Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crystal engineering with DNA

Abstract

This Review chronicles over two decades of research into creating a genetic code for crystal engineering. Rather than directing biological processes, this code uses synthetic forms of DNA to programme the assembly of nanoparticles and microparticles into 1D, 2D and 3D crystalline architectures, in which almost every aspect of the resultant structures can be systematically controlled. Within this conceptual framework, the structural and functional advances are described in an effort to define the present level of sophistication and to predict future directions of the platform. These advances include exotic structures with programmable lattice symmetries and well-defined crystal habits, responsive materials that leverage the intrinsic properties of nucleic acids to manipulate structures on demand, nanoparticle superlattices grown epitaxially from surfaces and colloidal crystals that offer insights into light–matter interactions. Looking forward, we challenge the community to leverage the extraordinary structural control afforded by crystal engineering with DNA to synthesize classes of functional materials that push beyond what has been possible with naturally occurring crystalline materials or those made by more conventional strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of crystal formation from building blocks composed of a particle core and a shell of DNA ligands attached to the particle surface.
Fig. 2: Three DNA designs that are predominately used for crystal engineering.
Fig. 3: A library of lattice symmetries can be accessed by changing the particle core and DNA shell.
Fig. 4: Building blocks with different shapes and surface chemistries direct the formation of distinct crystal symmetries.
Fig. 5: The ability to realize defined crystal habits is dependent on the symmetry engineering approach.
Fig. 6: Building block anisotropy can be achieved with dense or discrete DNA interactions.
Fig. 7: A template-directed approach can control the placement of building blocks on a surface in the formation of complex structures.

Similar content being viewed by others

References

  1. Phillips, R. B., Kondev, J., Theriot, J., Orme, N. & Garcia, H. Physical Biology of the Cell 107–110 (Garland Science, 2009).

  2. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  Google Scholar 

  3. Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).

    Article  CAS  Google Scholar 

  4. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  Google Scholar 

  5. Letsinger, R. L. & Mahadevan, V. Oligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 87, 3526–3527 (1965).

    Article  CAS  Google Scholar 

  6. Matteucci, M. D. & Caruthers, M. H. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103, 3185–3191 (1981).

    Article  CAS  Google Scholar 

  7. Mirkin, C. A., Letsinger, L., Mucic, R. C. & Storhoff, J. J. A. DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  8. Chen, J. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    Article  CAS  Google Scholar 

  9. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  10. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  11. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  12. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  13. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  Google Scholar 

  14. O’Brien, M. N., Lin, H.-X., Girard, M., de la Cruz, M. O. & Mirkin, C. A. Programming colloidal crystal habit with anisotropic nanoparticle building blocks and DNA bonds. J. Am. Chem. Soc. 138, 14562–14565 (2016).

    Article  CAS  Google Scholar 

  15. Li, X., Yang, X., Qi, J. & Seeman, N. C. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996).

    Article  CAS  Google Scholar 

  16. Seeman, N. C. in NanoBiotechnology Protocols (eds Rosenthal, S. J. & Wright, D. W.) 143–166 (Humana Press, 2005).

  17. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010).

    Article  CAS  Google Scholar 

  18. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  CAS  Google Scholar 

  19. Ducrot, E., He, M., Yi, G.-R. & Pine, D. J. Colloidal alloys with preassembled clusters and spheres. Nat. Mater. 16, 652–657 (2017).

    Article  CAS  Google Scholar 

  20. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  21. Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. Science 352, 1534 (2016).

    Article  CAS  Google Scholar 

  22. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  23. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).

    Article  CAS  Google Scholar 

  24. Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    Article  CAS  Google Scholar 

  25. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  CAS  Google Scholar 

  26. Macfarlane, R. J., O’Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new “table of elements”. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).

    Article  CAS  Google Scholar 

  27. Cutler, J. I., Auyeung, E. & Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).

    Article  CAS  Google Scholar 

  28. Choi, C. L. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

    Article  CAS  Google Scholar 

  29. Leunissen, M. E., Dreyfus, R., Sha, R., Seeman, N. C. & Chaikin, P. M. Quantitative study of the association thermodynamics and kinetics of DNA-coated particles for different functionalization schemes. J. Am. Chem. Soc. 132, 1903–1913 (2010).

    Article  CAS  Google Scholar 

  30. Michele, L. D. & Eiser, E. Developments in understanding and controlling self assembly of DNA-functionalized colloids. Phys. Chem. Chem. Phys. 15, 3115–3129 (2013).

    Article  CAS  Google Scholar 

  31. Silvera Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).

    Article  CAS  Google Scholar 

  32. Zhang, X., Wang, R. & Xue, G. Programming macro-materials from DNA-directed self-assembly. Soft Matter 11, 1862–1870 (2015).

    Article  CAS  Google Scholar 

  33. Manoharan, V. N. Colloidal matter: packing, geometry, and entropy. Science 349, 1253751 (2015).

    Article  CAS  Google Scholar 

  34. Rogers, W. B., Shih, W. M. & Manoharan, V. N. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1, 16008 (2016).

    Article  CAS  Google Scholar 

  35. Angioletti-Uberti, S., Mognetti, B. M. & Frenkel, D. Theory and simulation of DNA-coated colloids: a guide for rational design. Phys. Chem. Chem. Phys. 18, 6373–6393 (2016).

    Article  CAS  Google Scholar 

  36. Girard, M., Millan, J. A. & de la Cruz, M. O. DNA-driven assembly: from polyhedral nanoparticles to proteins. Annu. Rev. Mater. Res. 47, 33–49 (2017).

    Article  CAS  Google Scholar 

  37. Mertz, J. E. & Davis, R. W. Cleavage of DNA by R1 restriction endonuclease generates cohesive ends. Proc. Natl Acad. Sci. USA 69, 3370–3374 (1972).

    Article  CAS  Google Scholar 

  38. Lodish, H. F. et al. Molecular Cell Biology 8th edn (W. H. Freeman, NY, 2016).

  39. O’Brien, M. N., Jones, M. R. & Mirkin, C. A. The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proc. Natl Acad. Sci. USA 113, 11717–11725 (2016).

    Article  CAS  Google Scholar 

  40. Li, T., Senesi, A. J. & Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116, 11128–11180 (2016).

    Article  CAS  Google Scholar 

  41. Mergny, J.-L. & Lacroix, L. Analysis of thermal melting curves. Oligonucleotides 13, 515–537 (2003).

    Article  CAS  Google Scholar 

  42. Breslauer, K. J., Frank, R., Blöcker, H. & Marky, L. A. Predicting DNA duplex stability from the base sequence. Proc. Natl Acad. Sci. USA 83, 3746–3750 (1986).

    Article  CAS  Google Scholar 

  43. O’Brien, M. N., Brown, K. A. & Mirkin, C. A. Critical undercooling in DNA-mediated nanoparticle crystallization. ACS Nano 10, 1363–1368 (2016).

    Article  CAS  Google Scholar 

  44. Storhoff, J. J. et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122, 4640–4650 (2000).

    Article  CAS  Google Scholar 

  45. Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).

    Article  CAS  Google Scholar 

  46. Valignat, M.-P., Theodoly, O., Crocker, J. C., Russel, W. B. & Chaikin, P. M. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl Acad. Sci. USA 102, 4225–4229 (2005).

    Article  CAS  Google Scholar 

  47. Park, S. Y., Gibbs-Davis, J. M., Nguyen, S. T. & Schatz, G. C. Sharp melting in DNA-linked nanostructure systems: thermodynamic models of DNA-linked polymers. J. Phys. Chem. B 111, 8785–8791 (2007).

    Article  CAS  Google Scholar 

  48. Velev, O. D. Self-assembly of unusual nanoparticle crystals. Science 312, 376–377 (2006).

    Article  CAS  Google Scholar 

  49. Hagan, M. F., Elrad, O. M. & Jack, R. L. Mechanisms of kinetic trapping in self-assembly and phase transformation. J. Chem. Phys. 135, 104115 (2011).

    Article  CAS  Google Scholar 

  50. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  51. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  52. Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  Google Scholar 

  53. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 35, 1154–1196 (1996).

    Article  Google Scholar 

  54. Rogers, W. B. & Crocker, J. C. Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl Acad. Sci. USA 108, 15687–15692 (2011).

    Article  CAS  Google Scholar 

  55. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  Google Scholar 

  56. Li, T. I. N. G., Sknepnek, R., Macfarlane, R. J., Mirkin, C. A. & de la Cruz, M. O. Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. Nano Lett. 12, 2509–2514 (2012).

    Article  CAS  Google Scholar 

  57. Angioletti-Uberti, S., Mognetti, B. M. & Frenkel, D. Re-entrant melting as a design principle for DNA-coated colloids. Nat. Mater. 11, 518–522 (2012).

    Article  CAS  Google Scholar 

  58. Li, T. I. N. G. & Sknepnek, R. & Olvera de la Cruz, M. Thermally active hybridization drives the crystallization of DNA-functionalized nanoparticles. J. Am. Chem. Soc. 135, 8535–8541 (2013).

    Article  CAS  Google Scholar 

  59. Park, S.-J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375–12380 (2004).

    Article  CAS  Google Scholar 

  60. Lin, M. Y. et al. Universality in colloid aggregation. Nature 339, 360–362 (1989).

    Article  CAS  Google Scholar 

  61. Kim, A. J., Biancaniello, P. L. & Crocker, J. C. Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006).

    Article  CAS  Google Scholar 

  62. Schade, N. B. et al. Tetrahedral colloidal clusters from random parking of bidisperse spheres. Phys. Rev. Lett. 110, 148303 (2013).

    Article  CAS  Google Scholar 

  63. van der Meulen, S. A. J. & Leunissen, M. E. Solid colloids with surface-mobile DNA linkers. J. Am. Chem. Soc. 135, 15129–15134 (2013).

    Article  CAS  Google Scholar 

  64. Senesi, A. J. et al. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices. Adv. Mater. 26, 7235–7240 (2014).

    Article  CAS  Google Scholar 

  65. Zhang, Y., Lu, F., Yager, K. G., van der Lelie, D. & Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 8, 865–872 (2013).

    Article  CAS  Google Scholar 

  66. Macfarlane, R. J. et al. Assembly and organization processes in DNA-directed colloidal crystallization. Proc. Natl Acad. Sci. USA 106, 10493–10498 (2009).

    Article  CAS  Google Scholar 

  67. Hill, H. D. et al. Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers. Nano Lett. 8, 2341–2344 (2008).

    Article  CAS  Google Scholar 

  68. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  69. Thaner, R. V. et al. Entropy-driven crystallization behavior in DNA-mediated nanoparticle assembly. Nano Lett. 15, 5545–5551 (2015).

    Article  CAS  Google Scholar 

  70. O’Brien, M. N. et al. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proc. Natl Acad. Sci. USA 113, 10485–10490 (2016).

    Article  CAS  Google Scholar 

  71. Wang, M. X. et al. Altering DNA-programmable colloidal crystallization paths by modulating particle repulsion. Nano Lett. 17, 5126–5132 (2017).

    Article  CAS  Google Scholar 

  72. Kuriyan, J., Konforti, B. & Wemmer, D. The Molecules of Life: Physical and Chemical Principles Vol. 1 (Garland Science, Taylor & Francis Group, 2013).

  73. Tinland, B., Pluen, A., Sturm, J. & Weill, G. Persistence length of single-stranded DNA. Macromolecules 30, 5763–5765 (1997).

    Article  CAS  Google Scholar 

  74. Marko, J. F. & Cocco, S. The micromechanics of DNA. Phys. World 16, 37 (2003).

    Article  CAS  Google Scholar 

  75. Brinkers, S., Dietrich, H. R. C., de Groote, F. H., Young, I. T. & Rieger, B. The persistence length of double stranded DNA determined using dark field tethered particle motion. J. Chem. Phys. 130, 215105 (2009).

    Article  CAS  Google Scholar 

  76. Milner, S. T. Polymer brushes. Science 251, 905–914 (1991).

    Article  CAS  Google Scholar 

  77. Maye, M. M., Nykypanchuk, D., van der Lelie, D. & Gang, O. A simple method for kinetic control of DNA-induced nanoparticle assembly. J. Am. Chem. Soc. 128, 14020–14021 (2006).

    Article  CAS  Google Scholar 

  78. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    Article  CAS  Google Scholar 

  79. Dreyfus, R. et al. Aggregation-disaggregation transition of DNA-coated colloids: experiments and theory. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 041404 (2010).

    Article  CAS  Google Scholar 

  80. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  81. Macfarlane, R. J., Jones, M. R., Lee, B., Auyeung, E. & Mirkin, C. A. Topotactic interconversion of nanoparticle superlattices. Science 341, 1222–1225 (2013).

    Article  CAS  Google Scholar 

  82. O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 14, 833–839 (2015).

    Article  CAS  Google Scholar 

  83. Lin, H. et al. Clathrate colloidal crystals. Science 355, 931–935 (2017).

    Article  CAS  Google Scholar 

  84. Jones, M. R. et al. Deterministic symmetry breaking of plasmonic nanostructures enabled by DNA-programmable assembly. Nano Lett. 17, 5830–5835 (2017).

    Article  CAS  Google Scholar 

  85. Milam, V. T., Hiddessen, A. L., Crocker, J. C., Graves, D. J. & Hammer, D. A. DNA-driven assembly of bidisperse, micron-sized colloids. Langmuir 19, 10317–10323 (2003).

    Article  CAS  Google Scholar 

  86. Casey, M. T. et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat. Commun. 3, 1209 (2012).

    Article  CAS  Google Scholar 

  87. Rogers, W. B. & Manoharan, V. N. Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).

    Article  CAS  Google Scholar 

  88. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    Article  CAS  Google Scholar 

  89. Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005).

    Article  CAS  Google Scholar 

  90. Soto, C. M., Srinivasan, A. & Ratna, B. R. Controlled assembly of mesoscale structures using DNA as molecular bridges. J. Am. Chem. Soc. 124, 8508–8509 (2002).

    Article  CAS  Google Scholar 

  91. Kim, A. J., Scarlett, R., Biancaniello, P. L., Sinno, T. & Crocker, J. C. Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. Nat. Mater. 8, 52–55 (2008).

    Article  CAS  Google Scholar 

  92. Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Article  CAS  Google Scholar 

  93. Martinez-Veracoechea, F. J., Mladek, B. M., Tkachenko, A. V. & Frenkel, D. Design rule for colloidal crystals of DNA-functionalized particles. Phys. Rev. Lett. 107, 045902 (2011).

    Article  CAS  Google Scholar 

  94. Biancaniello, P. L., Crocker, J. C., Hammer, D. A. & Milam, V. T. DNA-mediated phase behavior of microsphere suspensions. Langmuir 23, 2688–2693 (2007).

    Article  CAS  Google Scholar 

  95. Rogers, W. B., Sinno, T. & Crocker, J. C. Kinetics and non-exponential binding of DNA-coated colloids. Soft Matter 9, 6412–6417 (2013).

    Article  CAS  Google Scholar 

  96. Martinez-Veracoechea, F. J. et al. Designing stimulus-sensitive colloidal walkers. Soft Matter 10, 3463–3470 (2014).

    Article  CAS  Google Scholar 

  97. Wang, Y. et al. Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015).

    Article  CAS  Google Scholar 

  98. Wang, Y., Jenkins, I. C., McGinley, J. T., Sinno, T. & Crocker, J. C. Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 14173 (2017).

    Article  CAS  Google Scholar 

  99. Wu, K.-T. et al. Kinetics of DNA-coated sticky particles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 022304 (2013).

    Article  CAS  Google Scholar 

  100. Parak, W. J. et al. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett. 3, 33–36 (2003).

    Article  CAS  Google Scholar 

  101. Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78, 8313–8318 (2006).

    Article  CAS  Google Scholar 

  102. Fong, L.-K., Wang, Z., Schatz, G. C., Luijten, E. & Mirkin, C. A. The role of structural enthalpy in spherical nucleic acid hybridization. J. Am. Chem. Soc. 140, 6226–6230 (2018).

    Article  CAS  Google Scholar 

  103. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  CAS  Google Scholar 

  104. Dreyfus, R. et al. Simple quantitative model for the reversible association of DNA coated colloids. Phys. Rev. Lett. 102, 048301 (2009).

    Article  CAS  Google Scholar 

  105. Leunissen, M. E. & Frenkel, D. Numerical study of DNA-functionalized microparticles and nanoparticles: explicit pair potentials and their implications for phase behavior. J. Chem. Phys. 134, 084702 (2011).

    Article  CAS  Google Scholar 

  106. Callister, W. D. Materials Science and Engineering: an Introduction 7th edn (John Wiley & Sons, 2007).

  107. Mladek, B. M., Fornleitner, J., Martinez-Veracoechea, F. J., Dawid, A. & Frenkel, D. Quantitative prediction of the phase diagram of DNA-functionalized nanosized colloids. Phys. Rev. Lett. 108, 268301 (2012).

    Article  CAS  Google Scholar 

  108. Knorowski, C. & Travesset, A. Dynamics of DNA-programmable nanoparticle crystallization: gelation, nucleation and topological defects. Soft Matter 8, 12053–12059 (2012).

    Article  CAS  Google Scholar 

  109. Lukatsky, D. B. & Frenkel, D. Phase behavior and selectivity of DNA-linked nanoparticle assemblies. Phys. Rev. Lett. 92, 068302 (2004).

    Article  CAS  Google Scholar 

  110. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Article  CAS  Google Scholar 

  111. Park, D. J. et al. Plasmonic photonic crystals realized through DNA-programmable assembly. Proc. Natl Acad. Sci. USA 112, 977–981 (2015).

    Article  CAS  Google Scholar 

  112. Park, D. J. et al. Directional emission from dye-functionalized plasmonic DNA superlattice microcavities. Proc. Natl Acad. Sci. USA 114, 457–461 (2017).

    Article  CAS  Google Scholar 

  113. Sun, L., Lin, H., Kohlstedt, K. L., Schatz, G. C. & Mirkin, C. A. Design principles for photonic crystals based on plasmonic nanoparticle superlattices. Proc. Natl Acad. Sci. USA 115, 7242–7247 (2018).

    Article  CAS  Google Scholar 

  114. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  115. Srinivasan, B. et al. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proc. Natl Acad. Sci. USA 110, 18431–18435 (2013).

    Article  CAS  Google Scholar 

  116. Gang, O. & Tkachenko, A. V. DNA-programmable particle superlattices: assembly, phases, and dynamic control. MRS Bull. 41, 381–387 (2016).

    Article  CAS  Google Scholar 

  117. Horst, N. & Travesset, A. Prediction of binary nanoparticle superlattices from soft potentials. J. Chem. Phys. 144, 014502 (2016).

    Article  CAS  Google Scholar 

  118. Xiong, H., van der Lelie, D. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Article  CAS  Google Scholar 

  119. Boles, M. A. & Talapin, D. V. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).

    Article  CAS  Google Scholar 

  120. Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998).

    Article  CAS  Google Scholar 

  121. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  122. Talapin, D. V. & Shevchenko, E. V. Introduction: nanoparticle chemistry. Chem. Rev. 116, 10343–10345 (2016).

    Article  CAS  Google Scholar 

  123. Auyeung, E. et al. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nat. Nanotechnol. 7, 24–28 (2012).

    Article  CAS  Google Scholar 

  124. Zhang, Y. et al. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nat. Mater. 14, 840–847 (2015).

    Article  CAS  Google Scholar 

  125. Seo, S. E., Li, T., Senesi, A. J., Mirkin, C. A. & Lee, B. The role of repulsion in colloidal crystal engineering with DNA. J. Am. Chem. Soc. 139, 16528–16535 (2017).

    Article  CAS  Google Scholar 

  126. Thaner, R. V. et al. The significance of multivalent bonding motifs and “bond order” in DNA-directed nanoparticle crystallization. J. Am. Chem. Soc. 138, 6119–6122 (2016).

    Article  CAS  Google Scholar 

  127. Cigler, P., Lytton-Jean, A. K. R., Anderson, D. G., Finn, M. G. & Park, S. Y. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles. Nat. Mater. 9, 918–922 (2010).

    Article  CAS  Google Scholar 

  128. Markov, I. V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy 2nd edn (World Scientific, 2003).

  129. Mackenzie, J. K., Moore, A. J. W. & Nicholas, J. F. Bonds broken at atomically flat crystal surfaces—I: face-centred and body-centred cubic crystals. J. Phys. Chem. Solids 23, 185–196 (1962).

    Article  CAS  Google Scholar 

  130. Seo, S. E., Girard, M., de la Cruz, M. O. & Mirkin, C. A. Non-equilibrium anisotropic colloidal single crystal growth with DNA. Nat. Commun. 9, 4558 (2018).

    Article  CAS  Google Scholar 

  131. Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011).

    Article  CAS  Google Scholar 

  132. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  133. Laramy, C. R., Brown, K. A., O’Brien, M. N. & Mirkin, C. A. High-throughput, algorithmic determination of nanoparticle structure from electron microscopy images. ACS Nano 9, 12488–12495 (2015).

    Article  CAS  Google Scholar 

  134. Tao, A. R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).

    Article  CAS  Google Scholar 

  135. Personick, M. L. & Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 135, 18238–18247 (2013).

    Article  CAS  Google Scholar 

  136. O’Brien, M. N., Jones, M. R., Brown, K. A. & Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 136, 7603–7606 (2014).

    Article  CAS  Google Scholar 

  137. Lohse, S. E., Burrows, N. D., Scarabelli, L., Liz-Marzán, L. M. & Murphy, C. J. Anisotropic noble metal nanocrystal growth: the role of halides. Chem. Mater. 26, 34–43 (2014).

    Article  CAS  Google Scholar 

  138. Xia, Y., Gilroy, K. D., Peng, H.-C. & Xia, X. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 56, 60–95 (2017).

    Article  CAS  Google Scholar 

  139. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  140. Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    Article  CAS  Google Scholar 

  141. Elechiguerra, J. L., Reyes-Gasga, J. & Yacaman, M. J. The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem. 16, 3906–3919 (2006).

    Article  CAS  Google Scholar 

  142. Gilroy, K. D., Peng, H.-C., Yang, X., Ruditskiy, A. & Xia, Y. Symmetry breaking during nanocrystal growth. Chem. Commun. 53, 4521–4626 (2017).

    Article  Google Scholar 

  143. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

  144. Meng, G., Arkus, N., Brenner, M. P. & Manoharan, V. N. The free-energy landscape of clusters of attractive hard spheres. Science 327, 560–563 (2010).

    Article  CAS  Google Scholar 

  145. Knorowski, C. & Travesset, A. Self-assembly and crystallization of hairy (f-star) and DNA-grafted nanocubes. J. Am. Chem. Soc. 136, 653–659 (2014).

    Article  CAS  Google Scholar 

  146. Vial, S., Nykypanchuk, D., Yager, K. G., Tkachenko, A. V. & Gang, O. Linear mesostructures in DNA–nanorod self-assembly. ACS Nano 7, 5437–5445 (2013).

    Article  CAS  Google Scholar 

  147. Walther, A. & Müller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

    Article  CAS  Google Scholar 

  148. Gi-Ra, Y., David, J. P. & Stefano, S. Recent progress on patchy colloids and their self-assembly. J. Phys. Condens. Matter. 25, 193101 (2013).

    Article  CAS  Google Scholar 

  149. Porter, C. L. & Crocker, J. C. Directed assembly of particles using directional DNA interactions. Curr. Opin. Colloid Interface Sci. 30, 34–44 (2017).

    Article  CAS  Google Scholar 

  150. Dorsaz, N., Filion, L., Smallenburg, F. & Frenkel, D. Spiers memorial lecture: effect of interaction specificity on the phase behaviour of patchy particles. Faraday Discuss. 159, 9–21 (2012).

    Article  CAS  Google Scholar 

  151. Bianchi, E., Doppelbauer, G., Filion, L., Dijkstra, M. & Kahl, G. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms. J. Chem. Phys. 136, 214102 (2012).

    Article  CAS  Google Scholar 

  152. Mao, X., Chen, Q. & Granick, S. Entropy favours open colloidal lattices. Nat. Mater. 12, 217–222 (2013).

    Article  CAS  Google Scholar 

  153. van Anders, G., Ahmed, N. K., Smith, R., Engel, M. & Glotzer, S. C. Entropically patchy particles: engineering valence through shape entropy. ACS Nano 8, 931–940 (2014).

    Article  CAS  Google Scholar 

  154. Morphew, D., Shaw, J., Avins, C. & Chakrabarti, D. Programming hierarchical self-assembly of patchy particles into colloidal crystals via colloidal molecules. ACS Nano 12, 2355–2364 (2018).

    Article  CAS  Google Scholar 

  155. Milliron, D. J. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004).

    Article  CAS  Google Scholar 

  156. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  157. DeSantis, C. J., Sue, A. C., Bower, M. M. & Skrabalak, S. E. Seed-mediated co-reduction: a versatile route to architecturally controlled bimetallic nanostructures. ACS Nano 6, 2617–2628 (2012).

    Article  CAS  Google Scholar 

  158. Kwon, S. G. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 14, 215–223 (2015).

    Article  CAS  Google Scholar 

  159. Li, H. et al. Molecular spherical nucleic acids. Proc. Natl Acad. Sci. USA 115, 4340–4344 (2018).

    Article  CAS  Google Scholar 

  160. Brodin, J. D., Auyeung, E. & Mirkin, C. A. DNA-mediated engineering of multicomponent enzyme crystals. Proc. Natl Acad. Sci. USA 112, 4564–4569 (2015).

    Article  CAS  Google Scholar 

  161. McMillan, J. R. et al. Modulating nanoparticle superlattice structure using proteins with tunable bond distributions. J. Am. Chem. Soc. 139, 1754–1757 (2017).

    Article  CAS  Google Scholar 

  162. Kashiwagi, D., Sim, S., Niwa, T., Taguchi, H. & Aida, T. Protein nanotube selectively cleavable with DNA: supramolecular polymerization of “DNA-appended molecular chaperones”. J. Am. Chem. Soc. 140, 26–29 (2018).

    Article  CAS  Google Scholar 

  163. McMillan, J. R. & Mirkin, C. A. DNA-functionalized, bivalent proteins. J. Am. Chem. Soc. 140, 6776–6779 (2018).

    Article  CAS  Google Scholar 

  164. Hayes, O. G., McMillan, J. R., Lee, B. & Mirkin, C. A. DNA-encoded protein Janus nanoparticles. J. Am. Chem. Soc. 140, 9269–9274 (2018).

    Article  CAS  Google Scholar 

  165. Huo, F., Lytton-Jean, A. K. R. & Mirkin, C. A. Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv. Mater. 18, 2304–2306 (2006).

    Article  CAS  Google Scholar 

  166. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006).

    Article  CAS  Google Scholar 

  167. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat. Mater. 8, 388–391 (2009).

    Article  CAS  Google Scholar 

  168. Edwardson, T. G. W., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).

    Article  CAS  Google Scholar 

  169. Trinh, T. et al. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns. Nat. Chem. 10, 184–192 (2017).

    Article  CAS  Google Scholar 

  170. Feng, L., Dreyfus, R., Sha, R., Seeman, N. C. & Chaikin, P. M. DNA patchy particles. Adv. Mater. 25, 2779–2783 (2013).

    Article  CAS  Google Scholar 

  171. Tian, Y. et al. Lattice engineering through nanoparticle-DNA frameworks. Nat. Mater. 15, 654–661 (2016).

    Article  CAS  Google Scholar 

  172. Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. & Gang, O. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 8, 867–873 (2016).

    Article  CAS  Google Scholar 

  173. Wang, T., Schiffels, D., Martinez Cuesta, S., Kuchnir Fygenson, D. & Seeman, N. C. Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J. Am. Chem. Soc. 134, 1606–1616 (2012).

    Article  CAS  Google Scholar 

  174. Seeman, N. C. & Gang, O. Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. MRS Bull. 42, 904–912 (2017).

    Article  CAS  Google Scholar 

  175. Kannan, B., Kulkarni, R. P. & Majumdar, A. DNA-based programmed assembly of gold nanoparticles on lithographic patterns with extraordinary specificity. Nano Lett. 4, 1521–1524 (2004).

    Article  CAS  Google Scholar 

  176. Taton, T. A., Mucic, R. C., Mirkin, C. A. & Letsinger, R. L. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J. Am. Chem. Soc. 122, 6305–6306 (2000).

    Article  CAS  Google Scholar 

  177. Zou, B., Ceyhan, B., Simon, U. & Niemeyer, C. M. Self-assembly of crosslinked DNA–gold nanoparticle layers visualized by in-situ scanning force microscopy. Adv. Mater. 17, 1643–1647 (2005).

    Article  CAS  Google Scholar 

  178. Park, J.-U., Lee, J. H., Paik, U., Lu, Y. & Rogers, J. A. Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett. 8, 4210–4216 (2008).

    Article  CAS  Google Scholar 

  179. Cheng, W., Park, N., Walter, M. T., Hartman, M. R. & Luo, D. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nat. Nanotechnol. 3, 682–690 (2008).

    Article  CAS  Google Scholar 

  180. Noh, H., Choi, C., Hung, A. M., Jin, S. & Cha, J. N. Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement. ACS Nano 4, 5076–5080 (2010).

    Article  CAS  Google Scholar 

  181. Lalander, C. H., Zheng, Y., Dhuey, S., Cabrini, S. & Bach, U. DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays. ACS Nano 4, 6153–6161 (2010).

    Article  CAS  Google Scholar 

  182. Senesi, A. J. et al. Stepwise evolution of DNA-programmable nanoparticle superlattices. Angew. Chem. Int. Ed. 52, 6624–6628 (2013).

    Article  CAS  Google Scholar 

  183. Ku, J. C., Ross, M. B., Schatz, G. C. & Mirkin, C. A. Conformal, macroscopic crystalline nanoparticle sheets assembled with DNA. Adv. Mater. 27, 3159–3163 (2015).

    Article  CAS  Google Scholar 

  184. Bartelt, M. C. & Evans, J. W. Transition to multilayer kinetic roughening for metal (100) homoepitaxy. Phys. Rev. Lett. 75, 4250–4253 (1995).

    Article  CAS  Google Scholar 

  185. Hellstrom, S. L. et al. Epitaxial growth of DNA-assembled nanoparticle superlattices on patterned substrates. Nano Lett. 13, 6084–6090 (2013).

    Article  CAS  Google Scholar 

  186. Wang, M. X. et al. Epitaxy: programmable atom equivalents versus atoms. ACS Nano 11, 180–185 (2017).

    Article  CAS  Google Scholar 

  187. Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    Article  CAS  Google Scholar 

  188. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  189. Lin, Q.-Y. et al. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 15, 4699–4703 (2015).

    Article  CAS  Google Scholar 

  190. Lin, Q.-Y. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 359, 669–672 (2018).

    Article  CAS  Google Scholar 

  191. Lin, Q.-Y. et al. DNA-mediated size-selective nanoparticle assembly for multiplexed surface encoding. Nano Lett. 18, 2645–2649 (2018).

    Article  CAS  Google Scholar 

  192. O’Brien, M. N., Radha, B., Brown, K. A., Jones, M. R. & Mirkin, C. A. Langmuir analysis of nanoparticle polyvalency in DNA-mediated adsorption. Angew. Chem. Int. Ed. 53, 9532–9538 (2014).

    Article  CAS  Google Scholar 

  193. Dong, J., Liu, J., Kang, G., Xie, J. & Wang, Y. Pushing the resolution of photolithography down to 15nm by surface plasmon interference. Sci. Rep. 4, 5618 (2014).

    Article  CAS  Google Scholar 

  194. Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

    Article  CAS  Google Scholar 

  195. Pinto, Y. Y. et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett. 5, 2399–2402 (2005).

    Article  CAS  Google Scholar 

  196. Lan, X. et al. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 137, 457–462 (2015).

    Article  CAS  Google Scholar 

  197. Aldaye, F. A. & Sleiman, H. F. Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 129, 13376–13377 (2007).

    Article  CAS  Google Scholar 

  198. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  Google Scholar 

  199. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  200. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  201. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  202. Galisteo-López, J. F. et al. Self-assembled photonic structures. Adv. Mater. 23, 30–69 (2011).

    Article  CAS  Google Scholar 

  203. Campolongo, M. J. et al. Adaptive DNA-based materials for switching, sensing, and logic devices. J. Mater. Chem. 21, 6113–6121 (2011).

    Article  CAS  Google Scholar 

  204. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 6, 268–276 (2011).

    Article  CAS  Google Scholar 

  205. Bishop, K. J. M. Hierarchical self-assembly for nanomedicine. Angew. Chem. Int. Ed. 55, 1598–1600 (2016).

    Article  CAS  Google Scholar 

  206. Li, F., Lu, J., Kong, X., Hyeon, T. & Ling, D. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 29, 1605897 (2017).

    Article  CAS  Google Scholar 

  207. Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5, 116–120 (2009).

    Article  CAS  Google Scholar 

  208. Pal, S., Zhang, Y., Kumar, S. K. & Gang, O. Dynamic tuning of DNA-nanoparticle superlattices by molecular intercalation of double helix. J. Am. Chem. Soc. 137, 4030–4033 (2015).

    Article  CAS  Google Scholar 

  209. Kim, Y., Macfarlane, R. J., Jones, M. R. & Mirkin, C. A. Transmutable nanoparticles with reconfigurable surface ligands. Science 351, 579–582 (2016).

    Article  CAS  Google Scholar 

  210. Mason, J. A. et al. Contraction and expansion of stimuli-responsive DNA bonds in flexible colloidal crystals. J. Am. Chem. Soc. 138, 8722–8725 (2016).

    Article  CAS  Google Scholar 

  211. Zhu, J., Kim, Y., Lin, H., Wang, S. & Mirkin, C. A. pH-responsive nanoparticle superlattices with tunable DNA bonds. J. Am. Chem. Soc. 140, 5061–5064 (2018).

    Article  CAS  Google Scholar 

  212. Kim, Y., Macfarlane, R. J. & Mirkin, C. A. Dynamically interchangeable nanoparticle superlattices through the use of nucleic acid-based allosteric effectors. J. Am. Chem. Soc. 135, 10342–10345 (2013).

    Article  CAS  Google Scholar 

  213. Leunissen, M. E. et al. Switchable self-protected attractions in DNA-functionalized colloids. Nat. Mater. 8, 590–595 (2009).

    Article  CAS  Google Scholar 

  214. Gehring, K., Leroy, J.-L. & Guéron, M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363, 561–565 (1993).

    Article  CAS  Google Scholar 

  215. Bowtell, D. D. L. Rapid isolation of eukaryotic DNA. Anal. Biochem. 162, 463–465 (1987).

    Article  CAS  Google Scholar 

  216. Piškur, J. & Rupprecht, A. Aggregated DNA in ethanol solution. FEBS Lett. 375, 174–178 (1995).

    Article  Google Scholar 

  217. Zhang, C. et al. A general approach to DNA-programmable atom equivalents. Nat. Mater. 12, 741–746 (2013).

    Article  CAS  Google Scholar 

  218. Morris, W., Briley, W. E., Auyeung, E., Cabezas, M. D. & Mirkin, C. A. Nucleic acid–metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 136, 7261–7264 (2014).

    Article  CAS  Google Scholar 

  219. Banga, R. J., Chernyak, N., Narayan, S. P., Nguyen, S. T. & Mirkin, C. A. Liposomal spherical nucleic acids. J. Am. Chem. Soc. 136, 9866–9869 (2014).

    Article  CAS  Google Scholar 

  220. Wang, S. et al. General and direct method for preparing oligonucleotide-functionalized metal–organic framework nanoparticles. J. Am. Chem. Soc. 139, 9827–9830 (2017).

    Article  CAS  Google Scholar 

  221. Shengshuang, Z., Hang, X., Pavlo, G., Jungsoo, P. & Mirkin, C. A. PLGA spherical nucleic acids. Adv. Mater. 30, 1707113 (2018).

    Article  CAS  Google Scholar 

  222. Halas, N. J., Lal, S., Chang, W.-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Article  CAS  Google Scholar 

  223. Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photon. 6, 133–135 (2012).

    Article  CAS  Google Scholar 

  224. Mostafa, S. et al. Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132, 15714–15719 (2010).

    Article  CAS  Google Scholar 

  225. Andoy, N. M. et al. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 135, 1845–1852 (2013).

    Article  CAS  Google Scholar 

  226. Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).

    Article  CAS  Google Scholar 

  227. Yu, S., Wilson, A. J., Kumari, G., Zhang, X. & Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2, 2058–2070 (2017).

    Article  CAS  Google Scholar 

  228. Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Article  CAS  Google Scholar 

  229. García-Torres, J., Calero, C., Sagués, F., Pagonabarraga, I. & Tierno, P. Magnetically tunable bidirectional locomotion of a self-assembled nanorod-sphere propeller. Nat. Commun. 9, 1663 (2018).

    Article  CAS  Google Scholar 

  230. Liu, J. et al. DNA-mediated self-organization of polymeric nanocompartments leads to interconnected artificial organelles. Nano Lett. 16, 7128–7136 (2016).

    Article  CAS  Google Scholar 

  231. Auyeung, E. et al. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA. J. Am. Chem. Soc. 137, 1658–1662 (2015).

    Article  CAS  Google Scholar 

  232. Ross, M. B., Ku, J. C., Vaccarezza, V. M., Schatz, G. C. & Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 10, 453–458 (2015).

    Article  CAS  Google Scholar 

  233. Xiong, H., Sfeir, M. Y. & Gang, O. Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices. Nano Lett. 10, 4456–4462 (2010).

    Article  CAS  Google Scholar 

  234. Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

    Article  CAS  Google Scholar 

  235. Ross, M. B., Ku, J. C., Lee, B., Mirkin, C. A. & Schatz, G. C. Plasmonic metallurgy enabled by DNA. Adv. Mater. 28, 2790–2794 (2016).

    Article  CAS  Google Scholar 

  236. Ross, M. B., Blaber, M. G. & Schatz, G. C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 5, 4090 (2014).

    Article  CAS  Google Scholar 

  237. Maldovan, M. & Thomas, E. L. Diamond-structured photonic crystals. Nat. Mater. 3, 593–600 (2004).

    Article  CAS  Google Scholar 

  238. Ngo, T. T., Liddell, C. M., Ghebrebrhan, M. & Joannopoulos, J. D. Tetrastack: colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index contrast. Appl. Phys. Lett. 88, 241920 (2006).

    Article  CAS  Google Scholar 

  239. Angel, G.-A. Band gap atlas for photonic crystals having the symmetry of the kagomé and pyrochlore lattices. New J. Phys. 8, 86 (2006).

    Article  Google Scholar 

  240. Wasilke, J.-C., Obrey, S. J., Baker, R. T. & Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 105, 1001–1020 (2005).

    Article  CAS  Google Scholar 

  241. Yamada, Y. et al. Nanocrystal bilayer for tandem catalysis. Nat. Chem. 3, 372–376 (2011).

    Article  CAS  Google Scholar 

  242. Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).

    Article  CAS  Google Scholar 

  243. Sun, L. et al. Polarization-dependent optical response in anisotropic nanoparticle–DNA superlattices. Nano Lett. 17, 2313–2318 (2017).

    Article  CAS  Google Scholar 

  244. Ross, M. B., Mirkin, C. A. & Schatz, G. C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures. J. Phys. Chem. C 120, 816–830 (2016).

    Article  CAS  Google Scholar 

  245. Arsenault, A. et al. Towards the synthetic all-optical computer: science fiction or reality? J. Mater. Chem. 14, 781–794 (2004).

    Article  CAS  Google Scholar 

  246. Cademartiri, L. & Bishop, K. J. M. Programmable self-assembly. Nat. Mater. 14, 2–9 (2014).

    Article  CAS  Google Scholar 

  247. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2004).

    Article  CAS  Google Scholar 

  248. Sebastian, P. Shape matters: anisotropy of the morphology of inorganic colloidal particles – synthesis and function. Adv. Funct. Mater. 21, 3214–3230 (2011).

    Article  CAS  Google Scholar 

  249. Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. & Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 6, 2118–2127 (2012).

    Article  CAS  Google Scholar 

  250. Ye, X. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nat. Chem. 5, 466–473 (2013).

    Article  CAS  Google Scholar 

  251. Burrows, N. D. et al. Anisotropic nanoparticles and anisotropic surface chemistry. J. Phys. Chem. Lett. 7, 632–641 (2016).

    Article  CAS  Google Scholar 

  252. Lee, J.-H., Gibson, K. J., Chen, G. & Weizmann, Y. Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. Nat. Commun. 6, 7571 (2015).

    Article  CAS  Google Scholar 

  253. Weiner, R. G., DeSantis, C. J., Cardoso, M. B. T. & Skrabalak, S. E. Diffusion and seed shape: intertwined parameters in the synthesis of branched metal nanostructures. ACS Nano 8, 8625–8635 (2014).

    Article  CAS  Google Scholar 

  254. Sacanna, S. et al. Shaping colloids for self-assembly. Nat. Commun. 4, 1688 (2013).

    Article  CAS  Google Scholar 

  255. Bianchi, E., Capone, B., Coluzza, I., Rovigatti, L. & van Oostrum, P. D. J. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys. Chem. Chem. Phys. 19, 19847–19868 (2017).

    Article  CAS  Google Scholar 

  256. O’Donoghue, P., Ling, J., Wang, Y.-S. & Söll, D. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 9, 594–598 (2013).

    Article  CAS  Google Scholar 

  257. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  258. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  Google Scholar 

  259. Rothemund, P. W. K. & Andersen, E. S. The importance of being modular. Nature 485, 584–585 (2012).

    Article  CAS  Google Scholar 

  260. Halverson, J. D. & Tkachenko, A. V. DNA-programmed mesoscopic architecture. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87, 062310 (2013).

    Article  CAS  Google Scholar 

  261. Zeravcic, Z., Manoharan, V. N. & Brenner, M. P. Size limits of self-assembled colloidal structures made using specific interactions. Proc. Natl Acad. Sci. USA 111, 15918–15923 (2014).

    Article  CAS  Google Scholar 

  262. Laramy, C. R. et al. Controlled symmetry breaking in colloidal crystal engineering with DNA. ACS Nano. https://doi.org/10.1021/acsnano.8b07027 (2018).

    Article  Google Scholar 

  263. The PyMOL Molecular Graphics System, version 1.8 (Schrödinger, LLC, NY, USA).

Download references

Acknowledgements

This material is based upon work supported by the US Air Force Office of Scientific Research Award FA9550-17-1-0348 and the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989. C.R.L. and M.N.O. acknowledge the US National Science Foundation (NSF) for Graduate Research Fellowships. C.R.L. is grateful to Northwestern University’s International Institute for Nanotechnology for a Ryan Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.R.L., M.N.O. and C.A.M. developed the concepts and focus of the Review and translated the ideas to text.

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laramy, C.R., O’Brien, M.N. & Mirkin, C.A. Crystal engineering with DNA. Nat Rev Mater 4, 201–224 (2019). https://doi.org/10.1038/s41578-019-0087-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0087-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing