Review Article | Published:

Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties

Nature Reviews Materialsvolume 4pages169188 (2019) | Download Citation

Abstract

Nanostructures of inorganic semiconductors have revolutionized many areas of electronics, optoelectronics and photonics. The controlled synthesis of semiconductor nanostructures could lead to novel physical properties, improved optoelectronic device performance and new areas for exploration. Lead halide perovskites have recently excited the photovoltaic research community owing to their high solar-conversion efficiencies and ease of solution processing; they also hold great promise for optoelectronic applications, such as light-emitting diodes and lasers. In this Review, we summarize recent developments in the synthesis and characterization of metal halide perovskite nanostructures with controllable compositions, dimensionality, morphologies and orientations. We examine the advantageous optical properties, improved stability and potential optoelectronic applications of these 1D and 2D single-crystal perovskite nanostructures and compare them with those of bulk perovskites and nanostructures of conventional semiconductors. Studies in which perovskite nanostructures have been used to study the fundamental physical properties of perovskites are also highlighted. Finally, we discuss the challenges in realizing halide perovskite nanostructures for optoelectronic and photonic applications and offer our perspectives on future opportunities and research directions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hu, J., Odom, T. W. & Lieber, C. M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999).

  2. 2.

    Xia, Y. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

  3. 3.

    Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

  4. 4.

    Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photonics 3, 569–576 (2009).

  5. 5.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  6. 6.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

  7. 7.

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

  8. 8.

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

  9. 9.

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

  10. 10.

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

  11. 11.

    Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

  12. 12.

    Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

  13. 13.

    Brandt, R. E., Stevanovic, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

  14. 14.

    Katan, C., Mohite, A. D. & Even, J. Entropy in halide perovskites. Nat. Mater. 17, 377–379 (2018).

  15. 15.

    Miyata, K. & Zhu, X. Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

  16. 16.

    Stranks, S. D. & Plochocka, P. The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018).

  17. 17.

    De Angelis, F. & Petrozza, A. Clues from defect photochemistry. Nat. Mater. 17, 383–384 (2018).

  18. 18.

    Yina, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

  19. 19.

    Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

  20. 20.

    Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).

  21. 21.

    Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

  22. 22.

    Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).

  23. 23.

    Fang, H.-H. et al. Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Sci. Adv. 2, e1600534 (2016).

  24. 24.

    Brandt, R. E. et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667–4674 (2017).

  25. 25.

    Tian, W., Zhao, C., Leng, J., Cui, R. & Jin, S. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137, 12458–12461 (2015).

  26. 26.

    Xiao, R. et al. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures. Nano Lett. 16, 7710–7717 (2016).

  27. 27.

    Darbandi, A. & Watkins, S. P. Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique. J. Appl. Phys. 120, 014301 (2016).

  28. 28.

    Triplett, M. et al. Long minority carrier diffusion lengths in bridged silicon nanowires. Nano Lett. 15, 523–529 (2015).

  29. 29.

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

  30. 30.

    Moore, D. T. et al. Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015).

  31. 31.

    Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998).

  32. 32.

    Fu, Y. et al. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 137, 5810–5818 (2015).

  33. 33.

    Meng, F., Morin, S. A., Forticaux, A. & Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 46, 1616–1626 (2013).

  34. 34.

    Fu, Y. et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016).

  35. 35.

    Fu, Y. et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 10, 7963–7972 (2016).

  36. 36.

    Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA 113, 1993–1998 (2016).

  37. 37.

    Dai, J. et al. Carrier decay properties of mixed cation formamidinium–methylammonium lead iodide perovskite [HC(NH2)2]1−x[CH3NH3]xPbI3 nanorods. J. Phys. Chem. Lett. 7, 5036–5043 (2016).

  38. 38.

    Wong, A. B. et al. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 15, 5519–5524 (2015).

  39. 39.

    Walsh, A., Scanlon, D. O., Chen, S., Gong, X. & Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

  40. 40.

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

  41. 41.

    Ha, S. T. et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838–844 (2014).

  42. 42.

    Meyers, J. K. et al. Self-catalyzed vapor–liquid–solid growth of lead halide nanowires and conversion to hybrid perovskites. Nano Lett. 17, 7561–7568 (2017).

  43. 43.

    Chen, J. et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017).

  44. 44.

    Park, K. et al. Light–matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 7, 3703–3710 (2016).

  45. 45.

    Zhou, H. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 11, 1189–1195 (2017).

  46. 46.

    Wang, Y. et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett. 16, 7974–7981 (2016).

  47. 47.

    Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

  48. 48.

    Oksenberg, E., Sanders, E., Popovitz-Biro, R., Houben, L. & Joselevich, E. Surface-guided CsPbBr3 perovskite nanowires on flat and faceted sapphire with size-dependent photoluminescence and fast photoconductive response. Nano Lett. 18, 424–433 (2017).

  49. 49.

    Wang, Y. et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 29, 1702643 (2017).

  50. 50.

    Lili, W. et al. Unlocking the single-domain epitaxy of halide perovskites. Adv. Mater. Interfaces 4, 1701003 (2017).

  51. 51.

    Chen, J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 139, 13525–13532 (2017).

  52. 52.

    Shoaib, M. et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 139, 15592–15595 (2017).

  53. 53.

    Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

  54. 54.

    Zhu, F. et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano 9, 2948–2959 (2015).

  55. 55.

    Zhang, D., Eaton, S. W., Yu, Y., Dou, L. & Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015).

  56. 56.

    Zhang, D. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 138, 7236–7239 (2016).

  57. 57.

    Zhang, D. et al. Ultrathin colloidal cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 138, 13155–13158 (2016).

  58. 58.

    Tong, Y. et al. From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56, 13887–13892 (2017).

  59. 59.

    Imran, M. et al. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem. Mater. 28, 6450–6454 (2016).

  60. 60.

    Ashley, M. J. et al. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 138, 10096–10099 (2016).

  61. 61.

    Waleed, A. et al. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17, 4951–4957 (2017).

  62. 62.

    Oener, S. Z. et al. Perovskite nanowire extrusion. Nano Lett. 17, 6557–6563 (2017).

  63. 63.

    Liu, P. et al. Organic–inorganic hybrid perovskite nanowire laser arrays. ACS Nano 11, 5766–5773 (2017).

  64. 64.

    Jeong, B. et al. Solvent-assisted gel printing for micropatterning thin organic–inorganic hybrid perovskite films. ACS Nano 10, 9026–9035 (2016).

  65. 65.

    Kamminga, M. E. et al. Micropatterned 2D hybrid perovskite thin films with enhanced photoluminescence lifetimes. ACS Appl. Mater. Interfaces 10, 12878–12885 (2018).

  66. 66.

    He, X. et al. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29, 1604510 (2017).

  67. 67.

    Chen, Y.-X. et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 138, 16196–16199 (2016).

  68. 68.

    Horváth, E. et al. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 14, 6761–6766 (2014).

  69. 69.

    Deng, W. et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28, 2201–2208 (2016).

  70. 70.

    Gao, L. et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 16, 7446–7454 (2016).

  71. 71.

    Im, J.-H. et al. Nanowire perovskite solar cell. Nano Lett. 15, 2120–2126 (2015).

  72. 72.

    Zhu, P. et al. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett. 16, 871–876 (2016).

  73. 73.

    Petrov, A. A. et al. New insight into the formation of hybrid perovskite nanowires via structure directing adducts. Chem. Mater. 29, 587–594 (2017).

  74. 74.

    Gupta, S., Kershaw, S. V. & Rogach, A. L. 25th Anniversary article: ion exchange in colloidal nanocrystals. Adv. Mater. 25, 6923–6944 (2013).

  75. 75.

    Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

  76. 76.

    Dou, L. et al. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl Acad. Sci. USA 114, 7216–7221 (2017).

  77. 77.

    Pan, D. et al. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 18, 1807–1813 (2018).

  78. 78.

    Tian, W., Leng, J., Zhao, C. & Jin, S. Long-distance charge carrier funneling in perovskite nanowires enabled by built-in halide gradient. J. Am. Chem. Soc. 139, 579–582 (2017).

  79. 79.

    Wang, Y. et al. Epitaxial halide perovskite lateral double heterostructure. ACS Nano 11, 3355–3364 (2017).

  80. 80.

    Kong, Q. et al. Phase-transition–induced p-n junction in single halide perovskite nanowire. Proc. Natl Acad. Sci. USA 115, 8889–8894 (2018).

  81. 81.

    Nasilowski, M., Mahler, B., Lhuillier, E., Ithurria, S. & Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934–10982 (2016).

  82. 82.

    Weidman, M. C., Goodman, A. J. & Tisdale, W. A. Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 29, 5019–5030 (2017).

  83. 83.

    Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

  84. 84.

    Stoumpos, C. C. et al. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017).

  85. 85.

    Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

  86. 86.

    Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

  87. 87.

    Niu, W., Eiden, A., Prakash, G. V. & Baumberg, J. J. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl. Phys. Lett. 104, 171111 (2014).

  88. 88.

    Yaffe, O. et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 92, 045414 (2015).

  89. 89.

    Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

  90. 90.

    Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

  91. 91.

    Ma, D. et al. Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics. Nano Res. 10, 2117–2129 (2017).

  92. 92.

    Tyagi, P., Arveson, S. M. & Tisdale, W. A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6, 1911–1916 (2015).

  93. 93.

    Sichert, J. A. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15, 6521–6527 (2015).

  94. 94.

    Yang, S. et al. Ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem. Int. Ed. 56, 4252–4255 (2017).

  95. 95.

    Weidman, M. C., Seitz, M., Stranks, S. D. & Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016).

  96. 96.

    Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

  97. 97.

    Wheeler, L. M., Anderson, N. C., Bliss, T. S., Hautzinger, M. P. & Neale, N. R. Dynamic evolution of 2D layers within perovskite nanocrystals via salt pair extraction and reinsertion. J. Phys. Chem. C 122, 14029–14038 (2018).

  98. 98.

    Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

  99. 99.

    Bohn, B. J. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 18, 5231–5238 (2018).

  100. 100.

    Wu, Y. et al. In situ passivation of PbBr6 4− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 3, 2030–2037 (2018).

  101. 101.

    Shamsi, J. et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016).

  102. 102.

    Liu, J. et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016).

  103. 103.

    Wang, Y., Shi, Y., Xin, G., Lian, J. & Shi, J. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15, 4741–4749 (2015).

  104. 104.

    Ma, C. et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28, 3683–3689 (2016).

  105. 105.

    Cheng, H.-C. et al. van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016).

  106. 106.

    Leguy, A. M. A. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015).

  107. 107.

    Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 126, 11414–11417 (2014).

  108. 108.

    Ling, Y. et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28, 305–311 (2016).

  109. 109.

    Yang, S. et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).

  110. 110.

    Ma, Z.-Q., Shao, Y., Wong, P. K., Shi, X. & Pan, H. Structural and electronic properties of two-dimensional organic–inorganic halide perovskites and their stability against moisture. J. Phys. Chem. C 122, 5844–5853 (2018).

  111. 111.

    Liu, J., Leng, J., Wu, K., Zhang, J. & Jin, S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139, 1432–1435 (2017).

  112. 112.

    Shang, Q. et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett. 8, 4431–4438 (2017).

  113. 113.

    Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

  114. 114.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

  115. 115.

    McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).

  116. 116.

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

  117. 117.

    Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

  118. 118.

    Zhao, B. et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J. Am. Chem. Soc. 140, 11716–11725 (2018).

  119. 119.

    Levchuk, I. et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 17, 2765–2770 (2017).

  120. 120.

    Protesescu, L. et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

  121. 121.

    Fu, Y. et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 17, 4405–4414 (2017).

  122. 122.

    Wang, C., Chesman, A. S. R. & Jasieniak, J. J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 53, 232–235 (2017).

  123. 123.

    Fu, Y. et al. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films. Chem. Mater. 29, 8385–8394 (2017).

  124. 124.

    Zhang, T. et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017).

  125. 125.

    Wang, Q. et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017).

  126. 126.

    Li, B. et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1076 (2018).

  127. 127.

    Fang, H.-H. et al. Unravelling light-induced degradation of layered perovskite crystals and design of efficient encapsulation for improved photostability. Adv. Funct. Mater. 28, 1800305 (2018).

  128. 128.

    Fan, Z. et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 1, 548–562 (2017).

  129. 129.

    Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).

  130. 130.

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

  131. 131.

    Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

  132. 132.

    Röder, R. et al. Continuous wave nanowire lasing. Nano Lett. 13, 3602–3606 (2013).

  133. 133.

    Mayer, B. et al. Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires. Appl. Phys. Lett. 108, 071107 (2016).

  134. 134.

    Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. O. & Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014).

  135. 135.

    Mayer, B. et al. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4, 2931 (2013).

  136. 136.

    Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 7, 963–968 (2013).

  137. 137.

    Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571–4577 (2015).

  138. 138.

    Zhang, Q. et al. Advances in small perovskite-based lasers. Small Methods 1, 1700163 (2017).

  139. 139.

    Evans, T. J. et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2018).

  140. 140.

    Gu, Z. et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4, 472–479 (2016).

  141. 141.

    Zhang, W. et al. Controlling the cavity structures of two-photon pumped perovskite microlasers. Adv. Mater. 28, 4040–4046 (2016).

  142. 142.

    Mao, W. et al. Controlled growth of monocrystalline organo-lead halide perovskite and its application in photonic devices. Angew. Chem. Int. Ed. 56, 12486–12491 (2017).

  143. 143.

    Deng, W. et al. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 17, 2482–2489 (2017).

  144. 144.

    Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

  145. 145.

    Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).

  146. 146.

    Era, M., Morimoto, S., Tsutsui, T. & Saito, S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 65, 676–678 (1994).

  147. 147.

    Liang, D. et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016).

  148. 148.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

  149. 149.

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).

  150. 150.

    Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).

  151. 151.

    Zhang, S. et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv. Mater. 29, 1606600 (2017).

  152. 152.

    Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

  153. 153.

    Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

  154. 154.

    Chen, Z. et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 29, 1603157 (2017).

  155. 155.

    Congreve, D. N. et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics 4, 476–481 (2017).

  156. 156.

    Sadhanala, A. et al. Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15, 6095–6101 (2015).

  157. 157.

    Nah, S. et al. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains. Nat. Photonics 11, 285–288 (2017).

  158. 158.

    deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

  159. 159.

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

  160. 160.

    Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

  161. 161.

    Frost, J. M., Whalley, L. D. & Walsh, A. Slow cooling of hot polarons in halide perovskite solar cells. ACS Energy Lett. 2, 2647–2652 (2017).

  162. 162.

    Wang, Y. et al. Cation dynamics governed thermal properties of lead halide perovskite nanowires. Nano Lett. 18, 2772–2779 (2018).

  163. 163.

    Zhu, H. et al. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29, 1603072 (2017).

  164. 164.

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

  165. 165.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

  166. 166.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

  167. 167.

    Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

  168. 168.

    Dobrovolsky, A., Merdasa, A., Unger, E. L., Yartsev, A. & Scheblykin, I. G. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nat. Commun. 8, 34 (2017).

  169. 169.

    Gillin, W. P., Dunstan, D. J., Homewood, K. P., Howard, L. K. & Sealy, B. J. Interdiffusion in InGaAs/GaAs quantum well structures as a function of depth. J. Appl. Phys. 73, 3782–3786 (1993).

  170. 170.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

  171. 171.

    Fraser, M. D., Höfling, S. & Yamamoto, Y. Physics and applications of exciton–polariton lasers. Nat. Mater. 15, 1049–1052 (2016).

  172. 172.

    Zhang, S. et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater. 6, 1701032 (2018).

  173. 173.

    Du, W. et al. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 5, 2051–2059 (2018).

  174. 174.

    Shang, Q. et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett. 18, 3335–3343 (2018).

  175. 175.

    Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

  176. 176.

    Klaas, M. et al. Evolution of temporal coherence in confined exciton-polariton condensates. Phys. Rev. Lett. 120, 017401 (2018).

  177. 177.

    Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

  178. 178.

    Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).

  179. 179.

    Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

  180. 180.

    Walters, G. & Sargent, E. H. Electro-optic response in germanium halide perovskites. J. Phys. Chem. Lett. 9, 1018–1027 (2018).

  181. 181.

    Lin, Y. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

  182. 182.

    Xiao, X. et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3, 684–688 (2018).

  183. 183.

    Fu, Y. et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc. 140, 15675–15683 (2018).

  184. 184.

    Tan, Z. et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J. Am. Chem. Soc. 138, 16612–16615 (2016).

  185. 185.

    Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

  186. 186.

    Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

  187. 187.

    Whang, D., Jin, S. & Lieber, C. M. Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3, 951–954 (2003).

  188. 188.

    Lee, W. et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl Acad. Sci. USA 114, 8693–8697 (2017).

  189. 189.

    Zhang, H. et al. 2D Ruddlesden–Popper perovskites microring laser array. Adv. Mater. 30, 1706186 (2018).

  190. 190.

    Xing, J. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018).

  191. 191.

    Fujita, T., Sato, Y., Kuitani, T. & Ishihara, T. Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B 57, 12428–12434 (1998).

  192. 192.

    Lanty, G., Lauret, J. S., Deleporte, E., Bouchoule, S. & Lafosse, X. UV polaritonic emission from a perovskite-based microcavity. Appl. Phys. Lett. 93, 081101 (2008).

  193. 193.

    Wang, J. et al. Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano 12, 8382–8389 (2018).

Download references

Acknowledgements

S.J., Y.F. and M.P.H. are supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering (award no. DE-FG02-09ER46664). X.-Y.Z. is supported by the US Department of Energy, Office of Science, Basic Energy Sciences (grant no. SE-0000234931). J.C. thanks the China Scholarship Council for support.

Author information

Affiliations

  1. Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA

    • Yongping Fu
    • , Jie Chen
    • , Matthew P. Hautzinger
    •  & Song Jin
  2. Department of Chemistry, Zhejiang University, Hangzhou, China

    • Haiming Zhu
  3. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Shaanxi, China

    • Jie Chen
  4. Department of Chemistry, Columbia University, New York, NY, USA

    • X.-Y. Zhu

Authors

  1. Search for Yongping Fu in:

  2. Search for Haiming Zhu in:

  3. Search for Jie Chen in:

  4. Search for Matthew P. Hautzinger in:

  5. Search for X.-Y. Zhu in:

  6. Search for Song Jin in:

Contributions

Y.F. and S.J. discussed the content of the article and Y.F. researched data for the article. All authors contributed to the writing and editing of the article prior to submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Song Jin.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41578-019-0080-9