Review Article | Published:

Designing polymers for advanced battery chemistries

Abstract

Electrochemical energy storage devices are becoming increasingly important to our global society, and polymer materials are key components of these devices. As the demand for high-energy density devices increases, innovative new materials that build on the fundamental understanding of physical phenomena and structure–property relationships will be required to enable high-capacity next-generation battery chemistries. In this Review, we discuss core polymer science principles that are used to facilitate progress in battery materials development. Specifically, we discuss the design of polymeric materials for desired mechanical properties, increased ionic and electronic conductivity and specific chemical interactions. We also discuss how polymer materials have been designed to create stable artificial interfaces and improve battery safety. The focus is on these design principles applied to advanced silicon, lithium-metal and sulfur battery chemistries.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

  2. 2.

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 5, 329–332 (2015).

  3. 3.

    Arora, P. & Zhang, Z. J. Battery separators. Chem. Rev. 104, 4419–4462 (2004).

  4. 4.

    Chen, H. et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118, 8936–8982 (2018).

  5. 5.

    Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett. 7, A93–A96 (2004).

  6. 6.

    Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

  7. 7.

    Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012).

  8. 8.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

  9. 9.

    Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–A140 (2001).

  10. 10.

    Liu, X. H. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749–756 (2012).

  11. 11.

    Lee, S. W., McDowell, M. T., Berla, L. A., Nix, W. D. & Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080–4085 (2012).

  12. 12.

    Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).

  13. 13.

    Saint, J. et al. Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv. Funct. Mater. 17, 1765–1774 (2007).

  14. 14.

    Michan, A. L. et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes. J. Am. Chem. Soc. 138, 7918–7931 (2016).

  15. 15.

    Ryu, J. H., Kim, J. W., Sung, Y.-E. & Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 7, A306–A309 (2004).

  16. 16.

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008).

  17. 17.

    Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014).

  18. 18.

    Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).

  19. 19.

    Beattie, S. D., Larcher, D., Morcrette, M., Simon, B. & Tarascon, J. M. Si electrodes for Li-ion batteries — a new way to look at an old problem. J. Electrochem. Soc. 155, A158–A163 (2008).

  20. 20.

    Wu, M. et al. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett. 13, 5397–5402 (2013).

  21. 21.

    Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

  22. 22.

    Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

  23. 23.

    Chen, Z. et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015).

  24. 24.

    Choi, S., Kwon, T.-W., Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

  25. 25.

    Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

  26. 26.

    Aurbach, D. & Cohen, Y. Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy. J. Electrochem. Soc. 144, 3355–3360 (1997).

  27. 27.

    Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

  28. 28.

    Li, Z., Huang, J., Yann Liaw, B., Metzler, V. & Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014).

  29. 29.

    Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

  30. 30.

    Finegan, D. P. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6, 6924 (2015).

  31. 31.

    Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

  32. 32.

    Crowther, O. & West, A. C. Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806–A811 (2008).

  33. 33.

    Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

  34. 34.

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

  35. 35.

    Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

  36. 36.

    Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

  37. 37.

    Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

  38. 38.

    Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

  39. 39.

    Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

  40. 40.

    Shi, F. et al. Strong texturing of lithium metal in batteries. Proc. Natl Acad. Sci. USA 114, 12138–12143 (2017).

  41. 41.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

  42. 42.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

  43. 43.

    Zhang, X. et al. Advances in lithium–sulfur batteries. Mater. Sci. Eng. R. Rep. 121, 1–29 (2017).

  44. 44.

    Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

  45. 45.

    Sperling, L. H. Introduction to Physical Polymer Science 557–612 (John Wiley & Sons, 2005).

  46. 46.

    Callister, W. D. Jr & Rethwisch, D. G. Fundamentals of Materials Science and Engineering: an Integrated Approach 147–196 (John Wiley & Sons, 2012).

  47. 47.

    Zhang, L., Zhang, L., Chai, L., Xue, P. & Hao, W. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2, 19036–19045 (2014).

  48. 48.

    Yoon, J., Oh, D. X., Jo, C., Lee, J. & Hwang, D. S. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys. Chem. Chem. Phys. 16, 25628–25635 (2014).

  49. 49.

    Ying, H., Zhang, Y. & Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014).

  50. 50.

    Chen, Z., Christensen, L. & Dahn, J. R. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochem. Commun. 5, 919–923 (2003).

  51. 51.

    Mazouzi, D. et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J. Power Sources 280, 533–549 (2015).

  52. 52.

    Shi, Y., Zhou, X. & Yu, G. Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50, 2642–2652 (2017).

  53. 53.

    Kwon, T.-W., Choi, J. W. & Coskun, A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 47, 2145–2164 (2018).

  54. 54.

    Kim, J. S. et al. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244, 521–526 (2013).

  55. 55.

    Sperling, L. H. Introduction to Physical Polymer Science 427–505 (John Wiley & Sons, 2005).

  56. 56.

    Chen, Z., Christensen, L. & Dahn, J. R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J. Electrochem. Soc. 150, A1073–A1078 (2003).

  57. 57.

    Liu, W.-R., Yang, M.-H., Wu, H.-C., Chiao, S. M. & Wu, N.-L. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid State Lett. 8, A100–A103 (2005).

  58. 58.

    Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

  59. 59.

    Magasinski, A. et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2, 3004–3010 (2010).

  60. 60.

    Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17–A20 (2007).

  61. 61.

    Koo, B. et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012).

  62. 62.

    Song, J. et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24, 5904–5910 (2014).

  63. 63.

    Wei, L. & Hou, Z. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries. J. Mater. Chem. A 5, 22156–22162 (2017).

  64. 64.

    Zhu, X. et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv. Funct. Mater. 28, 1705015 (2018).

  65. 65.

    Kwon, T.-W. et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano 9, 11317–11324 (2015).

  66. 66.

    Kwon, T.-W. et al. Systematic molecular-level design of binders incorporating Meldrum’s acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 26, 7979–7985 (2014).

  67. 67.

    Xu, Z. et al. Silicon microparticle anodes with self-healing multiple network binder. Joule 2, 950–961 (2018).

  68. 68.

    Lopez, J. et al. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes. ACS Appl. Mater. Interfaces 8, 2318–2324 (2016).

  69. 69.

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

  70. 70.

    Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).

  71. 71.

    Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

  72. 72.

    Gurevitch, I. et al. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013).

  73. 73.

    Tung, S.-O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).

  74. 74.

    Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

  75. 75.

    Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

  76. 76.

    Lu, Q. et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017).

  77. 77.

    Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015).

  78. 78.

    Tikekar, M. D., Archer, L. A. & Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016).

  79. 79.

    Choudhury, S. et al. Confining electrodeposition of metals in structured electrolytes. Proc. Natl Acad. Sci. USA 115, 6620–6625 (2018).

  80. 80.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

  81. 81.

    Zheng, G. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).

  82. 82.

    Liu, K. et al. Lithium metal anodes with an adaptive ‘solid-liquid’ interfacial protective layer. J. Am. Chem. Soc. 139, 4815–4820 (2017).

  83. 83.

    Li, N.-W. et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018).

  84. 84.

    Liu, Y. et al. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 3, eaao0713 (2017).

  85. 85.

    Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

  86. 86.

    Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).

  87. 87.

    Hallinan, D. T. Jr & Balsara, N. P. Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503–525 (2013).

  88. 88.

    Long, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016).

  89. 89.

    Wright, P. V. Electrical conductivity in ionic complexes of poly (ethylene oxide). Polym. Int. 7, 319–327 (1975).

  90. 90.

    Vashishta, P., Mundy, J. N. & Shenoy, G. K. (eds) Fast Ion Transport in Solids 87–107 (North-Holland, 1979).

  91. 91.

    Xue, Z., He, D. & Xie, X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015).

  92. 92.

    Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).

  93. 93.

    Vogel, H. The temperature dependence law of the viscosity of fluids. Phys. Z. 22, 645–646 (1921).

  94. 94.

    Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925).

  95. 95.

    Tammann, G. & Hesse, W. The dependancy of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245–257 (1926).

  96. 96.

    Ratner, M. A. & Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).

  97. 97.

    Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

  98. 98.

    Cohen, M. H. & Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959).

  99. 99.

    Diederichsen, K. M., Buss, H. G. & McCloskey, B. D. The compensation effect in the Vogel–Tammann–Fulcher (VTF) equation for polymer-based electrolytes. Macromolecules 50, 3831–3840 (2017).

  100. 100.

    Diederichsen, K. M., McShane, E. J. & McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2, 2563–2575 (2017).

  101. 101.

    Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

  102. 102.

    Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

  103. 103.

    Sun, J., Stone, G. M., Balsara, N. P. & Zuckermann, R. N. Structure–conductivity relationship for peptoid-based PEO–mimetic polymer electrolytes. Macromolecules 45, 5151–5156 (2012).

  104. 104.

    Nishimoto, A., Agehara, K., Furuya, N., Watanabe, T. & Watanabe, M. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999).

  105. 105.

    Hawker, C. J., Chu, F., Pomery, P. J. & Hill, D. J. T. Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials. Macromolecules 29, 3831–3838 (1996).

  106. 106.

    Bates, C. M., Chang, A. B., Momčilović, N., Jones, S. C. & Grubbs, R. H. ABA triblock brush polymers: synthesis, self-assembly, conductivity, and rheological properties. Macromolecules 48, 4967–4973 (2015).

  107. 107.

    Wang, Y. et al. Solid state ionics. Solid State Ion. 262, 782–784 (2014).

  108. 108.

    Wei, X. & Shriver, D. F. Highly conductive polymer electrolytes containing rigid polymers. Chem. Mater. 10, 2307–2308 (1998).

  109. 109.

    Wang, Y. et al. Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Phys. Rev. Lett. 108, 088303 (2012).

  110. 110.

    Wang, Y. et al. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer 55, 4067–4076 (2014).

  111. 111.

    Kim, C. S. & Oh, S. M. Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim. Acta 45, 2101–2109 (2000).

  112. 112.

    Tominaga, Y. & Yamazaki, K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 50, 4448–4450 (2014).

  113. 113.

    Kimura, K., Motomatsu, J. & Tominaga, Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J. Phys. Chem. C 120, 12385–12391 (2016).

  114. 114.

    Mackanic, D. G. et al. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 6, 1800703 (2018).

  115. 115.

    Pesko, D. M. et al. Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes. Solid State Ion. 289, 118–124 (2016).

  116. 116.

    Devaux, D. et al. Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ion. 310, 71–80 (2017).

  117. 117.

    Wong, D. H. C. et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 111, 3327–3331 (2014).

  118. 118.

    Blonsky, P. M., Shriver, D. F., Austin, P. & Allcock, H. R. Polyphosphazene solid electrolytes. J. Am. Chem. Soc. 106, 6854–6855 (1984).

  119. 119.

    Savoie, B. M., Webb, M. A. & Miller, T. F. III. Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. J. Phys. Chem. Lett. 8, 641–646 (2017).

  120. 120.

    Webb, M. A. et al. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 1, 198–205 (2015).

  121. 121.

    Pesko, D. M. et al. Universal relationship between conductivity and solvation-site connectivity in ether-based polymer electrolytes. Macromolecules 49, 5244–5255 (2016).

  122. 122.

    Porcarelli, L. et al. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 1, 678–682 (2016).

  123. 123.

    Villaluenga, I. et al. Nanostructured single-ion-conducting hybrid electrolytes based on salty nanoparticles and block copolymers. Macromolecules 50, 1998–2005 (2017).

  124. 124.

    Ryu, S.-W. et al. Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J. Electrochem. Soc. 152, A158–A163 (2005).

  125. 125.

    Xia, Y., Fujieda, T., Tatsumi, K., Prosini, P. P. & Sakai, T. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J. Power Sources 92, 234–243 (2001).

  126. 126.

    Zeng, X. et al. Kinetic study of parasitic reactions in lithium-ion batteries: a case study on LiNi0.6Mn0.2Co0.2O2. ACS Appl. Mater. Interfaces 8, 3446–3451 (2016).

  127. 127.

    Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11, 2306–2309 (2018).

  128. 128.

    Hoffmann, R., Janiak, C. & Kollmar, C. A chemical approach to the orbitals of organic polymers. Macromolecules 24, 3725–3746 (1991).

  129. 129.

    Heeger, A. J. Semiconducting polymers: the third generation. Chem. Soc. Rev. 39, 2354–2371 (2010).

  130. 130.

    Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

  131. 131.

    Mei, J. & Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2013).

  132. 132.

    Wu, M. et al. Toward an ideal polymer binder design for high-capacity battery anodes. J. Am. Chem. Soc. 135, 12048–12056 (2013).

  133. 133.

    Park, S.-J. et al. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 137, 2565–2571 (2015).

  134. 134.

    Wu, M. et al. Manipulating the polarity of conductive polymer binders for Si-based anodes in lithium-ion batteries. J. Mater. Chem. A 3, 3651–3658 (2015).

  135. 135.

    Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679–4683 (2011).

  136. 136.

    Kim, S. M., Kim, M. H., Choi, S. Y., Lee, J. G. & Jang, J. Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes. Energy Environ. Sci. 8, 1538–1543 (2015).

  137. 137.

    Song, C. K., Eckstein, B. J., Tam, T. L. D., Trahey, L. & Marks, T. J. Conjugated polymer energy level shifts in lithium-ion battery electrolytes. ACS Appl. Mater. Interfaces 6, 19347–19354 (2014).

  138. 138.

    Zhao, H. et al. Mussel-inspired conductive polymer binder for Si-alloy anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 5440–5446 (2018).

  139. 139.

    Higgins, T. M. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10, 3702–3713 (2016).

  140. 140.

    Manthiram, A., Fu, Y. & Su, Y.-S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2012).

  141. 141.

    Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016).

  142. 142.

    Zhou, W., Yu, Y., Chen, H., DiSalvo, F. J. & Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 135, 16736–16743 (2013).

  143. 143.

    Liang, X. et al. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy 11, 587–599 (2015).

  144. 144.

    Li, W. et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–5540 (2013).

  145. 145.

    Yang, Y. et al. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5, 9187–9193 (2011).

  146. 146.

    Tsao, Y. et al. Enhanced cycling stability of sulfur electrodes through effective binding of pyridine-functionalized polymer. ACS Energy Lett. 2, 2454–2462 (2017).

  147. 147.

    Wang, Z., Chen, Y., Battaglia, V. & Liu, G. Improving the performance of lithium–sulfur batteries using conductive polymer and micrometric sulfur powder. J. Mater. Res. 29, 1027–1033 (2014).

  148. 148.

    Song, J. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2013).

  149. 149.

    Song, J. et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem. Int. Ed. 127, 4399–4403 (2015).

  150. 150.

    Pang, Q. et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 27, 6021–6028 (2015).

  151. 151.

    Seh, Z. W. et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4, 3673–3677 (2013).

  152. 152.

    Ma, L. et al. Tethered molecular sorbents: enabling metal-sulfur battery cathodes. Adv. Energy Mater. 4, 1400390 (2014).

  153. 153.

    Park, K. et al. Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 8, 2389–2395 (2015).

  154. 154.

    Xiao, L. et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012).

  155. 155.

    Oschmann, B. et al. Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium–sulfur batteries. Chem. Mater. 27, 7011–7017 (2015).

  156. 156.

    Li, L. et al. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nat. Commun. 8, 2277 (2017).

  157. 157.

    Bucur, C. B., Muldoon, J. & Lita, A. A layer-by-layer supramolecular structure for a sulfur cathode. Energy Environ. Sci. 9, 992–998 (2016).

  158. 158.

    Huang, J.-Q. et al. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014).

  159. 159.

    Kim, J. H., Choi, J., Seo, J., Kwon, J. & Paik, U. Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium–sulfur batteries. J. Mater. Chem. A 4, 11203–11206 (2016).

  160. 160.

    Je, S. H. et al. Rational sulfur cathode design for lithium–sulfur batteries: sulfur-embedded benzoxazine polymers. ACS Energy Lett. 1, 566–572 (2016).

  161. 161.

    Liu, J. et al. Molecularly imprinted polymer enables high-efficiency recognition and trapping lithium polysulfides for stable lithium sulfur battery. Nano Lett. 17, 5064–5070 (2017).

  162. 162.

    Erk, C., Brezesinski, T., Sommer, H., Schneider, R. & Janek, J. Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl. Mater. Interfaces 5, 7299–7307 (2013).

  163. 163.

    Lestriez, B., Bahri, S., Sandu, I., Roué, L. & Guyomard, D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun. 9, 2801–2806 (2007).

  164. 164.

    Bridel, J. S., Azaïs, T., Morcrette, M., Tarascon, J. M. & Larcher, D. Key parameters governing the reversibility of Si/Carbon/CMC electrodes for Li-ion batteries. Chem. Mater. 22, 1229–1241 (2010).

  165. 165.

    Vogl, U. S. et al. Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir 30, 10299–10307 (2014).

  166. 166.

    Ryou, M.-H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 25, 1571–1576 (2013).

  167. 167.

    Jeong, Y. K. et al. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 14, 864–870 (2014).

  168. 168.

    Jeong, Y. K., Kwon, T., Lee, I., Kim, T. S. & Coskun, A. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 8, 1224–1230 (2015).

  169. 169.

    Han, Z.-J. et al. High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy Environ. Sci. 5, 9014–9020 (2012).

  170. 170.

    Nguyen, C. C., Yoon, T., Seo, D. M., Guduru, P. & Lucht, B. L. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl. Mater. Interfaces 8, 12211–12220 (2016).

  171. 171.

    Yao, Y., Liu, N., McDowell, M. T., Pasta, M. & Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5, 7927–7930 (2012).

  172. 172.

    Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943–1946 (2013).

  173. 173.

    Yu, X. et al. Three-dimensional conductive gel network as an effective binder for high-performance Si electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 15961–15967 (2015).

  174. 174.

    Munaoka, T. et al. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater. 414, 1703138 (2018).

  175. 175.

    Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

  176. 176.

    Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

  177. 177.

    Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

  178. 178.

    Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

  179. 179.

    Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

  180. 180.

    Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

  181. 181.

    Jin, Y. et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 139, 14992–15004 (2017).

  182. 182.

    Michan, A. L. et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 28, 8149–8159 (2016).

  183. 183.

    Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

  184. 184.

    Tang, Y. et al. Water-soluble sericin protein enabling stable solid-electrolyte interphase for fast charging high voltage battery electrode. Adv. Mater. 29, 1701828 (2017).

  185. 185.

    Sun, B. et al. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).

  186. 186.

    Xu, C. et al. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2, 7256–7264 (2014).

  187. 187.

    Song, J., Lee, H., Choo, M.-J., Park, J.-K. & Kim, H.-T. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015).

  188. 188.

    Tu, Z. et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1, 394–406 (2017).

  189. 189.

    Zhu, B. et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 29, 1603755 (2016).

  190. 190.

    Luo, J., Fang, C.-C. & Wu, N.-L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2017).

  191. 191.

    Liu, Y. et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2016).

  192. 192.

    Gao, Y. et al. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017).

  193. 193.

    Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

  194. 194.

    Yang, H., Leow, W. R. & Chen, X. Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater. 30, 1704347 (2018).

  195. 195.

    Hu, W. The melting point of chain polymers. J. Chem. Phys. 113, 3901–3908 (2000).

  196. 196.

    Orendorff, C. J., Lambert, T. N., Chavez, C. A., Bencomo, M. & Fenton, K. R. Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Adv. Energy Mater. 3, 314–320 (2012).

  197. 197.

    Zhang, J. et al. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci. Rep. 4, 4419 (2014).

  198. 198.

    Lin, D., Zhuo, D., Liu, Y. & Cui, Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138, 11044–11050 (2016).

  199. 199.

    Simha, R. & Boyer, R. F. On a general relation involving the glass temperature and coefficients of expansion of polymers. J. Chem. Phys. 37, 1003–1007 (1962).

  200. 200.

    Hoffman, D. M. & McKinley, B. M. Crystallinity as a selection criterion for engineering properties of high density polyethylene. Polym. Eng. Sci. 25, 562–569 (1985).

  201. 201.

    Chen, Z. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016).

  202. 202.

    Kelly, J. C., Degrood, N. L. & Roberts, M. E. Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes. Chem. Commun. 51, 5448–5451 (2015).

  203. 203.

    Shi, Y., Zhang, Q., Zhang, Y., Jia, L. & Xu, X. Promising and reversible electrolyte with thermal switching behavior for safer electrochemical storage devices. ACS Appl. Mater. Interfaces 10, 7171–7179 (2018).

  204. 204.

    Scudamore, M. J., Briggs, P. J. & Prager, F. H. Cone calorimetry—a review of tests carried out on plastics for the association of plastic manufacturers in Europe. Fire Mater. 15, 65–84 (1991).

  205. 205.

    Stalin, S., Choudhury, S., Zhang, K. & Archer, L. A. Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chem. Mater. 30, 2058–2066 (2018).

  206. 206.

    Liu, K. et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3, e1601978 (2017).

  207. 207.

    Zhou, G. et al. An aqueous inorganic polymer binder for high performance lithium–sulfur batteries with flame-retardant properties. ACS Cent. Sci. 4, 260–267 (2018).

  208. 208.

    Trigg, E. B. et al. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nat. Mater. 17, 725–731 (2018).

  209. 209.

    Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

  210. 210.

    Filippidi, E. et al. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358, 502–505 (2017).

  211. 211.

    Garcia, J. M. et al. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344, 732–735 (2014).

  212. 212.

    Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).

  213. 213.

    Fu, G. & Kyu, T. Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 33, 13973–13981 (2017).

  214. 214.

    Chintapalli, M. et al. Relationship between conductivity, ion diffusion, and transference number in perfluoropolyether electrolytes. Macromolecules 49, 3508–3515 (2016).

  215. 215.

    Doeff, M. M., Edman, L., Sloop, S. E., Kerr, J. & De Jonghe, L. C. Transport properties of binary salt polymer electrolytes. J. Power Sources 89, 227–231 (2000).

  216. 216.

    Ferry, A. Ionic interactions and transport properties in methyl terminated poly(propylene glycol)(4000) complexed with LiCF3SO3. J. Phys. Chem. B 101, 150–157 (1997).

  217. 217.

    Chai, J. et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4, 1600377 (2016).

  218. 218.

    Tanaka, R., Fujita, T., Nishibayashi, H. & Saito, S. Ionic conduction in poly (ethylenimine)and poly (N-methylethylenimine)-lithium salt systems. Solid State Ion. 60, 119–123 (1993).

  219. 219.

    Pehlivan, L. B., Georén, P., Marsal, R., Granqvist, C. G. & Niklasson, G. A. Ion conduction of branched polyethyleneimine–lithium bis(trifluoromethylsulfonyl) imide electrolytes. Electrochim. Acta 57, 201–206 (2011).

  220. 220.

    Ranger, M. & Leclerc, M. New base-doped polyfluorene derivatives. Macromolecules 32, 3306–3313 (1999).

  221. 221.

    Sengodu, P. & Deshmukh, A. D. Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv. 5, 42109–42130 (2015).

  222. 222.

    Shi, H., Liu, C., Jiang, Q. & Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater. 1, 1500017 (2015).

  223. 223.

    Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

Download references

Acknowledgements

J.L. and D.G.M. thank the National Science Foundation Graduate Research Fellowship Program for support under grant no. DGE-114747.

Author information

All authors contributed to the discussion of content and edited the manuscript before submission. J.L. and D.G.M. researched data for the article and wrote the article.

Competing interests

The authors declare no competing interests.

Correspondence to Zhenan Bao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Polymers in commercial Li-ion batteries.
Fig. 2: Advanced battery chemistries and related challenges.
Fig. 3: Mechanical properties of polymers.
Fig. 4: Ion transport in polymer electrolytes.
Fig. 5: Electronic conductivity in polymers.
Fig. 6: Chemical interactions between S or Si and polymer binders.
Fig. 7: Solid electrolyte and Li-metal interface in Li-ion batteries.
Fig. 8: Polymer materials for improved battery safety.