Structure prediction drives materials discovery

Article metrics

Abstract

Progress in the discovery of new materials has been accelerated by the development of reliable quantum-mechanical approaches to crystal structure prediction. The properties of a material depend very sensitively on its structure; therefore, structure prediction is the key to computational materials discovery. Structure prediction was considered to be a formidable problem, but the development of new computational tools has allowed the structures of many new and increasingly complex materials to be anticipated. These widely applicable methods, based on global optimization and relying on little or no empirical knowledge, have been used to study crystalline structures, point defects, surfaces and interfaces. In this Review, we discuss structure prediction methods, examining their potential for the study of different materials systems, and present examples of computationally driven discoveries of new materials — including superhard materials, superconductors and organic materials — that will enable new technologies. Advances in first-principle structure predictions also lead to a better understanding of physical and chemical phenomena in materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mapping the materials space.
Fig. 2: Compound prediction with crystal structure prediction methods.
Fig. 3: Applications of crystal structure prediction to systems beyond bulk crystals.
Fig. 4: Superconducting materials.

References

  1. 1.

    Oganov, A. R. (ed.) Modern Methods of Crystal Structure Prediction (John Wiley & Sons, 2011).

  2. 2.

    Atahan-Evrenk, S. & Aspuru-Guzik, A. Topics in Current Chemistry Vol. 345 (Springer, 2014).

  3. 3.

    Oganov, A. R., Saleh, G. & Kvashnin, A. G. Computational Materials Discovery (Royal Society of Chemistry, 2018).

  4. 4.

    Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 23, 66–69 (1983).

  5. 5.

    Villars, P. et al. The Pauling file, binaries edition. J. Alloys Compd. 367, 293–297 (2004).

  6. 6.

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

  7. 7.

    Nosengo, N. Can artificial intelligence create the next wonder material? Nature 533, 22–25 (2016).

  8. 8.

    Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).

  9. 9.

    Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

  10. 10.

    Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990–6995 (2017).

  11. 11.

    Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride at high pressures. Preprint at arXiv https://arxiv.org/abs/1812.01561 (2018).

  12. 12.

    Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

  13. 13.

    Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, 2004).

  14. 14.

    Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, 2004).

  15. 15.

    Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

  16. 16.

    Martiniani, S., Schrenk, K. J., Stevenson, J. D., Wales, D. J. & Frenkel, D. Structural analysis of high-dimensional basins of attraction. Phys. Rev. E 94, 031301 (2016).

  17. 17.

    Stevanovic, V. Sampling polymorphs of ionic solids using random superlattices. Phys. Rev. Lett. 116, 075503 (2016).

  18. 18.

    Oganov, A. R. & Valle, M. How to quantify energy landscapes of solids. J. Chem. Phys. 130, 104504 (2009).

  19. 19.

    Ceriotti, M., Tribello, G. A. & Parrinello, M. Demonstrating the transferability and the descriptive power of sketch-map. J. Chem. Theory Comput. 9, 1521–1532 (2013).

  20. 20.

    Pettifor, D. A chemical scale for crystal-structure maps. Solid State Commun. 51, 31–34 (1984).

  21. 21.

    Villars, P. A. A three-dimensional structural stability diagram for 1011 binary AB2 intermetallic compounds: II. J. Alloys Compd. 99, 33 (1984).

  22. 22.

    Isayev, O. et al. Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem. Mater. 27, 735–743 (2015).

  23. 23.

    Kitaigorodsky, A. I. The close-packing of molecules in crystals of organic compounds. J. Phys. 9, 351–352 (1945).

  24. 24.

    Nowacki, W. Symmetrie und physikalisch-chemische Eigenschaften krystallisierter Verbindungen. I. Die Verteilung der Kristallstrukturen über die 219 Raumgruppen. Helv. Chim. Acta 25, 863–878 (1942).

  25. 25.

    Baur, W. & Kassner, D. The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Cryst. B 48, 356–369 (1992).

  26. 26.

    Urusov, V. S. & Nadezhina, T. N. Frequency distribution and selection of space groups in inorganic crystal chemistry. J. Struct. Chem. 50, 22–37 (2009).

  27. 27.

    Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).

  28. 28.

    Villars, P. & Iwata, S. Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number. Chem. Met. Alloys 6, 81–108 (2013).

  29. 29.

    Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).

  30. 30.

    Zhang, W. et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).

  31. 31.

    Dong, X. et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 9, 440–445 (2017).

  32. 32.

    Niu, H., Oganov, A. R., Chen, X.-Q. & Li, D. Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures. Sci. Rep. 5, 18347 (2015).

  33. 33.

    Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

  34. 34.

    Valle, M. & Oganov, A. R. Crystal fingerprint space – a novel paradigm for studying crystal-structure sets. Acta Cryst. A 66, 507–517 (2010).

  35. 35.

    Stillinger, F. H. Exponential multiplicity of inherent structures. Phys. Rev. E 59, 48 (1999).

  36. 36.

    Freeman, C., Newsam, J., Levine, S. & Catlow, C. R. A. Inorganic crystal structure prediction using simplified potentials and experimental unit cells: application to the polymorphs of titanium dioxide. J. Mater. Chem. 3, 531–535 (1993).

  37. 37.

    Schmidt, M. U. & Englert, U. Prediction of crystal structures. J. Chem. Soc. 1996, 2077–2082 (1996).

  38. 38.

    Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).

  39. 39.

    Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works - and why. Acc. Chem. Res. 44, 227–237 (2011).

  40. 40.

    Deaven, D. M. & Ho, K.-M. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288 (1995).

  41. 41.

    Call, S. T., Zubarev, D. Y. & Boldyrev, A. I. Global minimum structure searches via particle swarm optimization. J. Comput. Chem. 28, 1177–1186 (2007).

  42. 42.

    Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

  43. 43.

    Lonie, D. C. & Zurek, E. Xtalopt: an open-source evolutionary algorithm for crystal structure prediction. Comp. Phys. Comm. 182, 372–387 (2011).

  44. 44.

    Tipton, W. W. & Hennig, R. G. A grand canonical genetic algorithm for the prediction of multi-component phase diagrams and testing of empirical potentials. J. Phys. Condens. Matter 25, 495401 (2013).

  45. 45.

    Martonak, R., Laio, A. & Parrinello, M. Predicting crystal structures: the Parrinello-Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003).

  46. 46.

    Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911 (2004).

  47. 47.

    Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).

  48. 48.

    Zhou, X.-F., Oganov, A. R., Qian, G.-R. & Zhu, Q. First-principles determination of the structure of magnesium borohydride. Phys. Rev. Lett. 109, 245503 (2012).

  49. 49.

    Meredig, B. & Wolverton, C. A hybrid computational–experimental approach for automated crystal structure solution. Nat. Mater. 12, 123–127 (2013).

  50. 50.

    Fortes, A. D., Suard, E., Lemee-Cailleau, M.-H., Pickard, C. J. & Needs, R. J. Crystal structure of ammonia monohydrate phase II. J. Am. Chem. Soc. 131, 13508 (2009).

  51. 51.

    Naslain, R. & Kasper, J. S. The crystal structure of the phi phase in the boron-sodium system. J. Solid State Chem. 1, 150–151 (1970).

  52. 52.

    Albert, B. A new old: sodium boride: Linked pentagonal bipyramids and octahedra in Na3B20. Angew. Chem. Int. Ed. 37, 1117–1118 (1998).

  53. 53.

    He, X.-L. et al. Predicting the ground-state structure of sodium boride. Phys. Rev. B 97, 100102 (2018).

  54. 54.

    Li, Y.-F. & Selloni, A. Mosaic texture and double c-axis periodicity of β-NiOOH: insights from first-principles and genetic algorithm calculations. J. Chem. Phys. Lett. 5, 3981–3985 (2014).

  55. 55.

    Zakaryan, H. A., Kvashnin, A. G. & Oganov, A. R. Stable reconstruction of the (110) surface and its role in pseudocapacitance of rutile-like RuO2. Sci. Rep. 7, 10357 (2017).

  56. 56.

    Morris, A. J., Grey, C. & Pickard, C. J. Thermodynamically stable lithium silicides and germanides from density functional theory calculations. Phys. Rev. B 90, 054111 (2014).

  57. 57.

    Jung, H. et al. Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries. Chem. Mater. 27, 1031–1041 (2015).

  58. 58.

    Filinchuk, Y. et al. Porous and dense magnesium boro-hydride frameworks: synthesis, stability, and reversible absorption of guest species. Angew. Chem. Int. Ed. 50, 11162–11166 (2011).

  59. 59.

    Zeng, Z. et al. A novel phase of Li15Si4 synthesized under pressure. Adv. Eng. Mater. 5, 1500214 (2015).

  60. 60.

    Akahama, Y., Mizuki, Y., Nakano, S., Hirao, N. & Ohishi, Y. Raman scattering and X-ray diffraction studies on phase III of solid hydrogen. J. Phys. Conf. Ser. 950, 042060 (2017).

  61. 61.

    Howie, R. T., Dalladay-Simpson, P. & Gregoryanz, E. Raman spectroscopy of hot hydrogen above 200 GPa. Nat. Mater. 14, 495–499 (2015).

  62. 62.

    Akahama, Y. et al. Evidence from X-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B 82, 060101 (2010).

  63. 63.

    Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 Gigapascals. Nature 529, 63–67 (2016).

  64. 64.

    Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 3, 473–476 (2007).

  65. 65.

    Monserrat, B., Needs, R. J., Gregoryanz, E. & Pickard, C. J. Hexagonal structure of phase III of solid hydrogen. Phys. Rev. B 94, 134101 (2016).

  66. 66.

    Monserrat, B. et al. Structure and metallicity of phase V of hydrogen. Phys. Rev. Lett. 120, 255701 (2018).

  67. 67.

    Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885 (2012).

  68. 68.

    Falenty, A., Hansen, T. C. & Kuhs, W. F. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516, 231–233 (2014).

  69. 69.

    Pickard, C. J. & Needs, R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).

  70. 70.

    Ninet, S. et al. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 89, 174103 (2014).

  71. 71.

    Nakahata, I., Matsui, N., Akahama, Y. & Kawamura, H. Structural studies of solid methane at high pressures. Chem. Phys. Lett. 302, 359–362 (1999).

  72. 72.

    Zhu, Q., Oganov, A. R., Glass, C. W. & Stokes, H. T. Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Cryst. B 68, 215–226 (2012).

  73. 73.

    Maynard-Casely, H. et al. The distorted close-packed crystal structure of methane A. J. Chem. Phys. 133, 064504 (2010).

  74. 74.

    Zhou, Z. F. & Harris, K. D. M. Design of a molecular quasicrystal. ChemPhysChem 7, 1649–1653 (2006).

  75. 75.

    Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2010).

  76. 76.

    Davies, D. W. et al. Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. Chem. Sci. 9, 1022–1030 (2018).

  77. 77.

    Allahyari, Z. & Oganov, A. R. Coevolutionary search for optimal materials in the space of all possible compounds. Preprint at arXiv https://arxiv.org/abs/1807.00854 (2018).

  78. 78.

    Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184, 1172–1182 (2013).

  79. 79.

    Lyakhov, A. O. & Oganov, A. R. Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2. Phys. Rev. B 84, 092103 (2011).

  80. 80.

    Zhang, X. et al. First-principles structural design of superhard materials. J. Chem. Phys. 138, 114101 (2013).

  81. 81.

    Zhu, Q., Oganov, A. R., Salvado, M. A., Pertierra, P. & Lyakhov, A. O. Denser than diamond: ab initio search for superdense carbon allotropes. Phys. Rev. B 83, 193410 (2011).

  82. 82.

    Xiang, H., Huang, B., Kan, E., Wei, S.-H. & Gong, X. Towards direct-gap silicon phases by the inverse band structure design approach. Phys. Rev. Lett. 110, 118702 (2013).

  83. 83.

    Nunez-Valdez, M., Allahyari, Z., Fan, T. & Oganov, A. R. Efficient technique for computational design of thermoelectric materials. Comput. Phys. Comm. 222, 152–157 (2018).

  84. 84.

    Kvashnin, A. G., Oganov, A. R., Samtsevich, A. I. & Allahyari, Z. Computational search for novel hard chromium-based materials. J. Phys. Chem. Lett. 8, 755–764 (2017).

  85. 85.

    Zhang, Y.-Y., Gao, W., Chen, S., Xiang, H. & Gong, X.-G. Inverse design of materials by multi-objective differential evolution. Comput. Mater. Sci. 98, 51–55 (2015).

  86. 86.

    Yu, X.-H., Oganov, A. R., Zhu, Q., Qi, F. & Qian, G.-R. The stability and unexpected chemistry of oxide clusters. Phys. Chem. Chem. Phys. 20, 30437–30444 (2018).

  87. 87.

    Lepeshkin, S. et al. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface. Nanoscale 8, 1816–1820 (2016).

  88. 88.

    Fubini, B. & Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516 (2003).

  89. 89.

    Lepeshkin, S. V., Baturin, V. S., Yu. Uspenskii, A. & Oganov, A. R. Method for simultaneous prediction of atomic structure and stability of nanoclusters in a wide area of compositions. J. Phys. Chem. Lett. 10, 102–106 (2019).

  90. 90.

    Piazza, Z. A. et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014).

  91. 91.

    Zhai, H.-J. et al. Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014).

  92. 92.

    Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017).

  93. 93.

    Revard, B. C., Tipton, W. W., Yesypenko, A. & Hennig, R. G. Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials. Phys. Rev. B 93, 054117 (2016).

  94. 94.

    Zhou, X.-F. et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).

  95. 95.

    Mannix, A. J. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

  96. 96.

    Zhu, Z. et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys. Rev. Lett. 119, 106101 (2017).

  97. 97.

    Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Two dimensional ice from first principles: Structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016).

  98. 98.

    Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Double-layer ice from first principles. Phys. Rev. B 95, 094121 (2017).

  99. 99.

    Corsetti, F., Zubeltzu, J. & Artacho, E. Enhanced configurational entropy in high-density nanoconfined bilayer ice. Phys. Rev. Lett. 116, 085901 (2016).

  100. 100.

    Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7×7 reconstruction on Si (111) resolved in real space. Phys. Rev. Lett. 50, 120 (1983).

  101. 101.

    Zhu, Q., Li, L., Oganov, A. R. & Allen, P. B. Evolutionary method for predicting surface reconstructions with variable stoichiometry. Phys. Rev. B 87, 195317 (2013).

  102. 102.

    Lu, S., Wang, Y., Liu, H., M.-S., Miao & Ma, Y. Self-assembled ultrathin nanotubes on diamond (100) surface. Nat. Commun. 5, 3666 (2014).

  103. 103.

    Chuang, F., Ciobanu, C. V., Shenoy, V., Wang, C.-Z. & Ho, K.-M. Finding the reconstructions of semiconductor surfaces via a genetic algorithm. Surf. Sci. 573, L375–L381 (2004).

  104. 104.

    Sierka, M. et al. Oxygen adsorption on Mo(112) surface studied by ab initio genetic algorithm and experiment. J. Chem. Phys. 126, 234710 (2007).

  105. 105.

    Vilhelmsen, L. B. & Hammer, B. A genetic algorithm for first principles global structure optimization of supported nano structures. J. Chem. Phys. 141, 044711 (2014).

  106. 106.

    Wang, Q., Oganov, A. R., Zhu, Q. & Zhou, X.-F. New reconstructions of the (110) surface of rutile TiO2 predicted by an evolutionary method. Phys. Rev. Lett. 113, 266101 (2014).

  107. 107.

    Zhou, R., Qu, B., Li, D., Sun, X. & Zeng, X. C. Anatase (101) reconstructed surface with novel functionalities: Desired bandgap for visible light absorption and high chemical reactivity. Adv. Func. Mater. 28, 1705529 (2018).

  108. 108.

    Chen, P., Xu, Y., Wang, N., Oganov, A. R. & Duan, W. Effects of ferroelectric polarization on surface phase diagram: evolutionary algorithm study of the BaTiO3 (001) surface. Phys. Rev. B 92, 085432 (2015).

  109. 109.

    Harmer, M. P. The phase behavior of interfaces. Science 332, 182–183 (2011).

  110. 110.

    Von Alfthan, S., Haynes, P., Kaski, K. & Sutton, A. Are the structures of twist grain boundaries in silicon ordered at 0 K? Phys. Rev. Lett. 96, 055505 (2006).

  111. 111.

    Frolov, T., Divinski, S., Asta, M. & Mishin, Y. Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. Phys. Rev. Lett. 110, 255502 (2013).

  112. 112.

    Frolov, T., Olmsted, D. L., Asta, M. & Mishin, Y. Structural phase transformations in metallic grain boundaries. Nat. Commun. 4, 1899 (2013).

  113. 113.

    Schusteritsch, G. & Pickard, C. J. Predicting interface structures: from SrTiO3 to graphene. Phys. Rev. B. 90, 035424 (2014).

  114. 114.

    Zhu, Q., Samanta, A., Li, B., Rudd, R. E. & Frolov, T. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Commun. 9, 467 (2018).

  115. 115.

    Frolov, T. et al. Grain boundary phases in bcc metals. Nanoscale 10, 8253–8268 (2018).

  116. 116.

    Xiang, H., Da Silva, J. L., Branz, H. M. & Wei, S.-H. Understanding the clean interface between covalent Si and ionic Al2O3. Phys. Rev. Lett. 103, 116101 (2009).

  117. 117.

    Chua, A. L.-S., Benedek, N. A., Chen, L., Finnis, M. W. & Sutton, A. P. A genetic algorithm for predicting the structures of interfaces in multicomponent systems. Nat. Mater. 9, 418 (2010).

  118. 118.

    Zhao, X. et al. Interface structure prediction from first-principles. J. Phys. Chem. C 118, 9524–9530 (2014).

  119. 119.

    Caviglia, A. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

  120. 120.

    Weber, J. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

  121. 121.

    Coomer, B. J., Goss, J. P., Jones, R., Oberg, S. & Briddon, P. R. Identification of the tetra-interstitial in silicon. J. Phys. Condens. Matter 13, L1–L7 (2001).

  122. 122.

    Humble, P. The structure and mechanism of formation of platelets in natural type Ia diamond. Proc. R. Soc. A 381, 65–81 (1982).

  123. 123.

    Morris, A. J., Pickard, C. J. & Needs, R. J. Hydrogen/silicon complexes in silicon from computational searches. Phys. Rev. B 78, 184102 (2008).

  124. 124.

    Morris, A. J., Pickard, C. J. & Needs, R. J. Hydrogen/nitrogen/oxygen defect complexes in silicon from computational searches. Phys. Rev. B 80, 144112 (2009).

  125. 125.

    Mulroue, J., Morris, A. J. & Duffy, D. M. Ab initio study of intrinsic defects in zirconolite. Phys. Rev. B 84, 094118 (2011).

  126. 126.

    Morris, A. J., Grey, C. P., Needs, R. J. & Pickard, C. J. Energetics of hydrogen/lithium complexes in silicon analyzed using the Maxwell construction. Phys. Rev. B 84, 224106 (2011).

  127. 127.

    Kaczmarowski, A., Yang, S., Szlufarska, I. & Morgan, D. Genetic algorithm optimization of defect clusters in crystalline materials. Comput. Mater. Sci. 98, 234–244 (2015).

  128. 128.

    Aust, R. & Drickamer, H. Carbon: a new crystalline phase. Science 140, 817–819 (1963).

  129. 129.

    Utsumi, W. & Yagi, T. Light-transparent phase formed by room-temperature compression of graphite. Science 252, 1542–1544 (1991).

  130. 130.

    Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

  131. 131.

    Li, Q. et al. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009).

  132. 132.

    Umemoto, K., Wentzcovitch, R. M., Saito, S. & Miyake, T. Body-centered tetragonal C4: a viable sp3 carbon allotrope. Phys. Rev. Lett. 104, 125504 (2010).

  133. 133.

    Wang, J.-T., Chen, C. & Kawazoe, Y. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. 106, 075501 (2011).

  134. 134.

    Niu, H. et al. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys. Rev. Lett. 108, 135501 (2012).

  135. 135.

    Boulfelfel, S. E., Oganov, A. R. & Leoni, S. Understanding the nature of superhard graphite. Sci. Rep. 2, 471 (2012).

  136. 136.

    Wang, Y., Panzik, J. E., Kiefer, B. & Lee, K. K. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2, 520 (2012).

  137. 137.

    Oganov, A. R. & Solozhenko, V.L. Boron: a hunt for superhard polymorphs. J. Superhard Mater. 31, 285 (2009).

  138. 138.

    Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009).

  139. 139.

    Solozhenko, V.L., Kurakevych, O. & Oganov, A. R. On the hardness of a new boron phase, orthorhombic γ-B28. J. Superhard Mater. 30, 428 (2008).

  140. 140.

    Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V., Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).

  141. 141.

    Niu, H. et al. Structure, bonding, and possible superhardness of CrB4. Phys. Rev. B 85, 144116 (2012).

  142. 142.

    Kvashnin, A. G. et al. New tungsten borides, their stability and outstanding mechanical properties. J. Phys. Chem. Lett. 9, 3470–3477 (2018).

  143. 143.

    Kolmogorov, A. et al. New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. Phys. Rev. Lett. 105, 217003 (2010).

  144. 144.

    Gou, H. et al. Discovery of a superhard iron tetraboride superconductor. Phys. Rev. Lett. 111, 157002 (2013).

  145. 145.

    Zhang, M. et al. Hardness of FeB4: density functional theory investigation. J. Chem. Phys. 140, 174505 (2014).

  146. 146.

    Wang, Q. et al. Is orthorhombic iron tetraboride superhard? J. Materiomics 1, 45–51 (2015).

  147. 147.

    Van Der Geest, A. & Kolmogorov, A. Stability of 41 metal–boron systems at 0 GPa and 30 GPa from first principles. Calphad 46, 184–204 (2014).

  148. 148.

    Niu, H. et al. Variable-composition structural optimization and experimental verification of MnB3 and MnB4. Phys. Chem. Chem. Phys. 16, 15866–15873 (2014).

  149. 149.

    Hu, X. et al. Atomic-scale observation and analysis of chemical ordering in M3B2 and M5B3 borides. Acta Mater. 149, 274–284 (2018).

  150. 150.

    Yu, S., Zeng, Q., Oganov, A. R., Frapper, G. & Zhang, L. Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study. Phys. Chem. Chem. Phys. 17, 11763–11769 (2015).

  151. 151.

    Bhadram, V. S., Kim, D. Y. & Strobel, T. A. High-pressure synthesis and characterization of incompressible titanium per-nitride. Chem. Mater. 28, 1616–1620 (2016).

  152. 152.

    Schilling, A., Cantoni, M., Guo, J. & Ott, H. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).

  153. 153.

    Monteverde, M. et al. High-pressure effects in fluorinated HgBa2Ca2Cu3O8+δ. Europhys. Lett. 72, 458–464 (2005).

  154. 154.

    Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968).

  155. 155.

    Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

  156. 156.

    Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

  157. 157.

    Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

  158. 158.

    Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).

  159. 159.

    Errea, I. et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).

  160. 160.

    Einaga, M. et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

  161. 161.

    Goncharov, A. F. et al. Hydrogen sulfide at high pressure: change in stoichiometry. Phys. Rev. B 93, 174105 (2016).

  162. 162.

    Li, Y. et al. Dissociation products and structures of solid H2S at strong compression. Phys. Rev. B 93, 020103 (2016).

  163. 163.

    Kruglov, I., Akashi, R., Yoshikawa, S., Oganov, A. R. & Esfahani Davari, M. M. Refined phase diagram of the H-S system with high-Tc superconductivity. Phys. Rev. B 96, 220101 (2017).

  164. 164.

    Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463–6466 (2012).

  165. 165.

    Li, Y. et al. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015).

  166. 166.

    Kvashnin, A. G., Semenok, D. V., Kruglov, I. A., Wrona, I. A. & Oganov, A. R. High-temperature superconductivity in a Th–H system under pressure conditions. ACS Appl. Mater. Interfaces 10, 43809–43816 (2018).

  167. 167.

    Semenok, D., Kvashnin, A. G., Kruglov, I. A. & Oganov, A. R. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett. 9, 1920–1926 (2018).

  168. 168.

    Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

  169. 169.

    Geballe, Z. M. et al. Synthesis and stability of lanthanum superhydrides. Angew. Chem. Int. Ed. 57, 688–692 (2017).

  170. 170.

    Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

  171. 171.

    Ellaboudy, A., Dye, J. L. & Smith, P. B. Cesium 18-crown-6 compounds. A crystalline ceside and a crystalline electride. J. Am. Chem. Soc. 105, 6490–6491 (1983).

  172. 172.

    Dye, J. L. Electrides: Ionic salts with electrons as the anions. Science 247, 663–668 (1990).

  173. 173.

    Matsuishi, S. et al. High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-). Science 301, 626–629 (2003).

  174. 174.

    Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).

  175. 175.

    Pickard, C. J. & Needs, R. J. Predicted pressure-induced s-band ferromagnetism in alkali metals. Phys. Rev. Lett. 107, 087201 (2011).

  176. 176.

    Pickard, C. J. & Needs, R. J. Aluminium at terapascal pressures. Nat. Mater. 9, 624–627 (2010).

  177. 177.

    Miao, M.-S. & Hoffmann, R. High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).

  178. 178.

    Inoshita, T., Jeong, S., Hamada, N. & Hosono, H. Exploration for two-dimensional electrides via database screening and ab initio calculation. Phys. Rev. X 4, 031023 (2014).

  179. 179.

    Ming, W., Yoon, M., Du, M.-H., Lee, K. & Kim, S. W. First-principles prediction of thermodynamically stable two-dimensional electrides. J. Am. Chem. Soc. 138, 15336–15344 (2016).

  180. 180.

    Zhang, Y., Wang, H., Wang, Y., Zhang, L. & Ma, Y. Computer-assisted inverse design of inorganic electrides. Phys. Rev. X 7, 011017 (2017).

  181. 181.

    Wang, J. et al. Exploration of stable strontium phosphide-based electrides: theoretical structure prediction and experimental validation. J. Am. Chem. Soc. 139, 15668–15680 (2017).

  182. 182.

    Price, S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43, 2098–2111 (2014).

  183. 183.

    Day, G. M. Current approaches to predicting molecular organic crystal structures. Crystallogr. Rev. 17, 3–52 (2011).

  184. 184.

    Reilly, A. M. et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta Cryst. B 72, 439–459 (2016).

  185. 185.

    Oganov, A. R. Crystal structure prediction: reflections on present status and challenges. Faraday Discuss. 211, 643–660 (2018).

  186. 186.

    Bull, C. L. et al. ζ-glycine: insight into the mechanism of a polymorphic phase transition. IUCrJ 4, 569–574 (2017).

  187. 187.

    Neumann, M., Van De Streek, J., Fabbiani, F., Hidber, P. & Grassmann, O. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening. Nat. Commun. 6, 7793 (2015).

  188. 188.

    Zhu, Q. et al. Resorcinol crystallization from the melt: a new ambient phase and new riddles. J. Am. Chem. Soc. 138, 4881–4889 (2016).

  189. 189.

    Xu, W., Zhu, Q. & Hu, C. T. The structure of glycine dihydrate: implications for the crystallization of glycine from solution and its structure in outer space. Angew. Chem. 129, 2030–2034 (2017).

  190. 190.

    Shtukenberg, A. G. et al. Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chem. Sci. 8, 4926–4940 (2017).

  191. 191.

    Shtukenberg, A. G. et al. The third ambient aspirin polymorph. Cryst. Growth Des. 17, 3562–3566 (2017).

  192. 192.

    Yang, J. et al. DDT polymorphism and the lethality of crystal forms. Angew. Chem. Int. Ed. 56, 10165–10169 (2017).

  193. 193.

    Sokolov, A. N. et al. From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat. Commun. 2, 437 (2011).

  194. 194.

    Campbell, J. E., Yang, J. & Day, G. M. Predicted energy–structure–function maps for the evaluation of small molecule organic semiconductors. J. Mater. Chem. C 5, 7574–7584 (2017).

  195. 195.

    Yang, J. et al. Large–scale computational screening of molecular organic semiconductors using crystal structure prediction. Chem. Mater. 30, 4361–4371 (2018).

  196. 196.

    Musil, F. et al. Machine learning for the structure–energy–property landscapes of molecular crystals. Chem. Sci. 9, 1289–1300 (2018).

  197. 197.

    Berardo, E., Turcani, L., Miklitz, M. & Jelfs, K. E. An evolutionary algorithm for the discovery of porous organic cages. Chem. Sci. 9, 8513–8527 (2018).

  198. 198.

    Wang, Q. et al. Direct band gap silicon allotropes. Chem. Soc. 136, 9826–9829 (2014).

  199. 199.

    Mujica, A., Pickard, C. J. & Needs, R. J. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys. Rev. B 91, 214104 (2015).

  200. 200.

    Amsler, M., Botti, S., Marques, M. A., Lenosky, T. J. & Goedecker, S. Low-density silicon allotropes for photovoltaic applications. Phys. Rev. B 92, 014101 (2015).

  201. 201.

    Kim, D. Y., Stefanoski, S., Kurakevych, O. O. & Strobel, T. A. Synthesis of an open-framework allotrope of silicon. Nat. Mater. 14, 169–173 (2015).

  202. 202.

    Zhu, Q., Oganov, A. R., Lyakhov, A. O. & Yu, X. Generalized evolutionary metadynamics for sampling the energy landscapes and its applications. Phys. Rev. B 92, 024106 (2015).

  203. 203.

    Rapp, L. et al. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion. Nat. Commun. 6, 7555 (2015).

  204. 204.

    Su, C. et al. Construction of crystal structure prototype database: methods and applications. J. Phys. Condens. Matter 29, 165901 (2017).

  205. 205.

    Bushlanov, P. V., Blatov, V. A. & Oganov, A. R. Topology-based crystal structure generator. Comput. Phys. Commun. 236, 1–7 (2019).

  206. 206.

    Ahnert, S. E., Grant, W. P. & Pickard, C. J. Revealing and exploiting hierarchical material structure through complex atomic networks. NPJ Comput. Mater. 3, 35 (2017).

  207. 207.

    Moran, R. F. et al. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite. Phys. Chem. Chem. Phys. 18, 10173–10181 (2016).

  208. 208.

    Monserrat, B., Drummond, N. D. & Needs, R. J. Anharmonic vibrational properties in periodic systems: energy, electron- phonon coupling, and stress. Phys. Rev. B 87, 144302 (2013).

  209. 209.

    Souvatzis, P., Eriksson, O., Katsnelson, M. & Rudin, S. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008).

  210. 210.

    Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, 2017).

  211. 211.

    Fontaine, D. D. Configurational thermodynamics of solid solutions. Solid State Phys. 34, 73–274 (1979).

  212. 212.

    Zarkevich, N. A. & Johnson, D. D. Reliable first-principles alloy thermodynamics via truncated cluster expansions. Phys. Rev. Lett. 92, 255702 (2004).

  213. 213.

    National Centre of Competence in Research MARVEL. Download the Quantum Mobile Virtual Machine based on Ubuntu Linux with a collection of quantum simulation codes. MARVEL http://nccr-marvel.ch/en/news/communication/2017-12-download-the-quantum-mobile-virtual-machine-based-on-ubuntu-linux-with-a-collection-of-quantum-simulation-codes (2017).

  214. 214.

    Khrapov, N., Roizen, V., Posypkin, M., Samtsevich, A. & Oganov, A. R. Volunteer computing for computational materials design. Lobachevskii J. Math. 38, 926–930 (2017).

  215. 215.

    Cao, Y. et al. Quantum chemistry in the age of quantum computing. Preprint at arXiv https://arxiv.org/abs/1812.09976 (2018).

  216. 216.

    Bitzek, E., Koskinen, P., Gahler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

  217. 217.

    Michalewicz, Z. & Fogel, D. B. How to Solve It: Modern Heuristics (Springer, 2013).

  218. 218.

    Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J. & Caignaert, V. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature 346, 343–345 (1990).

  219. 219.

    Schon, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew. Chem. Int. Ed. 35, 1286–1304 (1996).

  220. 220.

    Wales, D. J. & Doye, J. P. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

  221. 221.

    Judson, R. S., Jaeger, E. P., Treasurywala, A. M. & Peterson, M. L. Conformational searching methods for small molecules. II. Genetic algorithm approach. J. Comput. Chem. 14, 1407–1414 (1993).

  222. 222.

    Bush, T., Catlow, C. R. A. & Battle, P. Evolutionary programming techniques for predicting inorganic crystal structures. J. Mater. Chem. 5, 1269–1272 (1995).

  223. 223.

    Curtis, F. et al. GAtor: a first-principles genetic algorithm for molecular crystal structure prediction. J. Chem. Theory Comput. 14, 2246–2264 (2018).

  224. 224.

    Zhu, Q., Oganov, A. R. & Lyakhov, A. O. Evolutionary metadynamics: a novel method to predict crystal structures. CrystEngComm 14, 3596–3601 (2012).

  225. 225.

    Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

  226. 226.

    Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

  227. 227.

    Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930–17955 (2011).

  228. 228.

    Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

  229. 229.

    Behler, J., Martonak, R., Donadio, D. & Parrinello, M. Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Phys. Rev. Lett. 100, 185501 (2008).

  230. 230.

    Deringer, V. L., J. Pickard, C. & Csanyi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).

  231. 231.

    Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).

  232. 232.

    Zhao, X. et al. Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm. Phys. Rev. Lett. 112, 045502 (2014).

  233. 233.

    Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).

  234. 234.

    Nicholls, R. J. et al. Crystal structure of the ZrO phase at zirconium/zirconium oxide interfaces. Adv. Eng. Mater. 17, 211–215 (2015).

  235. 235.

    Pickard, C. J., Salamat, A., Bojdys, M. J., Needs, R. J. & McMillan, P. F. Carbon nitride frameworks and dense crystalline polymorphs. Phys. Rev. B 94, 094104 (2016).

  236. 236.

    Kruglov, I. A. et al. Uranium polyhydrides at moderate pressures: prediction, synthesis, and expected superconductivity. Sci. Adv. 4, eaat9776 (2018).

  237. 237.

    Wang, Q., Oganov, A. R., Feya, O. D., Zhu, Q. & Ma, D. The unexpectedly rich reconstructions of rutile TiO2(011)-(2×1) surface and the driving forces behind their formation: an ab initio evolutionary study. Phys. Chem. Chem. Phys. 18, 19549–19556 (2016).

  238. 238.

    Schusteritsch, G., Hepplestone, S. P. & Pickard, C. J. First-principles structure determination of interface materials: the NixInAs nickelides. Phys. Rev. B 92, 054105 (2015).

Download references

Acknowledgements

A.R.O. thanks the Russian Science Foundation (grant 19-72-30043) for generous support of his research. Q.Z. is funded by the National Nuclear Security Administration under the Stewardship Science Academic Alliances Program through the Department of Energy Cooperative Agreement DE-NA0001982. C.J.P. is supported by the Royal Society through a Royal Society Wolfson Research Merit Award. R.J.N. is funded by the Engineering and Physical Sciences Research Council under grant EP/P034616/1.

Author information

The authors contributed equally to all aspects of the article.

Correspondence to Artem R. Oganov or Chris J. Pickard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AIRSS: https://www.mtg.msm.cam.ac.uk/Codes/AIRSS

CALYPSO: http://calypso.cn/

CrySPY: https://tomoki-yamashita.github.io/CrySPY

DMACRYS: http://www.chem.ucl.ac.uk/cposs/dmacrys/index.html

GASP: http://gasp.mse.ufl.edu/

GAtor: http://www.noamarom.com/software/

GRACE: https://www.avmatsim.eu/services/software/

MAISE: http://bingweb.binghamton.edu/~akolmogo/maise/

Molpak: https://sourceforge.net/projects/molpak/

UPack: http://www.crystal.chem.uu.nl/~vaneyck/upack.html

USPEX: http://uspex-team.org/

Xtalopt: http://xtalopt.github.io/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oganov, A.R., Pickard, C.J., Zhu, Q. et al. Structure prediction drives materials discovery. Nat Rev Mater 4, 331–348 (2019) doi:10.1038/s41578-019-0101-8

Download citation

Further reading