Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of the third component in ternary organic solar cells

Abstract

Ternary organic solar cells (TSCs) contain a single three-component photoactive layer with a wide absorption window, which is obtained without the need for multiple stacks. Subsequently, TSCs have attracted great interest in the photovoltaics field. Through careful selection of the three (or more) active components that form the photoactive layer, all photovoltaic parameters can be simultaneously enhanced within a TSC — a strategy that has resulted in record efficiencies for single-junction solar cells. In this Review, we outline key developments in TSCs, with a focus on the central role of the third component in achieving record efficiencies. We analyse the effects of the third component on the nanomorphology of the bulk heterojunction and the photovoltaic parameters of TSCs. Moreover, we discuss the charge-transfer and/or energy-transfer mechanisms and nanomorphology models that govern the operation of TSCs. We consider both polymer and small-molecule donors as well as fullerenes and recently developed non-fullerene acceptors. In addition, we summarize the recent success of TSCs in mitigating the stability issues of binary solar cells. Finally, we provide a perspective on the advantages of ternary blends and suggest design strategies for highly efficient and stable devices for commercial photovoltaics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chemical structures of widely used donor materials for ternary solar cells.
Fig. 2: Chemical structures of widely used acceptor materials for ternary solar cells.
Fig. 3: Organic solar cell device architecture and nanomorphology models for BHJ layers.
Fig. 4: The role of the third component in improving the performance of ternary organic solar cells.
Fig. 5: J–V curves showing the possible improvement in photovoltaic parameters in ternary blends.

References

  1. 1.

    Becquerel, A. E. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques [French]. C. R. Acad. Sci. 9, 145–149 (1839).

    Google Scholar 

  2. 2.

    Kepler, R. G. Charge carrier production and mobility in anthracene crystals. Phys. Rev. 119, 1226–1229 (1960).

    CAS  Google Scholar 

  3. 3.

    Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2016).

    Google Scholar 

  4. 4.

    Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2016).

    Google Scholar 

  5. 5.

    McCulloch, I., Salleo, A. & Chabinyc, M. Avoid the kinks when measuring mobility. Science 352, 1521–1522 (2016).

    CAS  Google Scholar 

  6. 6.

    Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).

    Google Scholar 

  7. 7.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).

    Google Scholar 

  8. 8.

    Baeg, K.-J., Binda, M., Natali, D., Caironi, M. & Noh, Y.-Y. Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–4295 (2013).

    CAS  Google Scholar 

  9. 9.

    Ren, X. et al. Organic field-effect transistor for energy-related applications: low-power-consumption devices, near-infrared phototransistors, and organic thermoelectric devices. Adv. Energy Mater. 8, 1801003 (2018).

    Google Scholar 

  10. 10.

    Leo, K. Organic photovoltaics. Nat. Rev. Mater. 1, 16056 (2016).

    CAS  Google Scholar 

  11. 11.

    Brabec, C. J., Sariciftci, N. S. & Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001).

    CAS  Google Scholar 

  12. 12.

    Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007).

    Google Scholar 

  13. 13.

    Deibel, C. & Dyakonov, V. Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010).

    Google Scholar 

  14. 14.

    Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153–161 (2012).

    CAS  Google Scholar 

  15. 15.

    Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

    CAS  Google Scholar 

  16. 16.

    Kang, H. et al. Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv. Mater. 28, 7821–7861 (2016).

    CAS  Google Scholar 

  17. 17.

    Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 30, 1800388 (2018).

    Google Scholar 

  18. 18.

    Lucera, L. et al. Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ. Sci. 9, 89–94 (2015).

    Google Scholar 

  19. 19.

    Søndergaard, R. R., Hösel, M. & Krebs, F. C. Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci. B Polym. Phys. 51, 16–34 (2013).

    Google Scholar 

  20. 20.

    Po, R. et al. From lab to fab: how must the polymer solar cell materials design change? – an industrial perspective. Energy Environ. Sci. 7, 925–943 (2014).

    CAS  Google Scholar 

  21. 21.

    Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    CAS  Google Scholar 

  22. 22.

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    CAS  Google Scholar 

  23. 23.

    Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    CAS  Google Scholar 

  24. 24.

    Liang, Y. et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, 135–138 (2010).

    Google Scholar 

  25. 25.

    He, Z. et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 9, 174–179 (2015).

    CAS  Google Scholar 

  26. 26.

    Liu, Y. et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    CAS  Google Scholar 

  27. 27.

    Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    CAS  Google Scholar 

  28. 28.

    Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    CAS  Google Scholar 

  29. 29.

    Sharenko, A. et al. A high-performing solution-processed small molecule: perylene diimide bulk heterojunction solar cell. Adv. Mater. 25, 4403–4406 (2013).

    CAS  Google Scholar 

  30. 30.

    Kumari, T., Lee, S. M., Kang, S., Chen, S. & Yang, C. Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ. Sci. 10, 258–265 (2017).

    CAS  Google Scholar 

  31. 31.

    Thompson, B. C. & Fréchet, J. M. J. Polymer–fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58–77 (2008).

    CAS  Google Scholar 

  32. 32.

    Gasparini, N. et al. The physics of small molecule acceptors for efficient and stable bulk heterojunction solar cells. Adv. Energy Mater. 8, 1703298 (2018).

    Google Scholar 

  33. 33.

    Wadsworth, A. et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. https://doi.org/10.1039/C7CS00892A (2019).

    Article  Google Scholar 

  34. 34.

    Baran, D. et al. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nat. Commun. 9, 2059 (2018).

    Google Scholar 

  35. 35.

    Baran, D. et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017). This paper introduces a universal strategy for achieving highly efficient TSCs with small-molecule acceptors.

    CAS  Google Scholar 

  36. 36.

    Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    CAS  Google Scholar 

  37. 37.

    Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    CAS  Google Scholar 

  38. 38.

    Zhang, J., Tan, H. S., Guo, X., Facchetti, A. & Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018).

    CAS  Google Scholar 

  39. 39.

    Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J. & McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015).

    CAS  Google Scholar 

  40. 40.

    Holliday, S., Li, Y. & Luscombe, C. K. Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog. Polym. Sci. 70, 34–51 (2017).

    CAS  Google Scholar 

  41. 41.

    Holliday, S. et al. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137, 898–904 (2015).

    CAS  Google Scholar 

  42. 42.

    Yao, H. et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv. Mater. 28, 8283–8287 (2016).

    CAS  Google Scholar 

  43. 43.

    Hwang, Y.-J., Earmme, T., Courtright, B. A. E., Eberle, F. N. & Jenekhe, S. A. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J. Am. Chem. Soc. 137, 4424–4434 (2015).

    CAS  Google Scholar 

  44. 44.

    Mu, C. et al. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Adv. Mater. 26, 7224–7230 (2014).

    CAS  Google Scholar 

  45. 45.

    Zhou, Y. et al. High performance all-polymer solar cell via polymer side-chain engineering. Adv. Mater. 26, 3767–3772 (2014).

    CAS  Google Scholar 

  46. 46.

    Fan, B. et al. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 29, 1703906 (2017).

    Google Scholar 

  47. 47.

    Zheng, Z. et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 30, 1801801 (2018).

    Google Scholar 

  48. 48.

    Ramirez, I., Causa’, M., Zhong, Y., Banerji, N. & Riede, M. Key tradeoffs limiting the performance of organic photovoltaics. Adv. Energy Mater. 8, 1703551 (2018).

    Google Scholar 

  49. 49.

    Wright, M., Lin, R., Tayebjee, M. J. Y. & Conibeer, G. Effect of blend composition on bulk heterojunction organic solar cells: a review. Sol. RRL 1, 1700035 (2017).

    Google Scholar 

  50. 50.

    Peters, C. H. et al. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011).

    CAS  Google Scholar 

  51. 51.

    Ryno, S. M., Ravva, M. K., Chen, X., Li, H. & Brédas, J.-L. Molecular understanding of fullerene - electron donor interactions in organic solar cells. Adv. Energy Mater. 7, 1601370 (2017).

    Google Scholar 

  52. 52.

    Gasparini, N. et al. Burn-in free nonfullerene-based organic solar cells. Adv. Energy Mater. 7, 1700770 (2017).

    Google Scholar 

  53. 53.

    Gasparini, N. et al. Polymer:nonfullerene bulk heterojunction solar cells with exceptionally low recombination rates. Adv. Energy Mater. 7, 1701561 (2017).

    Google Scholar 

  54. 54.

    Liu, Y., Zuo, L., Shi, X., Jen, A. K.-Y. & Ginger, D. S. Unexpectedly slow yet efficient picosecond to nanosecond photoinduced hole-transfer occurs in a polymer/nonfullerene acceptor organic photovoltaic blend. ACS Energy Lett. 3, 2396–2403 (2018).

    CAS  Google Scholar 

  55. 55.

    Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    CAS  Google Scholar 

  56. 56.

    Baran, D. et al. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy Environ. Sci. 9, 3783–3793 (2016).

    CAS  Google Scholar 

  57. 57.

    Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018).

    CAS  Google Scholar 

  58. 58.

    Zhang, K. et al. 11.2% All-polymer tandem solar cells with simultaneously improved efficiency and stability. Adv. Mater. 30, 1803166 (2018).

    Google Scholar 

  59. 59.

    Yuan, J. et al. Improved tandem all-polymer solar cells performance by using spectrally matched subcells. Adv. Energy Mater. 8, 1703291 (2018).

    Google Scholar 

  60. 60.

    Qin, Y. et al. Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340 (2017).

    Google Scholar 

  61. 61.

    Li, N. & Brabec, C. J. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ. Sci. 8, 2902–2909 (2015).

    CAS  Google Scholar 

  62. 62.

    Ameri, T., Li, N. & Brabec, C. J. Highly efficient organic tandem solar cells: a follow up review. Energy Environ. Sci. 6, 2390–2413 (2013).

    CAS  Google Scholar 

  63. 63.

    Guo, F. et al. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun. 6, 7730 (2015).

    Google Scholar 

  64. 64.

    Spyropoulos, G. D. et al. Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ. Sci. 7, 3284–3290 (2014).

    CAS  Google Scholar 

  65. 65.

    Gasparini, N. et al. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy 1, 16118 (2016). This paper demonstrates how trap-assisted recombination in binary blends can be reduced by adding a crystalline third component, leading to high FF values in ternary blends.

    CAS  Google Scholar 

  66. 66.

    Huang, W., Cheng, P., Yang, Y. M., Li, G. & Yang, Y. High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv. Mater. 30, 1705706 (2018).

    Google Scholar 

  67. 67.

    Lu, L., Kelly, M. A., You, W. & Yu, L. Status and prospects for ternary organic photovoltaics. Nat. Photon. 9, 491–500 (2015).

    CAS  Google Scholar 

  68. 68.

    An, Q. et al. Versatile ternary organic solar cells: a critical review. Energy Environ. Sci. 9, 281–322 (2016).

    Google Scholar 

  69. 69.

    Ameri, T., Khoram, P., Min, J. & Brabec, C. J. Organic ternary solar cells: a review. Adv. Mater. 25, 4245–4266 (2013).

    CAS  Google Scholar 

  70. 70.

    Gasparini, N. et al. High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ. Sci. 10, 885–892 (2017).

    CAS  Google Scholar 

  71. 71.

    Ameri, T. et al. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv. Energy Mater. 2, 1198–1202 (2012).

    CAS  Google Scholar 

  72. 72.

    Ma, X. et al. Efficient ternary polymer solar cells with two well-compatible donors and one ultranarrow bandgap nonfullerene acceptor. Adv. Energy Mater. 8, 1702854 (2018).

    Google Scholar 

  73. 73.

    Cheng, P., Li, Y. & Zhan, X. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 7, 2005–2011 (2014).

    CAS  Google Scholar 

  74. 74.

    Street, R. A., Davies, D., Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 135, 986–989 (2013). This paper introduces the alloy model in TSCs.

    CAS  Google Scholar 

  75. 75.

    Mollinger, S. A., Vandewal, K. & Salleo, A. Microstructural and electronic origins of open-circuit voltage tuning in organic solar cells based on ternary blends. Adv. Energy Mater. 5, 1501335 (2015).

    Google Scholar 

  76. 76.

    Liu, S. et al. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer. Energy Environ. Sci. 8, 1463–1470 (2015).

    CAS  Google Scholar 

  77. 77.

    Zhang, M. et al. Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy Environ. Sci. 11, 841–849 (2018).

    CAS  Google Scholar 

  78. 78.

    Ke, L. et al. A series of pyrene-substituted silicon phthalocyanines as near-IR sensitizers in organic ternary solar cells. Adv. Energy Mater. 6, 1502355 (2016).

    Google Scholar 

  79. 79.

    Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 9, 190–198 (2015). This paper provides design rules for fabricating high-performance multiple-donor BHJ solar cells.

    CAS  Google Scholar 

  80. 80.

    Yu, R., Yao, H. & Hou, J. Recent progress in ternary organic solar cells based on nonfullerene acceptors. Adv. Energy Mater. 8, 1702814 (2018).

    Google Scholar 

  81. 81.

    Li, H., Lu, K. & Wei, Z. Polymer/small molecule/fullerene based ternary solar cells. Adv. Energy Mater. 7, 1602540 (2017).

    Google Scholar 

  82. 82.

    Zhao, W., Li, S., Zhang, S., Liu, X. & Hou, J. Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv. Mater. 29, 1604059 (2017).

    Google Scholar 

  83. 83.

    Xu, X. et al. Highly efficient ternary-blend polymer solar cells enabled by a nonfullerene acceptor and two polymer donors with a broad composition tolerance. Adv. Mater. 29, 1704271 (2017).

    Google Scholar 

  84. 84.

    Lu, H. et al. Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance. Adv. Mater. 28, 9559–9566 (2016).

    CAS  Google Scholar 

  85. 85.

    Gupta, V., Bharti, V., Kumar, M., Chand, S. & Heeger, A. J. Polymer–polymer Förster resonance energy transfer significantly boosts the power conversion efficiency of bulk-heterojunction solar cells. Adv. Mater. 27, 4398–4404 (2015).

    CAS  Google Scholar 

  86. 86.

    Lu, L., Xu, T., Chen, W., Landry, E. S. & Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 8, 716–722 (2014).

    CAS  Google Scholar 

  87. 87.

    Lu, L., Chen, W., Xu, T. & Yu, L. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 6, 7327 (2015). This paper reports highly efficient ternary blends that exhibit both charge-transfer and energy-transfer mechanisms.

    CAS  Google Scholar 

  88. 88.

    Nam, M. et al. Long-term efficient organic photovoltaics based on quaternary bulk heterojunctions. Nat. Commun. 8, 14068 (2017).

    CAS  Google Scholar 

  89. 89.

    Wang, Z. et al. From alloy-like to cascade blended structure: designing high-performance all-small-molecule ternary solar cells. J. Am. Chem. Soc. 140, 1549–1556 (2018).

    CAS  Google Scholar 

  90. 90.

    Zhang, J. et al. Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 137, 8176–8183 (2015).

    CAS  Google Scholar 

  91. 91.

    de Zerio, A. D. & Müller, C. Glass forming acceptor alloys for highly efficient and thermally stable ternary organic solar cells. Adv. Energy Mater. 8, 1702741 (2018).

    Google Scholar 

  92. 92.

    Naveed, H. B. & Ma, W. Miscibility-driven optimization of nanostructures in ternary organic solar cells using non-fullerene acceptors. Joule 2, 621–641 (2018).

    CAS  Google Scholar 

  93. 93.

    Ameri, T. et al. Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J. Mater. Chem. A 2, 19461–19472 (2014).

    CAS  Google Scholar 

  94. 94.

    Yu, R. et al. Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv. Mater. 29, 1700437 (2017).

    Google Scholar 

  95. 95.

    Lee, J. et al. Overcoming fill factor reduction in ternary polymer solar cells by matching the highest occupied molecular orbital energy levels of donor polymers. Adv. Energy Mater. 8, 1702251 (2018).

    Google Scholar 

  96. 96.

    Xu, W.-L. et al. Förster resonance energy transfer and energy cascade in broadband photodetectors with ternary polymer bulk heterojunction. J. Phys. Chem. C 119, 21913–21920 (2015).

    CAS  Google Scholar 

  97. 97.

    Koppe, M. et al. Charge carrier dynamics in a ternary bulk heterojunction system consisting of P3HT, fullerene, and a low bandgap polymer. Adv. Energy Mater. 3, 949–958 (2013).

    CAS  Google Scholar 

  98. 98.

    Cheng, P. et al. Alloy acceptor: superior alternative to PCBM toward efficient and stable organic solar cells. Adv. Mater. 28, 8021–8028 (2016).

    CAS  Google Scholar 

  99. 99.

    Yang, L., Zhou, H., Price, S. C. & You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 (2011).

    Google Scholar 

  100. 100.

    Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

    CAS  Google Scholar 

  101. 101.

    Zhang, S., Qin, Y., Zhu, J. & Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018).

    Google Scholar 

  102. 102.

    Koppe, M. et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral esponse of organic solar cells. Adv. Funct. Mater. 20, 338–346 (2010). This paper provides the first example of TSCs with enhanced absorption in the NIR region of the solar spectrum.

    CAS  Google Scholar 

  103. 103.

    Liu, T. et al. Ternary organic solar cells based on two highly efficient polymer donors with enhanced power conversion efficiency. Adv. Energy Mater. 6, 1502109 (2016).

    Google Scholar 

  104. 104.

    Zhao, F. et al. Combining energy transfer and optimized morphology for highly efficient ternary polymer solar cells. Adv. Energy Mater. 7, 1602552 (2017).

    Google Scholar 

  105. 105.

    Li, W. et al. Contrasting effects of energy transfer in determining efficiency improvements in ternary polymer solar cells. Adv. Funct. Mater. 28, 1704212 (2018).

    Google Scholar 

  106. 106.

    Zhou, H. et al. High-efficiency polymer solar cells enhanced by solvent treatment. Adv. Mater. 25, 1646–1652 (2013).

    CAS  Google Scholar 

  107. 107.

    Song, X. et al. Controlling blend morphology for ultrahigh current density in nonfullerene acceptor-based organic solar cells. ACS Energy Lett. 3, 669–676 (2018).

    CAS  Google Scholar 

  108. 108.

    Liu, T. et al. Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency >10%. Adv. Mater. 28, 10008–10015 (2016).

    CAS  Google Scholar 

  109. 109.

    He, Y., Chen, H. Y., Hou, J. & Li, Y. Indene–C60 bisadduct: a new acceptor for high-performance polymer solar cells. J. Am. Chem. Soc. 132, 1377–1382 (2010).

    CAS  Google Scholar 

  110. 110.

    Su, W. et al. Efficient ternary blend all-polymer solar cells with a polythiophene derivative as a hole-cascade material. J. Mater. Chem. A 4, 14752–14760 (2016).

    CAS  Google Scholar 

  111. 111.

    Sweetnam, S. et al. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. J. Am. Chem. Soc. 136, 14078–14088 (2014).

    CAS  Google Scholar 

  112. 112.

    Bartelt, J. A. et al. The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3, 364–374 (2013).

    CAS  Google Scholar 

  113. 113.

    Shang, Z. et al. Trade-off between trap filling, trap creation, and charge recombination results in performance increase at ultralow doping levels in bulk heterojunction solar cells. Adv. Energy Mater. 6, 1601149 (2016).

    Google Scholar 

  114. 114.

    Ghasemi, M. et al. Panchromatic sequentially cast ternary polymer solar cells. Adv. Mater. 29, 1604603 (2017).

    Google Scholar 

  115. 115.

    Jiang, K. et al. Multiple cases of efficient nonfullerene ternary organic solar cells enabled by an effective morphology control method. Adv. Energy Mater. 8, 1701370 (2018).

    Google Scholar 

  116. 116.

    Poelking, C. et al. Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat. Mater. 14, 434–439 (2015).

    CAS  Google Scholar 

  117. 117.

    Liu, T. et al. Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy Environ. Sci. 11, 3275–3282 (2018).

    CAS  Google Scholar 

  118. 118.

    Zhou, Z. et al. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 3, 952–959 (2018). Together with Gasparini et al. ( Energy Environ. Sci. , 2017), this paper shows how the ternary strategy enables the fabrication of thick active layers for high-efficiency and scalable ternary blends.

    CAS  Google Scholar 

  119. 119.

    Jørgensen, M. et al. Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012).

    Google Scholar 

  120. 120.

    Li, N. et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 8, 14541 (2017).

    CAS  Google Scholar 

  121. 121.

    Heumueller, T. et al. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247–256 (2015).

    Google Scholar 

  122. 122.

    Hintz, H. et al. Photodegradation of P3HT−a systematic study of environmental factors. Chem. Mater. 23, 145–154 (2011).

    CAS  Google Scholar 

  123. 123.

    de Leeuw, D. M., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

    Google Scholar 

  124. 124.

    Salvador, M. et al. Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005–2016 (2017).

    CAS  Google Scholar 

  125. 125.

    Seemann, A. et al. Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 85, 1238–1249 (2011).

    CAS  Google Scholar 

  126. 126.

    Peters, C. H. et al. The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv. Mater. 24, 663–668 (2012).

    CAS  Google Scholar 

  127. 127.

    Ye, L. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17, 253–260 (2018).

    CAS  Google Scholar 

  128. 128.

    Diaz de Zerio Mendaza, A. et al. A fullerene alloy based photovoltaic blend with a glass transition temperature above 200 °C. J. Mater. Chem. A 5, 4156–4162 (2017).

    CAS  Google Scholar 

  129. 129.

    Su, W. et al. Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy 38, 510–517 (2017).

    CAS  Google Scholar 

  130. 130.

    Berny, S. et al. Solar trees: first large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 3, 1500342 (2016).

    Google Scholar 

  131. 131.

    Strohm, S. et al. P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy Environ. Sci. 11, 2225–2234 (2018).

    CAS  Google Scholar 

  132. 132.

    Zhang, T., Zhao, X., Yang, D., Tian, Y. & Yang, X. Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv. Energy Mater. 8, 1701691 (2018).

    Google Scholar 

  133. 133.

    Fan, B. et al. High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater. 8, 1703085 (2018).

    Google Scholar 

  134. 134.

    Hwang, Y. J., Li, H., Courtright, B. A. E., Subramaniyan, S. & Jenekhe, S. A. Nonfullerene polymer solar cells with 8.5% efficiency enabled by a new highly twisted electron acceptor dimer. Adv. Mater. 28, 124–131 (2016).

    CAS  Google Scholar 

  135. 135.

    Zhong, L. et al. High efficiency ternary nonfullerene polymer solar cells with two polymer donors and an organic semiconductor acceptor. Adv. Energy Mater. 7, 1602215 (2017).

    Google Scholar 

  136. 136.

    Li, Z. et al. 9.0% Power conversion efficiency from ternary all-polymer solar cells. Energy Environ. Sci. 10, 2212–2221 (2017).

    CAS  Google Scholar 

  137. 137.

    Nian, L. et al. Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. Energy Environ. Sci. 11, 3392–3399 (2018).

    CAS  Google Scholar 

  138. 138.

    Chen, Y. et al. From binary to ternary: improving the external quantum efficiency of small-molecule acceptor-based polymer solar cells with a minute amount of fullerene sensitization. Adv. Energy Mater. 7, 1700328 (2017).

    Google Scholar 

  139. 139.

    Chen, Y. et al. Achieving high-performance ternary organic solar cells through tuning acceptor alloy. Adv. Mater. 29, 1603154 (2017).

    Google Scholar 

  140. 140.

    Zhang, H. et al. Improved domain size and purity enables efficient all-small-molecule ternary solar cells. Adv. Mater. 29, 1703777 (2017).

    Google Scholar 

  141. 141.

    Cheng, P. et al. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 V and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater. 29, 1605216 (2017).

    Google Scholar 

  142. 142.

    Jiang, W. et al. Ternary nonfullerene polymer solar cells with 12.16% efficiency by introducing one acceptor with cascading energy level and complementary absorption. Adv. Mater. 30, 1703005 (2018).

    Google Scholar 

  143. 143.

    Xiao, Z., Jia, X. & Ding, L. Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. 62, 1562–1564 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the King Abdullah University of Science and Technology (KAUST) and thank the UK Engineering and Physical Sciences Research Council (EPSRC) for financial support (project EP/G037515/1, EP/M005143/1, ECFP7 and project SC2 (610115)). A.S. acknowledges support from the US National Science Foundation (CBET award no. 1510481).

Author information

Affiliations

Authors

Contributions

D.B. and N.G. researched data for the article. A.S. wrote the morphology-related sections. I.M. wrote the sections on chemical design and stability. N.G. wrote the charge transport and recombination section. D.B. wrote the sections on operating modes of TSCs, energetics and the introduction. All authors discussed, edited and reviewed the article before submission.

Corresponding author

Correspondence to Derya Baran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gasparini, N., Salleo, A., McCulloch, I. et al. The role of the third component in ternary organic solar cells. Nat Rev Mater 4, 229–242 (2019). https://doi.org/10.1038/s41578-019-0093-4

Download citation

Further reading

Search

Quick links