Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Ferroelectric negative capacitance

Abstract

The capacitor is a key element of electronic devices and is characterized by positive capacitance. However, a negative capacitance (NC) behaviour may occur in certain cases and implies a local voltage drop opposed to the overall applied bias. Therefore, a local NC response results in voltage enhancement across the rest of the circuit. Within a suitably designed heterostructure, ferroelectrics display such an NC effect, and various ferroelectric-based microelectronic and nanoelectronic devices have been developed, showing improved performance attributed to NC. However, the exact physical nature of the NC response and direct experimental evidence remain elusive or controversial thus far. In this Review, we discuss the physical mechanisms responsible for ferroelectric NC, tackling static and transient NC responses. We examine ferroelectric responses to voltage and charge, as well as ferroelectric switching, and discuss proof-of-concept experiments and possibilities for device implementation. Finally, we highlight different approaches for the optimization of the intrinsic NC response to maximize voltage amplification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Negative capacitance for voltage amplification.
Fig. 2: Negative capacitance regimes.
Fig. 3: Overscreening and voltage amplification.
Fig. 4: Multidomain state response.
Fig. 5: Experimental approaches to investigating negative capacitance.

References

  1. 1.

    Landau, L. & Lifshitz, E. Electrodynamics of Continuous Media (Pergamon, 1960).

  2. 2.

    Verman, L. C. Negative circuit constants. Proc. Inst. Radio Eng. 19, 676–681 (1931).

    Google Scholar 

  3. 3.

    Behr, L. & Tarpley, R. Design of resistors for precise high-frequency measurements. Proc. Inst. Radio Eng. 20, 1101–1113 (1932).

    Google Scholar 

  4. 4.

    Terman, F. E. Variable reactance circuit. US Patent 1950759 (1934).

  5. 5.

    Harty, J. The influence of depolarizers upon the photovoltaic effect in cells containing grignard reagents. J. Phys. Chem. 39, 355–370 (1935).

    CAS  Google Scholar 

  6. 6.

    Bening, F. Negative Widerstände in Elektronischen Schaltungen (Verlag Technik, 1971).

  7. 7.

    Landauer, R. Can capacitance be negative? Collect. Phenom. 2, 167–170 (1976).

    Google Scholar 

  8. 8.

    Bratkovsky, A. M. & Levanyuk, A. P. Very large dielectric response of thin ferroelectric films with the dead layers. Phys. Rev. B 63, 2–5 (2001).

    Google Scholar 

  9. 9.

    Bratkovsky, A. M. & Levanyuk, A. P. Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006).

    Google Scholar 

  10. 10.

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    CAS  Google Scholar 

  11. 11.

    Zhirnov, V. V. & Cavin, R. K. Nanoelectronics: negative capacitance to the rescue? Nat. Nanotechnol. 3, 77–78 (2008).

    CAS  Google Scholar 

  12. 12.

    Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor! Science 327, 1600–1601 (2010).

    CAS  Google Scholar 

  13. 13.

    Catalan, G., Jiménez, D. & Gruverman, A. Ferroelectrics: negative capacitance detected. Nat. Mater. 14, 137–139 (2015).

    CAS  Google Scholar 

  14. 14.

    Ionescu, A. M. Negative capacitance gives a positive boost. Nat. Nanotechnol. 13, 7–8 (2018).

    CAS  Google Scholar 

  15. 15.

    Boescke, T. S. et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).

    Google Scholar 

  16. 16.

    Müller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

    Google Scholar 

  17. 17.

    Mueller, S. et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).

    CAS  Google Scholar 

  18. 18.

    Park, M. H. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015).

    CAS  Google Scholar 

  19. 19.

    Abele, N. et al. Suspended-gate mosfet: bringing new mems functionality into solid-state mos transistor. Presented at the 2005 IEEE International Electron Devices Meeting (2005).

  20. 20.

    Jain, A. & Alam, M. A. Stability constraints define the minimum subthreshold swing of a negative capacitance field-effect transistor. IEEE Trans. Electron Devices 61, 2235–2242 (2014).

    Google Scholar 

  21. 21.

    Li, L. et al. Very large capacitance enhancement in a two-dimensional electron system. Science 332, 825–828 (2011).

    CAS  Google Scholar 

  22. 22.

    Cano, A. & Jiménez, D. Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97, 10–12 (2010).

    Google Scholar 

  23. 23.

    Mehta, R. R., Silverman, B. D. & Jacobs, J. T. Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973).

    CAS  Google Scholar 

  24. 24.

    Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    CAS  Google Scholar 

  25. 25.

    Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    CAS  Google Scholar 

  26. 26.

    Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586–1588 (2003).

    CAS  Google Scholar 

  27. 27.

    Dawber, M. et al. Tailoring the properties of artificially layered ferroelectric superlattices. Adv. Mater. 19, 4153 (2007).

    CAS  Google Scholar 

  28. 28.

    Saeidi, A. et al. Negative capacitance field effect transistors; capacitance matching and non-hysteretic operation. Presented at the 47th European Solid-State Device Research Conference (ESSDERC) (2017).

  29. 29.

    De Guerville, F., Luk’yanchuk, I., Lahoche, L. & El Marssi, M. Modeling of ferroelectric domains in thin films and superlattices. Mater. Sci. Eng. B 120, 16–20 (2005).

    Google Scholar 

  30. 30.

    Luk’yanchuk, I., Sené, A. & Vinokur, V. M. Electrodynamics of ferroelectric films with negative capacitance. Phys. Rev. B 98, 024107 (2018).

    Google Scholar 

  31. 31.

    Íñiguez et al. General theory of ferroelectric negative capacitance. In the press (2019).

  32. 32.

    Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    CAS  Google Scholar 

  33. 33.

    Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    Google Scholar 

  34. 34.

    Ponomareva, I., Bellaiche, L. & Resta, R. Dielectric anomalies in ferroelectric nanostructures. Phys. Rev. Lett. 99, 227601 (2007).

    CAS  Google Scholar 

  35. 35.

    Luk’yanchuk, I., Tikhonov, Y., Sené, A., Razumnaya, A. & Vinokur, V. M. Harnessing ferroelectric domains for negative capacitance. Commun. Phys. 2, 22 (2019).

    Google Scholar 

  36. 36.

    Ricinschi, D. et al. Analysis of ferroelectric switching in finite media as a landau-type phase transition. J. Phys. Condens. Matter 10, 477 (1998).

    CAS  Google Scholar 

  37. 37.

    Khan, A. I. et al. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 14, 182–186 (2015).

    CAS  Google Scholar 

  38. 38.

    Ng, K., Hillenius, S. J. & Gruverman, A. Transient nature of negative capacitance in ferroelectric field-effect transistors. Solid State Commun. 265, 12–14 (2017).

    CAS  Google Scholar 

  39. 39.

    Chang, S.-C., Avci, U. E., Nikonov, D. E., Manipatruni, S. & Young, I. A. Physical origin of transient negative capacitance in a ferroelectric capacitor. Phys. Rev. Appl. 9, 014010 (2018).

    CAS  Google Scholar 

  40. 40.

    Hoffmann, M. et al. Ferroelectric negative capacitance domain dynamics. J. Appl. Phys. 123, 184101 (2018).

    Google Scholar 

  41. 41.

    Hoffmann, M., Pesic, M., Slesazeck, S., Schroeder, U. & Mikolajick, T. On the stabilization of ferroelectric negative capacitance in nanoscale devices. Nanoscale 10, 10891–10899 (2018).

    CAS  Google Scholar 

  42. 42.

    Ducharme, S. et al. Intrinsic ferroelectric coercive field. Phys. Rev. Lett. 84, 175–178 (2000).

    CAS  Google Scholar 

  43. 43.

    Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    CAS  Google Scholar 

  44. 44.

    Highland, M. J. et al. Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3. Phys. Rev. Lett. 105, 167601 (2010).

    Google Scholar 

  45. 45.

    Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    CAS  Google Scholar 

  46. 46.

    Song, S. J. et al. Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors. Sci. Rep. 6, 1–6 (2016).

    Google Scholar 

  47. 47.

    Kim, Y. J. et al. Voltage drop in a ferroelectric single layer capacitor by retarded domain nucleation. Nano Lett. 17, 7796–7802 (2017).

    CAS  Google Scholar 

  48. 48.

    Saha, A. K., Datta, S. & Gupta, S. K. “Negative capacitance” in resistor-ferroelectric and ferroelectric-dielectric networks: apparent or intrinsic? J. Appl. Phys. 123, 105102 (2018).

    Google Scholar 

  49. 49.

    Sluka, T., Mokry, P. & Setter, N. Static negative capacitance of a ferroelectric nano-domain nucleus. Appl. Phys. Lett. 111, 152902 (2017).

    Google Scholar 

  50. 50.

    Saha, A., Sharma, P., Dabo, I., Datta, S. & Gupta, S. Ferroelectric transistor model based on self-consistent solution of 2d poisson’s, non-equilibrium green’s function and multi-domain landau khalatnikov equations. Presented at the 2017 Electron Devices Meeting (IEDM) (2017).

  51. 51.

    Smith, S., Chatterjee, K. & Salahuddin, S. Multidomain phase-field modeling of negative capacitance switching transients. IEEE Trans. Electron Devices 65, 295–298 (2017).

    Google Scholar 

  52. 52.

    Hoffmann, M. et al. Ferroelectric negative capacitance domain dynamics. Appl. Phys. Rev. 123, 184101 (2018).

    Google Scholar 

  53. 53.

    Jonscher, A. K. The physical origin of negative capacitance. J. Chem. Soc. Faraday Trans. 2 82, 75 (1986).

    CAS  Google Scholar 

  54. 54.

    Ershov, M. et al. Negative capacitance effect in semiconductor devices. IEEE Trans. Electron Devices 45, 2196–2206 (1998).

    Google Scholar 

  55. 55.

    Kim, D. J. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 237602 (2005).

    CAS  Google Scholar 

  56. 56.

    Zubko, P. et al. On the persistence of polar domains in ultrathin ferroelectric capacitors. J. Phys.: Condens. Matter 29, 284001 (2017).

    Google Scholar 

  57. 57.

    Islam Khan, A. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    Google Scholar 

  58. 58.

    Appleby, D. J. R. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).

    CAS  Google Scholar 

  59. 59.

    Gao, W. et al. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014).

    CAS  Google Scholar 

  60. 60.

    Kim, Y. J. et al. Frustration of negative capacitance in Al2O3/BaTiO3 bilayer structure. Sci. Rep. 6, 19039 (2016).

    CAS  Google Scholar 

  61. 61.

    Kim, Y. J. et al. Time-dependent negative capacitance effects in Al2O3/BaTiO3 bilayers. Nano Lett. 16, 4375–4381 (2016).

    CAS  Google Scholar 

  62. 62.

    Rusu, A., Saeidi, A. & Ionescu, A. M. Condition for the negative capacitance effect in metal–ferroelectric–insulator–semiconductor devices. Nanotechnology 27, 115201 (2016).

    Google Scholar 

  63. 63.

    Tabata, H., Tanaka, H. & Kawai, T. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Appl. Phys. Lett. 65, 1970–1972 (1994).

    CAS  Google Scholar 

  64. 64.

    Erbil, A., Kim, Y. & Gerhardt, R. A. Giant permittivity in epitaxial ferroelectric heterostructures. Phys. Rev. Lett. 77, 1628–1631 (1996).

    CAS  Google Scholar 

  65. 65.

    Corbett, M. H., Bowman, R. M., Gregg, J. M. & Foord, D. T. Enhancement of dielectric constant and associated coupling of polarization behavior in thin film relaxor superlattices. Appl. Phys. Lett. 79, 815–817 (2001).

    CAS  Google Scholar 

  66. 66.

    Park, J. D. & Oh, T. S. Characteristics of Pt/SBT/ZrO2/Si structure for metal ferroelectric insulator semiconductor field effect transistor applications. Integr. Ferroelectr. 34, 121–130 (2001).

    CAS  Google Scholar 

  67. 67.

    Kim, L., Jung, D., Kim, J., Kim, Y. S. & Lee, J. Strain manipulation in BaTiO3/SrTiO3 artificial lattice toward high dielectric constant and its nonlinearity. Appl. Phys. Lett. 82, 2118–2120 (2003).

    CAS  Google Scholar 

  68. 68.

    Catalan, G., O’Neill, D., Bowman, R. M. & Gregg, J. M. Relaxor features in ferroelectric superlattices: a Maxwell–Wagner approach. Appl. Phys. Lett. 77, 3078–3080 (2000).

    CAS  Google Scholar 

  69. 69.

    O’Neill, D., Bowman, R. M. & Gregg, J. M. Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 77, 1520–1522 (2000).

    Google Scholar 

  70. 70.

    Sun, F.-C., Kesim, M. T., Espinal, Y. & Alpay, S. P. Are ferroelectric multilayers capacitors in series? J. Mater. Sci. 51, 499–505 (2016).

    CAS  Google Scholar 

  71. 71.

    Khan, A. I. et al. Negative capacitance in short-channel FinFETs externally connected to an epitaxial ferroelectric capacitor. IEEE Electron Device Lett. 37, 111–114 (2016).

    Google Scholar 

  72. 72.

    Jo, J. et al. Negative capacitance in organic/ferroelectric capacitor to implement steep switching MOSdevices. Nano Lett. 15, 4553–4556 (2015).

    CAS  Google Scholar 

  73. 73.

    Jo, J. & Shin, C. Negative capacitance field effect transistor with hysteresis-free sub-60-mV/decade switching. IEEE Electron Device Lett. 37, 245–248 (2016).

    CAS  Google Scholar 

  74. 74.

    Ko, E., Lee, H., Goh, Y., Jeon, S. & Shin, C. Sub-60-mV/decade negative capacitance FinFET with sub-10-nm hafnium-based. IEEE J. Electron Devices Soc. 5, 10–13 (2017).

    Google Scholar 

  75. 75.

    Saeidi, A. et al. Negative capacitance as performance booster for tunnel FETs and MOSFETs: an experimental study. IEEE Electron Device Lett. 38, 1485–1488 (2017).

    CAS  Google Scholar 

  76. 76.

    Saedi, S. et al. Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance. Nanotechnology 29, 095202 (2018).

    Google Scholar 

  77. 77.

    Salvatore, G. A., Bouvet, D. & Ionescu, A. M. Demonstration of subthrehold swing smaller than 60 mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack. Presented at the 2008 IEEE International Electron Devices Meeting (2008).

  78. 78.

    Rusu, A., Salvatore, G. A., Jimenez, D. & Ionescu, A. M. Metal-ferroelectric-metal-oxide-semiconductor field effect transistor with sub-60 mV/decade subthreshold swing and internal voltage amplification. Presented at the 2010 International Electron Devices Meeting (2010).

  79. 79.

    Salvatore, G. A. et al. Ferroelectric transistors with improved characteristics at high temperature. Appl. Phys. Lett. 97, 053503 (2010).

    Google Scholar 

  80. 80.

    Dasgupta, S. et al. Sub-kT/q switching in strong inversion in PbZr0.52Ti0.48O3-gated negative capacitance FETs. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 43–48 (2015).

    Google Scholar 

  81. 81.

    Park, J. H. et al. Sub-kT/q subthreshold-slope using negative capacitance in low-temperature polycrystalline-silicon thin-film transistor. Sci. Rep. 6, 24734 (2016).

    CAS  Google Scholar 

  82. 82.

    Mazet, L., Yang, S. M., Kalinin, S. V., Schamm-Chardon, S. & Dubourdieu, C. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 16, 036005 (2015).

    Google Scholar 

  83. 83.

    Robertson, J. & Chen, C. W. Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate. Appl. Phys. Lett. 74, 1168–1170 (1999).

    CAS  Google Scholar 

  84. 84.

    Cheng, C. H. & Chin, A. Low-voltage steep turn-on pMOSFET using ferroelectric high-κ gate dielectric. IEEE Electron Device Lett. 35, 274–276 (2014).

    CAS  Google Scholar 

  85. 85.

    McGuire, F. A. et al. Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett. 17, 4801–4806 (2017).

    CAS  Google Scholar 

  86. 86.

    Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 2017, 1 (2017).

    Google Scholar 

  87. 87.

    Krivokapic, Z. et al. 14 nm ferroelectric finfet technology with steep subthreshold slope for ultra low power applications. Presented at the 2017 IEEE International Electron Devices Meeting (IEDM) (2017).

  88. 88.

    Krivokapic, Z. et al. Ncfet: opportunities & challenges for advanced technology nodes. Presented at the 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S) (2017).

  89. 89.

    Misirlioglu, I. B., Yildiz, M. & Sendur, K. Domain control of carrier density at a semiconductor-ferroelectric interface. Sci. Rep. 5, 14740 (2015).

    CAS  Google Scholar 

  90. 90.

    Misirlioglu, I. B., Sen, C., Kesim, M. T. & Alpay, S. P. Low-voltage ferroelectric-paraelectric superlattices as gate materials for field-effect transistors. J. Mater. Sci. 51, 487–498 (2016).

    CAS  Google Scholar 

  91. 91.

    Frank, D. J. et al. The quantum metal ferroelectric field-effect transistor. IEEE Trans. Electron Devices 61, 2145–2153 (2014).

    CAS  Google Scholar 

  92. 92.

    Khan, A. I., Radhakrishna, U., Chatterjee, K., Salahuddin, S. & Antoniadis, D. A. Negative capacitance behavior in a leaky ferroelectric. IEEE Trans. Electron Devices 63, 4416–4422 (2016).

    Google Scholar 

  93. 93.

    Duarte, J. P. et al. Compact models of negative-capacitance finfets: lumped and distributed charge models. Presented at the 2016 IEEE International Electron Devices Meeting (IEDM) (2016).

  94. 94.

    Pahwa, G., Dutta, T., Agarwal, A. & Chauhan, Y. S. Physical insights on negative capacitance transistors in nonhysteresis and hysteresis regimes: MFMIS versus MFIS structures. IEEE Trans. Electron Devices 65, 867–873 (2018).

    CAS  Google Scholar 

  95. 95.

    Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat. Mater. 8, 392 (2009).

    CAS  Google Scholar 

  96. 96.

    Si, M., Yang, L., Zhou, H. & Ye, P. D. β-Ga2O3 nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega 2, 7136–7140 (2017).

    CAS  Google Scholar 

  97. 97.

    McGuire, F. A., Cheng, Z., Price, K. & Franklin, A. D. Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer. Appl. Phys. Lett. 109, 093101 (2016).

    Google Scholar 

  98. 98.

    Liu, F. et al. Negative capacitance transistors with monolayer black phosphorus. NPJ Quantum Mater. 1, 16004 (2016).

    Google Scholar 

  99. 99.

    Si, M. et al. Steep-slope WSe2 negative capacitance field-effect transistor. Nanoletters 18, 3682–3687 (2018).

    CAS  Google Scholar 

  100. 100.

    Zhou, H. et al. Negative capacitance, n-channel, Si FinFETs: bi-directional sub-60 mV/dec, negative DIBL, negative differential resistance and improved short channel effect. Presented at the 2018 IEEE Symposium on VLSI Technology (2018).

  101. 101.

    Kwon, D. et al. Improved subthreshold swing and short channel effect in FDSOI n-channel negative capacitance field effect transistors. IEEE Electron Device Lett. 39, 300–303 (2018).

    CAS  Google Scholar 

  102. 102.

    Yu, Z. et al. Negative capacitance 2D MoS2 transistors with sub-60 mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free. Presented at the 2017 IEEE International Electron Devices Meeting (IEDM) (2017).

  103. 103.

    Houdt, J. V. & Roussel, P. Physical model for the steep subthreshold slope in ferroelectric FETs. IEEE Electron Device Lett. 39, 877–880 (2018).

    Google Scholar 

  104. 104.

    Salvatore, G. A., Rusu, A. & Ionescu, A. M. Experimental confirmation of temperature dependent negative capacitance in ferroelectric field effect transistor. Appl. Phys. Lett. 100, 163504 (2012).

    Google Scholar 

  105. 105.

    Khan, A. I. et al. Differential voltage amplification from ferroelectric negative capacitance. Appl. Phys. Lett. 111, 253501 (2017).

    Google Scholar 

  106. 106.

    Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    CAS  Google Scholar 

  107. 107.

    Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 112, 247603 (2014).

    Google Scholar 

  108. 108.

    Jimenez, D., Miranda, E. & Godoy, A. Analytic model for the surface potential and drain current in negative capacitance field-effect transistors. IEEE Trans. Electron Devices 57, 2405–2409 (2010).

    Google Scholar 

  109. 109.

    Xiao, Y. et al. Simulation of electrical characteristics in negative capacitance surrounding-gate ferroelectric field-effect transistors. Appl. Phys. Lett. 101, 253511 (2012).

    Google Scholar 

  110. 110.

    Yuan, Z. C. et al. Switching-speed limitations of ferroelectric negative-capacitance FETs. IEEE Trans. Electron Devices 63, 4046–4052 (2016).

    Google Scholar 

  111. 111.

    Jiang, C., Liang, R., Wang, J. & Xu, J. Simulation-based study of negative capacitance double-gate junctionless transistors with ferroelectric gate dielectric. Solid State Electron. 126, 130–135 (2016).

    CAS  Google Scholar 

  112. 112.

    Lin, C.-I., Khan, A. I., Salahuddin, S. & Hu, C. Effects of the variation of ferroelectric properties on negative capacitance FET characteristics. IEEE Trans. Electron Devices 63, 2197 (2016).

    Google Scholar 

  113. 113.

    Aziz, A., Ghosh, S. G., Datta, S. & Gupta, S. K. Physics-based circuit-compatible spice model for ferroelectric transistors. IEEE Electron. Device Lett. 37, 805 (2016).

    CAS  Google Scholar 

  114. 114.

    Li, Y., Kang, Y. & Gong, X. Evaluation of negative capacitance ferroelectric MOSFET for analog circuit applications. IEEE Trans. Electron Devices 64, 4317–4321 (2017).

    CAS  Google Scholar 

  115. 115.

    Pahwa, G., Dutta, T., Agarwal, A. & Chauhan, Y. S. Compact model for ferroelectric negative capacitance transistor with MFIS structure. IEEE Trans. Electron Devices 64, 1366–1374 (2017).

    Google Scholar 

  116. 116.

    Chatterjee, K., Rosner, A. J. & Salahuddin, S. Intrinsic speed limit of negative capacitance transistors. IEEE Electron Device Lett. 38, 1328–1330 (2017).

    CAS  Google Scholar 

  117. 117.

    Rasool, R., Rather, G. & ud-Din, N. Analytic model for the electrical properties of negative capacitance metal-ferroelectric insulator silicon (MFIS) capacitor. Integr. Ferroelectr. 185, 93–101 (2017).

    CAS  Google Scholar 

  118. 118.

    Zhang, X., Lam, K.-T., Low, K. L., Yeo, Y.-C. & Liang, G. Nanoscale fets simulation based on full-complex-band structure and self-consistently solved atomic potential. IEEE Trans. Electron Devices 64, 58–65 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

For useful feedback and illuminating discussions, the authors thank L. Bellaiche, E. Defay, P. Garcia-Fernández, D. Jiménez, S. Salahuddin, J. F. Scott and M. Stengel. The work was funded by the Luxembourg National Research Fund (grant FNR/C15/MS/10458889 “NEWALLS”, J.Í.), the UK Engineering and Physical Sciences Research Council (EPSRC) (grant EP/M007073/1, P.Z.), the European Commission (grant ENGIMA-H2020-MSCA-RISE-2017, I.L.) and ETH-Zurich (A.C.). Finally, a good part of this Review was completed during TOPO2018, the International Workshop on Topological Structures in Ferroic Materials, sponsored and hosted by the International Institute of Physics (IIP) of the Federal University of Rio Grande do Norte (UFRN) (Natal, Brazil); the authors are grateful to the IIP for the hospitality and excellent work atmosphere.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this article.

Corresponding author

Correspondence to Jorge Íñiguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Íñiguez, J., Zubko, P., Luk’yanchuk, I. et al. Ferroelectric negative capacitance. Nat Rev Mater 4, 243–256 (2019). https://doi.org/10.1038/s41578-019-0089-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing