Alshamsan, A. et al. STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm. 7, 1643–1654 (2010).

  34. 34.

    Seth, A., Heo, M. B. & Lim, Y. T. Poly (gamma-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials 35, 7992–8001 (2014).

  35. 35.

    Pradhan, P. et al. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials 35, 5491–5504 (2014).

  36. 36.

    Teo, P. Y. et al. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv. Healthc. Mater. 4, 1180–1189 (2015).

  37. 37.

    Kuai, R. et al. Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy. J. Control. Release 282, 131–139 (2018).

  38. 38.

    Guo, L. et al. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 8, 5670–5681 (2014).

  39. 39.

    Wang, D. et al. Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 16, 5503–5513 (2016).

  40. 40.

    Kuai, R. et al. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 4, eaao1736 (2018).

  41. 41.

    Yang, G. et al. Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18, 2475–2484 (2018).

  42. 42.

    Christian, D. A. & Hunter, C. A. Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 4, 425–441 (2012).

  43. 43.

    Song, Q. et al. Tumor microenvironment responsive nanogel for the combinatorial antitumor effect of chemotherapy and immunotherapy. Nano Lett. 17, 6366–6375 (2017).

  44. 44.

    Kong, M. et al. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics 7, 3276–3292 (2017).

  45. 45.

    Nam, J. et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65, 622–648 (2013).

  46. 46.

    Retif, P. et al. Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics 5, 1030–1044 (2015).

  47. 47.

    Bao, Z., Liu, X., Liu, Y., Liu, H. & Zhao, K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J. Pharm. Sci. 11, 349–364 (2016).

  48. 48.

    Lux, F. et al. Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine 10, 1801–1815 (2015).

  49. 49.

    Meir, R. et al. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 9, 6363–6372 (2015).

  50. 50.

    Ngwa, W. et al. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine 9, 1063–1082 (2014).

  51. 51.

    Bear, A. S. et al. Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T Cell transfer. PLOS ONE 8, e69073 (2013).

  52. 52.

    Toraya-Brown, S. et al. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors. Nanomedicine 10, 1273–1285 (2014).

  53. 53.

    Nam, J. et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9, 1074 (2018).

  54. 54.

    Hwang, S. et al. Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine 9, 2003–2022 (2014).

  55. 55.

    Chow, J. C. L. in Handbook of Ecomaterials (eds Torres Martínez, L. M., Kharissova, O. V. & Kharisov, B. I.) 1–21 (Springer International Publishing, 2017).

  56. 56.

    Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

  57. 57.

    Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

  58. 58.

    Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

  59. 59.

    Duan, X. et al. Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc. 138, 16686–16695 (2016).

  60. 60.

    Fan, Y. et al. Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett. 17, 7387–7393 (2017).

  61. 61.

    Lu, J. et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 8, 1811 (2017).

  62. 62.

    Lee, E. J. et al. Nanocage-therapeutics prevailing phagocytosis and immunogenic cell death awakens immunity against cancer. Adv. Mater. 30, 1705581 (2018).

  63. 63.

    Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

  64. 64.

    Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

  65. 65.

    Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

  66. 66.

    Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

  67. 67.

    Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 348, 124–128 (2015).

  68. 68.

    Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

  69. 69.

    Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

  70. 70.

    Zhu, G. et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat. Commun. 8, 1954 (2017).

  71. 71.

    Kuai, R. et al. Subcutaneous nanodisc vaccination with neoantigens for combination cancer immunotherapy. Bioconjug. Chem. 29, 771–775 (2018).

  72. 72.

    Borghaei, H. et al. Nivolumab (Nivo) + platinum-doublet chemotherapy (Chemo) versus chemo as first-line (1L) treatment (Tx) for advanced non-small cell lung cancer (NSCLC) with <1% tumor PD-L1 expression: results from CheckMate 227. J. Clin. Oncol. 36, 9001–9001 (2018).

  73. 73.

    Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

  74. 74.

    Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

  75. 75.

    Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

  76. 76.

    US National Library of Medicine. (2019).

  77. 77.

    US National Library of Medicine. (2019).

  78. 78.

    Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).

  79. 79.

    Lopes, G. et al. Pembrolizumab (pembro) versus platinum-based chemotherapy (chemo) as first-line therapy for advanced/metastatic NSCLC with a PD-L1 tumor proportion score (TPS) ≥1%: open-label, phase 3 KEYNOTE-042 study [abstract]. J. Clin. Oncol. 36 (Suppl. 18), LBA4 (2018).

  80. 80.

    Pfannenstiel, L. W., Lam, S. S., Emens, L. A., Jaffee, E. M. & Armstrong, T. D. Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. Cell. Immunol. 263, 79–87 (2010).

  81. 81.

    Machiels, J. P. et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 61, 3689–3697 (2001).

  82. 82.

    Roy, A., Singh, M. S., Upadhyay, P. & Bhaskar, S. Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int. J. Pharm. 445, 171–180 (2013).

  83. 83.

    Heo, M. B., Kim, S. Y., Yun, W. S. & Lim, Y. T. Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int. J. Nanomed. 10, 5981–5992 (2015).

  84. 84.

    Lu, Y. et al. Exploiting in situ antigen generation and immune modulation to enhance chemotherapy response in advanced melanoma: a combination nanomedicine approach. Cancer Lett. 379, 32–38 (2016).

  85. 85.

    Makkouk, A. et al. Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer. AAPS J. 17, 184–193 (2015).

  86. 86.

    Yin, Y. et al. Co-delivery of doxorubicin and interferon-gamma by thermosensitive nanoparticles for cancer immunochemotherapy. Mol. Pharm. 15, 4161–4172 (2018).

  87. 87.

    Haque, A., Banik, N. L. & Ray, S. K. Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoimmunotherapy in the management of human glioblastoma. Neurochem. Res. 32, 2203–2209 (2007).

  88. 88.

    van der Zee, J. Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002).

  89. 89.

    Hildebrandt, B. et al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002).

  90. 90.

    Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).

  91. 91.

    Dickerson, E. B. et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269, 57–66 (2008).

  92. 92.

    Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001).

  93. 93.

    Jung, H. S. et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47, 2280–2297 (2018).

  94. 94.

    Chen, W. R., Singhal, A. K., Liu, H. & Nordquist, R. E. Antitumor immunity induced by laser immunotherapy and its adoptive transfer. Cancer Res. 61, 459–461 (2001).

  95. 95.

    Zhou, F. et al. InCVAX – a novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity. Cancer Lett. 359, 169–177 (2015).

  96. 96.

    Wang, C. et al. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26, 8154–8162 (2014).

  97. 97.

    Liu, Y. et al. Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Sci. Rep. 7, 8606 (2017).

  98. 98.

    Abadeer, N. S. & Murphy, C. J. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C 120, 4691–4716 (2016).

  99. 99.

    Chatterjee, D. K., Fong, L. S. & Zhang, Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev. 60, 1627–1637 (2008).

  100. 100.

    Korbelik, M. Induction of tumor immunity by photodynamic therapy. J. Clin. Laser Med. Surg. 14, 329–334 (1996).

  101. 101.

    Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

  102. 102.

    Buytaert, E., Dewaele, M. & Agostinis, P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta 1776, 86–107 (2007).

  103. 103.

    Skovsen, E., Snyder, J. W., Lambert, J. D. C. & Ogilby, P. R. Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B 109, 8570–8573 (2005).

  104. 104.

    Macdonald, I. J. & Dougherty, T. J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 5, 105–129 (2001).

  105. 105.

    Abrahamse, H. & Hamblin, M. R. New photosensitizers for photodynamic therapy. Biochem. J. 473, 347–364 (2016).

  106. 106.

    Marrache, S., Tundup, S., Harn, D. A. & Dhar, S. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy. ACS Nano 7, 7392–7402 (2013).

  107. 107.

    Yu, X. et al. Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographenes. ACS Nano 11, 10147–10158 (2017).

  108. 108.

    Gao, L. et al. Enhanced anti-tumor efficacy through a combination of integrin αvβ6-targeted photodynamic therapy and immune checkpoint inhibition. Theranostics 6, 627–637 (2016).

  109. 109.

    Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

  110. 110.

    Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

  111. 111.

    Castano, A. P., Mroz, P., Wu, M. X. & Hamblin, M. R. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc. Natl Acad. Sci. USA 105, 5495–5500 (2008).

  112. 112.

    Mroz, P. & Hamblin, M. R. The immunosuppressive side of PDT. Photochem. Photobiol. Sci. 10, 751–758 (2011).

  113. 113.

    He, C. et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 7, 12499 (2016).

  114. 114.

    Hamblin, M. R. Upconversion in photodynamic therapy: plumbing the depths. Dalton Trans. 47, 8571–8580 (2018).

  115. 115.

    Xu, J. et al. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 11, 4463–4474 (2017).

  116. 116.

    Lu, K. et al. Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J. Am. Chem. Soc. 138, 12502–12510 (2016).

  117. 117.

    Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

  118. 118.

    Brown, J. M. Tumor hypoxia in cancer therapy. Methods Enzymol. 435, 295–321 (2007).

  119. 119.

    Turan, I. S., Yildiz, D., Turksoy, A., Gunaydin, G. & Akkaya, E. U. A. Bifunctional photosensitizer for enhanced fractional photodynamic therapy: singlet oxygen generation in the presence and absence of light. Angew. Chem. Int. Ed. Engl. 55, 2875–2878 (2016).

  120. 120.

    Chen, Z. et al. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano 12, 8633–8645 (2018).

  121. 121.

    Jin, C. S., Lovell, J. F., Chen, J. & Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013).

  122. 122.

    Begg, A. C., Stewart, F. A. & Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 11, 239–253 (2011).

  123. 123.

    Sanche, L. Beyond radical thinking. Nature 461, 358–359 (2009).

  124. 124.

    Gupta, A. et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J. Immunol. 189, 558–566 (2012).

  125. 125.

    Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

  126. 126.

    Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

  127. 127.

    Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type I interferon–dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

  128. 128.

    Demaria, S. & Formenti, S. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front. Oncol. 2, 153 (2012).

  129. 129.

    Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004).

  130. 130.

    Formenti, S. C. & Demaria, S. Radiation therapy to convert the tumor into an in situ vaccine. Int. J. Radiat. Oncol. Biol. Phys. 84, 879–880 (2012).

  131. 131.

    Schaue, D. & McBride, W. H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 12, 527–540 (2015).

  132. 132.

    Qu, Y. et al. Gamma-ray resistance of regulatory CD4+CD25+Foxp3+T cells in mice. Radiat. Res. 173, 148–157 (2010).

  133. 133.

    Kachikwu, E. L. et al. Radiation enhances regulatory T cell representation. Int. J. Radiat. Oncol. Biol. Phys. 81, 1128–1135 (2011).

  134. 134.

    Ngiow, S. F., McArthur, G. A. & Smyth, M. J. Radiotherapy complements immune checkpoint blockade. Cancer Cell 27, 437–438 (2015).

  135. 135.

    Ngwa, W. et al. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18, 313–322 (2018).

  136. 136.

    Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y. X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

  137. 137.

    Patel, R., Czapar, A. E., Fiering, S., Oleinick, N. L. & Steinmetz, N. F. Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS Omega 3, 3702–3707 (2018).

  138. 138.

    Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

  139. 139.

    Deng, L. et al. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

  140. 140.

    Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

  141. 141.

    Kim, Y. H. et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119, 355–363 (2012).

  142. 142.

    Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

  143. 143.

    Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

  144. 144.

    Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

  145. 145.

    Tsai, C.-S. et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int. J. Radiat. Oncol. Biol. Phys. 68, 499–507 (2007).

  146. 146.

    Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

  147. 147.

    Schaue, D., Ratikan, J. A., Iwamoto, K. S. & McBride, W. H. Maximizing tumor immunity with fractionated radiation. Int. J. Radiat. Oncol. Biol. Phys. 83, 1306–1310 (2012).

  148. 148.

    Kim, M. S. et al. Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat. Oncol. J. 34, 230–238 (2016).

  149. 149.

    Liu, Y. et al. Metal-based NanoEnhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics 8, 1824–1849 (2018).

  150. 150.

    Song, G., Cheng, L., Chao, Y., Yang, K. & Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 29, 1700996 (2017).

  151. 151.

    Xie, J. et al. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater. 0, 1802244 (2018).

  152. 152.

    Ngwa, W., Dougan, S. & Kumar, R. Combining nanoparticle-aided radiation therapy with immunotherapy to enhance local and metastatic tumor cell kill during pancreatic cancer treatment. Int. J. Radiat. Oncol. Biol. Phys. 99, E611–E612 (2017).

  153. 153.

    Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

  154. 154.

    Lazzari, C. et al. Combination of immunotherapy with chemotherapy and radiotherapy in lung cancer: is this the beginning of the end for cancer? Ther. Adv. Med. Oncol. 10, 1758835918762094 (2018).

  155. 155.

    Hwang, W. L., Pike, L. R. G., Royce, T. J., Mahal, B. A. & Loeffler, J. S. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat. Rev. Clin. Oncol. 15, 477–494 (2018).

  156. 156.

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

  157. 157.

    Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2, 711–719 (2006).

  158. 158.

    Davidson, B. L. & McCray, P. B. Jr. Current prospects for RNA interference-based therapies. Nat. Rev. Genet. 12, 329–340 (2011).

  159. 159.

    Huang, L. & Liu, Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu. Rev. Biomed. Eng. 13, 507–530 (2011).

  160. 160.

    van der Waart, A. B. et al. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8+ T cells in NOD/SCID/IL2Rg(null) mice. Cancer Immunol. Immunother. 64, 645–654 (2015).

  161. 161.

    Van den Bergh, J. M. et al. Monocyte-derived dendritic cells with silenced PD-1 ligands and transpresenting interleukin-15 stimulate strong tumor-reactive T cell expansion. Cancer Immunol. Res. 5, 710–715 (2017).

  162. 162.

    Iwamura, K. et al. siRNA-mediated silencing of PD-1 ligands enhances tumor-specific human T cell effector functions. Gene Ther. 19, 959–966 (2012).

  163. 163.

    Sheng, W. Y. & Huang, L. Cancer immunotherapy and nanomedicine. Pharm. Res. 28, 200–214 (2011).

  164. 164.

    Zheng, X. et al. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int. J. Cancer 132, 967–977 (2013).

  165. 165.

    Brady, M. T. et al. Down-regulation of signal transducer and activator of transcription 3 improves human acute myeloid leukemia-derived dendritic cell function. Leuk. Res. 37, 822–828 (2013).

  166. 166.

    Luo, Z. et al. Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 38, 50–60 (2015).

  167. 167.

    Hossain, D. M. et al. TLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin. Cancer Res. 21, 3771–3782 (2015).

  168. 168.

    Marine, J. C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

  169. 169.

    Kubo, M., Hanada, T. & Yoshimura, A. Suppressors of cytokine signaling and immunity. Nat. Immunol. 4, 1169–1176 (2003).

  170. 170.

    Shen, L., Evel-Kabler, K., Strube, R. & Chen, S. Y. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol. 22, 1546–1553 (2004).

  171. 171.

    Heo, M. B. & Lim, Y. T. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 35, 590–600 (2014).

  172. 172.

    Xu, Z., Wang, Y., Zhang, L. & Huang, L. Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8, 3636–3645 (2014).

  173. 173.

    Ahmed, M. et al. Systemic siRNA nanoparticle-based drugs combined with radiofrequency ablation for cancer therapy. PLOS ONE 10, e0128910 (2015).

  174. 174.

    Shen, L. et al. Local blockade of interleukin 10 and C-X-C motif chemokine ligand 12 with nano-delivery promotes antitumor response in murine cancers. ACS Nano 12, 9830–9841 (2018).

  175. 175.

    Xian, J., Yang, H., Lin, Y. & Liu, S. Combination nonviral murine interleukin 2 and interleukin 12 gene therapy and radiotherapy for head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 131, 1079–1085 (2005).

  176. 176.

    Duan, S. et al. Folate-modified chitosan nanoparticles coated interferon-inducible protein-10 gene enhance cytotoxic T lymphocytes’ responses to hepatocellular carcinoma. J. Biomed. Nanotechnol. 12, 700–709 (2016).

  177. 177.

    Ulmer, J. B. & Geall, A. J. Recent innovations in mRNA vaccines. Curr. Opin. Immunol. 41, 18–22 (2016).

  178. 178.

    Fotin-Mleczek, M. et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 14, 428–439 (2012).

  179. 179.

    Fotin-Mleczek, M. et al. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. Radiat. Oncol. 9, 180 (2014).

  180. 180.

    Siegler, E. L., Kim, Y. J. & Wang, P. Nanomedicine targeting the tumor microenvironment: therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses. J. Cell. Immunother. 2, 69–78 (2016).

  181. 181.

    Shi, K., Haynes, M. & Huang, L. Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy. Front. Chem. Sci. Eng. 11, 676–684 (2017).

  182. 182.

    Marabelle, A., Tselikas, L., de Baere, T. & Houot, R. Intratumoral immunotherapy: using the tumor as the remedy. Ann. Oncol. 28, xii33–xii43 (2017).

  183. 183.

    Aznar, M. A. et al. Intratumoral delivery of immunotherapy—act locally, think globally. J. Immunol. 198, 31–39 (2017).

  184. 184.

    Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl Med. 9, eaan0401 (2017).

  185. 185.

    Raavé, R., van Kuppevelt, T. H. & Daamen, W. F. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J. Control. Release 274, 1–8 (2018).

  186. 186.

    Dai, Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12, 8423–8435 (2018).

  187. 187.

    Jiang, W. et al. Designing nanomedicine for immuno-oncology. Nat. Biomed. Eng. 1, 0029 (2017).

  188. 188.

    Ordikhani, F. et al. Targeting antigen-presenting cells by anti–PD-1 nanoparticles augments antitumor immunity. JCI Insight 3, 122700 (2018).

  189. 189.

    Liu, X. et al. CD47 blockade triggers T cell–mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015).

  190. 190.

    Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

  191. 191.

    Zheng, Y., Tang, L., Mabardi, L., Kumari, S. & Irvine, D. Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. Acs Nano 11, 3089–3100 (2017).

  192. 192.

    Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

  193. 193.

    Predina, J. et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery. Proc. Natl Acad. Sci. USA 110, 1582–1583 (2013).

  194. 194.

    Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

  195. 195.

    Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

  196. 196.

    Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

  197. 197.

    Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

  198. 198.

    Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl Med. 8, 328rv324 (2016).

  199. 199.

    Dong, H. et al. Tumor-associated B7-H1 promotes T cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793 (2002).

  200. 200.

    Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

  201. 201.

    Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

  202. 202.

    Topalian, S. L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

  203. 203.

    Garon, E. B. et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

  204. 204.

    Webster, R. M. The immune checkpoint inhibitors: where are we now? Nat. Rev. Drug Discov. 13, 883 (2014).

  205. 205.

    Marin-Acevedo, J. A. et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol. 11, 39 (2018).

  206. 206.

    Chen, Daniel, S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

  207. 207.

    Zanetti, M. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J. Immunol. 194, 2049–2056 (2015).

  208. 208.

    Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

  209. 209.

    Ribas, A. et al. PD-1 blockade expands intratumoral memory T cells. Cancer Immunol. Res. 4, 194–203 (2016).

  210. 210.

    Takeuchi, Y. et al. Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma. Int. Immunol. 30, 13–22 (2018).

  211. 211.

    Bauer, C. A. et al. Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. J. Clin. Invest. 124, 2425–2440 (2014).

  212. 212.

    Munn, D. H., Sharma, M. D., Johnson, T. S. & Rodriguez, P. I. D. O. PTEN-expressing Tregs and control of antigen-presentation in the murine tumor microenvironment. Cancer Immunol. Immunother. 66, 1049–1058 (2017).

  213. 213.

    Ni, X., Langridge, T. & Duvic, M. Depletion of regulatory T cells by targeting CC chemokine receptor type 4 with mogamulizumab. Oncoimmunology 4, e1011524 (2015).

  214. 214.

    Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 4, 941–952 (2004).

  215. 215.

    Perrot, I. et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J. Immunol. 178, 2763–2769 (2007).

  216. 216.

    Kretz-Rommel, A. et al. In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J. Immunother. 30, 715–726 (2007).

  217. 217.

    Macri, C., Dumont, C., Johnston, A. P. R. & Mintern, J. D. Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin. Transl Immunol. 5, e66 (2016).

  218. 218.

    Dahlberg, C. I. M., Sarhan, D., Chrobok, M., Duru, A. D. & Alici, E. Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front.Immunol. 6, 605 (2015).

  219. 219.

    Zamai, L. et al. NK cells and cancer. J. Immunol. 178, 4011–4016 (2007).

  220. 220.

    Vanherberghen, B. et al. Classification of human natural killer cells based on migration behavior and cytotoxic response. Blood 121, 1326–1334 (2013).

  221. 221.

    Munn, D. H. & Bronte, V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016).

  222. 222.

    Gonda, K. et al. Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer. Oncol. Lett. 14, 1766–1774 (2017).

  223. 223.

    Genard, G., Lucas, S. & Michiels, C. Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front. Immunol 8, 828 (2017).

  224. 224.

    Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage–mediated resistance pathway in anti–PD-1 therapy. Sci. Transl Med. 9, eaal3604 (2017).

  225. 225.

    Scodeller, P. et al. Precision targeting of tumor macrophages with a CD206 binding peptide. Sci. Rep. 7, 14655 (2017).

  226. 226.

    Fujimura, T., Kambayashi, Y., Fujisawa, Y., Hidaka, T. & Aiba, S. Tumor-associated macrophages: therapeutic targets for skin cancer. Front. Oncol. 8, 3 (2018).

Download references


This work was supported in part by the US National Institutes of Health (NIH) (R01AI127070, R01EB022563, R01CA210273, R01CA223804 and U01CA210152), the Michigan Translational Research and Commercialization (MTRAC) for Life Sciences Hub, a University of Michigan (UM) Forbes Institute for Cancer Discovery Pilot Grant and the Emerald Foundation. J.J.M. is a Young Investigator supported by the Melanoma Research Alliance (348774), the US Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Peer Reviewed Cancer Research Program (W81XWH-16-1-0369) and a US National Science Foundation (NSF) CAREER Award (1553831). C.P. acknowledges financial support from the UM TEAM Training Program (DE007057 from the US National Institute of Dental and Craniofacial Research (NIDCR)). Opinions interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the DoD.

Author information

J.N., S.S. and J.J.M. discussed content, researched data and wrote the manuscript. K.S.P. aided in the figure design and prepared the table. W.Z. and L.D.S. contributed to the revision of the manuscript. All authors reviewed and edited the manuscript.

Correspondence to James J. Moon.

Ethics declarations

Competing interests

A patent application for nanodisc technology has been filed with J.J.M. as an inventor, and J.J.M. is a co-founder of EVOQ Therapeutics, which develops nanodisc technology for cancer immunotherapy. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading