Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photovoltaic solar cell technologies: analysing the state of the art


The remarkable development in photovoltaic (PV) technologies over the past 5 years calls for a renewed assessment of their performance and potential for future progress. Here, we analyse the progress in cells and modules based on single-crystalline GaAs, Si, GaInP and InP, multicrystalline Si as well as thin films of polycrystalline CdTe and CuInxGa1−xSe2. In addition, we analyse the PV developments of the more recently emerged lead halide perovskites together with notable improvements in sustainable chalcogenides, organic PVs and quantum dots technologies. In addition to power conversion efficiencies, we consider many of the factors that affect power output for each cell type and note improvements in control over the optoelectronic quality of PV-relevant materials and interfaces and the discovery of new material properties. By comparing PV cell parameters across technologies, we appraise how far each technology may progress in the near future. Although accurate or revolutionary developments cannot be predicted, cross-fertilization between technologies often occurs, making achievements in one cell type an indicator of evolutionary developments in others. This knowledge transfer is timely, as the development of metal halide perovskites is helping to unite previously disparate, technology-focused strands of PV research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Operational losses in solar cells.
Fig. 2: Photocurrent efficiency in solar cells.
Fig. 3: Photon management and device architecture of GaAs and InP cells.
Fig. 4: Device architectures of different types of champion single-crystalline Si cells.
Fig. 5: Evolution of EQE in polycrystalline CIGS, CdTe and metal halide perovskite cells.
Fig. 6: Effects of sub-photovoltaic gap states.
Fig. 7: Progress in the scale up of solar cells.


  1. 1.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Article  Google Scholar 

  2. 2.

    Nayak, P. K., Bisquert, J. & Cahen, D. Assessing possibilities and limits for solar cells. Adv. Mater. 23, 2870–2876 (2011). This study introduces operational loss as a parameter for the comparison and analysis of solar cell technologies.

    CAS  Article  Google Scholar 

  3. 3.

    Nayak, P. K. & Cahen, D. Updated assessment of possibilities and limits for solar cells. Adv. Mater. 26, 1622–1628 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017). This study introduces the concept of determining the photovoltaic gap of a solar cell from the EQE of the cell.

    Article  Google Scholar 

  5. 5.

    Wang, Y. et al. Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv. Energy Mater. 8, 1801352 (2018).

    Article  Google Scholar 

  6. 6.

    Markvart, T. The thermodynamics of optical étendue. J. Opt. A 10, 015008 (2008).

    Article  Google Scholar 

  7. 7.

    Hirst, L. C. & Ekins-Daukes, N. J. Fundamental losses in solar cells. Prog. Photovolt. 19, 286–293 (2011). This article provides analytical expressions for the fundamental losses in solar cells.

    Article  Google Scholar 

  8. 8.

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Article  Google Scholar 

  9. 9.

    Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Article  Google Scholar 

  10. 10.

    Green, M. A. et al. Solar cell efficiency tables (version 53). Prog. Photovolt. 27, 3–12 (2019). This article provides solar cell parameters for the state-of-the-art cells.

    Article  Google Scholar 

  11. 11.

    Schnitzer, I., Yablonovitch, E., Caneau, C. & Gmitter, T. J. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett. 62, 131–133 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    Green, M. A. Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovolt. 20, 472–476 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Sheng, X. et al. Device architectures for enhanced photon recycling in thin-film multijunction solar cells. Adv. Energy Mater. 5, 1400919 (2015).

    Article  Google Scholar 

  14. 14.

    Geisz, J. F., Steiner, M. A., García, I., Kurtz, S. R. & Friedman, D. J. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl. Phys. Lett. 103, 041118 (2013).

    Article  Google Scholar 

  15. 15.

    Steiner, M. A. et al. CuPt ordering in high bandgap GaxIn1-xP alloys on relaxed GaAsP step grades. J. Appl. Phys. 106, 063525 (2009).

    Article  Google Scholar 

  16. 16.

    Green, M. A. et al. Solar cell efficiency tables (version 49). Prog. Photovolt. 25, 3–13 (2017).

    Article  Google Scholar 

  17. 17.

    Wanlass, M. Systems and methods for advanced ultra-high-performance InP solar cells. US Patent US9590131B2 (2014).

  18. 18.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 42). Prog. Photovolt. 21, 827–837 (2013).

    Article  Google Scholar 

  19. 19.

    Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017). This study presents an efficient (PCE = 26.6%) c-Si solar cell with the IBC–SHJ architecture.

    CAS  Article  Google Scholar 

  20. 20.

    Green, M. A. et al. Solar cell efficiency tables (version 52). Prog. Photovolt. 26, 427–436 (2018).

    Article  Google Scholar 

  21. 21.

    Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Article  Google Scholar 

  22. 22.

    Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  23. 23.

    Trupke, T., Zhao, J., Wang, A., Corkish, R. & Green, M. A. Very efficient light emission from bulk crystalline silicon. Appl. Phys. Lett. 82, 2996–44107 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Yang, Y. M. et al. Development of high-performance multicrystalline silicon for photovoltaic industry. Prog. Photovolt. 23, 340–351 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Macdonald, D. & Geerligs, L. J. Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon. Appl. Phys. Lett. 85, 4061–4063 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Benick, J. et al. High-efficiency n-type HP mc silicon solar cells. IEEE J. Photovolt. 7, 1171–1175 (2017).

    Article  Google Scholar 

  27. 27.

    Chirilă, A. et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 12, 1107–1111 (2013).

    Article  Google Scholar 

  28. 28.

    Chantana, J., Kato, T., Sugimoto, H. & Minemoto, T. Thin-film Cu(In,Ga)(Se,S)2-based solar cell with (Cd,Zn)S buffer layer and Zn1−xMgxO window layer. Prog. Photovolt. 25, 431–440 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Kato, T., Wu, J.-L., Hirai, Y., Sugimoto, H. & Bermudez, V. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In,Ga)(Se,S)2. IEEE J. Photovolt. 9, 325–330 (2018).

    Article  Google Scholar 

  30. 30.

    IEEE Electron Devices Society. IEEE Electron Devices Society Newsletter: highlights of the 2017 IEEE Photovoltaic Specialists Conference. IEEE (2017).

  31. 31.

    Poplawsky, J. D. et al. Structural and compositional dependence of the CdTexSe1−x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 7, 12537 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Paudel, N. R., Poplawsky, J. D., Moore, K. L. & Yan, Y. Current enhancement of CdTe-based solar cells. IEEE J. Photovolt. 5, 1492–1496 (2015).

    Article  Google Scholar 

  33. 33.

    Zhao, Y. et al. Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%. Nat. Energy 1, 16067 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Gloeckler, M., Sankin, I. & Zhao, Z. CdTe solar cells at the threshold to 20% efficiency. IEEE J. Photovolt. 3, 1389–1393 (2013).

    Article  Google Scholar 

  35. 35.

    Lokanc, M., Eggert, R. & Redlinger, M. The availability of indium: the present, medium term, and long term. NREL (2015).

  36. 36.

    Gokmen, T., Gunawan, O., Todorov, T. K. & Mitzi, D. B. Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103, 103506 (2013).

    Article  Google Scholar 

  37. 37.

    Ng, T. M. et al. Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. J. Mater. Chem. A 5, 1192–1200 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Yan, C. et al. Beyond 11% efficient sulfide kesterite Cu2ZnxCd1−xSnS4 solar cell: effects of cadmium alloying. ACS Energy Lett. 2, 930–936 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Kronik, L., Cahen, D. & Schock, H. W. Effects of sodium on polycrystalline Cu(In, Ga)Se2 and its solar cell performance. Adv. Mater. 10, 31–36 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    Nayak, P. K., Garcia-Belmonte, G., Kahn, A., Bisquert, J. & Cahen, D. Photovoltaic efficiency limits and material disorder. Energy Environ. Sci. 5, 6022 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Kim, S., Park, J. S. & Walsh, A. Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett. 3, 496–500 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018). This is a recent review on halide perovskite materials for optoelectronic applications.

    CAS  Article  Google Scholar 

  43. 43.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Edri, E. et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014).

    Article  Google Scholar 

  45. 45.

    Ceratti, D. R. et al. Self-healing inside APbBr3 halide perovskite crystals. Adv. Mater. 30, 1706273 (2018).

    Article  Google Scholar 

  46. 46.

    Brandt, R. E., Stevanovic, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  49. 49.

    Sutter-Fella, C. M. et al. Band tailing and deep defect states in CH3NH3Pb(I1−xBrx)3 perovskites as revealed by sub-bandgap photocurrent. ACS Energy Lett. 2, 709–715 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Braly, I. L. et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photonics 12, 355–361 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Tiedje, T. Band tail recombination limit to the output voltage of amorphous silicon solar cells. Appl. Phys. Lett. 40, 627–629 (1982). This article demonstrates the effect of tail states on the efficiency of solar cells.

    CAS  Article  Google Scholar 

  52. 52.

    Liu, M. et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258–263 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Sanehira, E. M. et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017).

    Article  Google Scholar 

  55. 55.

    Mori, S. et al. Organic photovoltaic module development with inverted device structure. Mater. Res. Soc. Symp. Proc. 1737, 26–31 (2015).

    Article  Google Scholar 

  56. 56.

    Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    CAS  Article  Google Scholar 

  58. 58.

    Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Nayak, P. K. et al. The effect of structural order on solar cell parameters, as illustrated in a SiC-organic junction model. Energy Environ. Sci. 6, 3272 (2013).

    CAS  Article  Google Scholar 

  60. 60.

    Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    Chen, X. K. & Brédas, J. L. Voltage losses in organic solar cells: understanding the contributions of intramolecular vibrations to nonradiative recombinations. Adv. Energy Mater. 8, 1702227 (2018).

    Article  Google Scholar 

  62. 62.

    Jean, J. et al. Radiative efficiency limit with band tailing exceeds 30% for quantum dot solar cells. ACS Energy Lett. 2, 2616–2624 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    CAS  Article  Google Scholar 

  64. 64.

    Green, M. A. Accuracy of analytical expressions for solar cell fill factors. Solar Cells 7, 337–340 (1982).

    CAS  Article  Google Scholar 

  65. 65.

    Oxford PV. Oxford PV perovskite solar cell achieves 28% efficiency. Oxford PV (2018).

  66. 66.

    Haxel, G. B., Hedrick, J. B. & Orris, G. J. Rare earth elements: critical resources for high technology: US Geological Survey fact sheet 087–02. USGS (updated 17 May 2005).

  67. 67.

    Chuangchote, S. et al. Review of environmental, health and safety of CdTe photovoltaic installations throughout their life-cycle. First Solar (2012).

  68. 68.

    CHEOPS. First results regarding the environmental impact of perovskite/silicon tandem PV modules. CHEOPS (2017).

  69. 69.

    Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, eaat2612 (2018).

    Article  Google Scholar 

  70. 70.

    Ekins-Daukes, N. J. & Hirst, L. C. in 24th European Photovoltaic Solar Energy Conf. 457–461 (WIP-Munich, 2009).

  71. 71.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 40). Prog. Photovolt. 20, 606–614 (2012).

    Article  Google Scholar 

  72. 72.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 47). Prog. Photovolt. 24, 3–11 (2016).

    Article  Google Scholar 

  73. 73.

    Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Article  Google Scholar 

  74. 74.

    Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovolt. 25, 668–676 (2017).

    Article  Google Scholar 

  75. 75.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  76. 76.

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  77. 77.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Article  Google Scholar 

  78. 78.

    Gong, W. et al. Influence of energetic disorder on electroluminescence emission in polymer: fullerene solar cells. Phys. Rev. B 86, 024201 (2012).

    Article  Google Scholar 

  79. 79.

    Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 44). Prog. Photovolt. 22, 701–710 (2014).

    Article  Google Scholar 

  81. 81.

    Green, M. A. et al. Solar cell efficiency tables (version 51). Prog. Photovolt. 26, 3–12 (2018).

    Article  Google Scholar 

  82. 82.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. 23, 1–9 (2015).

    Article  Google Scholar 

Download references


The authors acknowledge the support from the UK Engineering and Physical Sciences Research Council (grant nos EP/P032591/1 and EP/M015254/2) and thank B. Wenger, T. Markvardt, T. Kirchartz, T. Buonassisi and A. Bakulin for critical comments and data and D. Friedman for providing a GaAs cell. D.C. thanks the Weizmann Institute of Science, where he held the Rowland and Sylvia Schaefer Chair in Energy Research, for partial support.

Author information




All authors contributed to the discussion of content. P.K.N. researched most of the data, carried out the analysis and wrote the article. D.C. and S.M. contributed to the researching of data and analysis. D.C., H.J.S. and P.K.N. edited the manuscript before submission.

Corresponding author

Correspondence to Pabitra K. Nayak.

Ethics declarations

Competing interests

H.J.S. is the co-founder and CSO of Oxford PV Ltd, a company that is commercializing perovskite photovoltaic technologies. P.K.N., S.M. and D.C. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Reference Solar Spectral Irradiance: Air Mass 1.5:

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayak, P.K., Mahesh, S., Snaith, H.J. et al. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4, 269–285 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing