Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties

Abstract

Nanostructures of inorganic semiconductors have revolutionized many areas of electronics, optoelectronics and photonics. The controlled synthesis of semiconductor nanostructures could lead to novel physical properties, improved optoelectronic device performance and new areas for exploration. Lead halide perovskites have recently excited the photovoltaic research community owing to their high solar-conversion efficiencies and ease of solution processing; they also hold great promise for optoelectronic applications, such as light-emitting diodes and lasers. In this Review, we summarize recent developments in the synthesis and characterization of metal halide perovskite nanostructures with controllable compositions, dimensionality, morphologies and orientations. We examine the advantageous optical properties, improved stability and potential optoelectronic applications of these 1D and 2D single-crystal perovskite nanostructures and compare them with those of bulk perovskites and nanostructures of conventional semiconductors. Studies in which perovskite nanostructures have been used to study the fundamental physical properties of perovskites are also highlighted. Finally, we discuss the challenges in realizing halide perovskite nanostructures for optoelectronic and photonic applications and offer our perspectives on future opportunities and research directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Growth and characterization of APbX3 perovskite NWs and nanoplates.
Fig. 2: Growth and characterization of perovskite NW heterostructures.
Fig. 3: Growth and characterization of 2D perovskite nanostructures.
Fig. 4: Chemical and structural stability in perovskite nanostructures.
Fig. 5: High-performance nanoscale optoelectronic and photonic applications of perovskite NWs.
Fig. 6: High-performance LEDs based on self-assembled 2D perovskite nanostructures.
Fig. 7: Studies of physical properties using single-crystal perovskite nanostructures.

References

  1. 1.

    Hu, J., Odom, T. W. & Lieber, C. M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    Xia, Y. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photonics 3, 569–576 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Brandt, R. E., Stevanovic, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Katan, C., Mohite, A. D. & Even, J. Entropy in halide perovskites. Nat. Mater. 17, 377–379 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Miyata, K. & Zhu, X. Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Stranks, S. D. & Plochocka, P. The influence of the Rashba effect. Nat. Mater. 17, 381–382 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    De Angelis, F. & Petrozza, A. Clues from defect photochemistry. Nat. Mater. 17, 383–384 (2018).

    Article  CAS  Google Scholar 

  18. 18.

    Yina, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  CAS  Google Scholar 

  19. 19.

    Miyata, K., Atallah, T. L. & Zhu, X.-Y. Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, e1701469 (2017).

    Article  CAS  Google Scholar 

  20. 20.

    Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Fang, H.-H. et al. Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Sci. Adv. 2, e1600534 (2016).

    Article  CAS  Google Scholar 

  24. 24.

    Brandt, R. E. et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667–4674 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Tian, W., Zhao, C., Leng, J., Cui, R. & Jin, S. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137, 12458–12461 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Xiao, R. et al. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures. Nano Lett. 16, 7710–7717 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Darbandi, A. & Watkins, S. P. Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique. J. Appl. Phys. 120, 014301 (2016).

    Article  CAS  Google Scholar 

  28. 28.

    Triplett, M. et al. Long minority carrier diffusion lengths in bridged silicon nanowires. Nano Lett. 15, 523–529 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Moore, D. T. et al. Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    Fu, Y. et al. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 137, 5810–5818 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Meng, F., Morin, S. A., Forticaux, A. & Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 46, 1616–1626 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Fu, Y. et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Fu, Y. et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 10, 7963–7972 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA 113, 1993–1998 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Dai, J. et al. Carrier decay properties of mixed cation formamidinium–methylammonium lead iodide perovskite [HC(NH2)2]1−x[CH3NH3]xPbI3 nanorods. J. Phys. Chem. Lett. 7, 5036–5043 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Wong, A. B. et al. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 15, 5519–5524 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Walsh, A., Scanlon, D. O., Chen, S., Gong, X. & Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791–1794 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Ha, S. T. et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838–844 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Meyers, J. K. et al. Self-catalyzed vapor–liquid–solid growth of lead halide nanowires and conversion to hybrid perovskites. Nano Lett. 17, 7561–7568 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Chen, J. et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460–466 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Park, K. et al. Light–matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 7, 3703–3710 (2016).

    Article  CAS  Google Scholar 

  45. 45.

    Zhou, H. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 11, 1189–1195 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Wang, Y. et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett. 16, 7974–7981 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Oksenberg, E., Sanders, E., Popovitz-Biro, R., Houben, L. & Joselevich, E. Surface-guided CsPbBr3 perovskite nanowires on flat and faceted sapphire with size-dependent photoluminescence and fast photoconductive response. Nano Lett. 18, 424–433 (2017).

    Article  CAS  Google Scholar 

  49. 49.

    Wang, Y. et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 29, 1702643 (2017).

    Article  CAS  Google Scholar 

  50. 50.

    Lili, W. et al. Unlocking the single-domain epitaxy of halide perovskites. Adv. Mater. Interfaces 4, 1701003 (2017).

    Article  CAS  Google Scholar 

  51. 51.

    Chen, J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 139, 13525–13532 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Shoaib, M. et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. J. Am. Chem. Soc. 139, 15592–15595 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Zhu, F. et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano 9, 2948–2959 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Zhang, D., Eaton, S. W., Yu, Y., Dou, L. & Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015).

    CAS  Article  Google Scholar 

  56. 56.

    Zhang, D. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anion-exchange reactions. J. Am. Chem. Soc. 138, 7236–7239 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Zhang, D. et al. Ultrathin colloidal cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 138, 13155–13158 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    Tong, Y. et al. From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56, 13887–13892 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Imran, M. et al. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem. Mater. 28, 6450–6454 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Ashley, M. J. et al. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 138, 10096–10099 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Waleed, A. et al. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17, 4951–4957 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Oener, S. Z. et al. Perovskite nanowire extrusion. Nano Lett. 17, 6557–6563 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Liu, P. et al. Organic–inorganic hybrid perovskite nanowire laser arrays. ACS Nano 11, 5766–5773 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    Jeong, B. et al. Solvent-assisted gel printing for micropatterning thin organic–inorganic hybrid perovskite films. ACS Nano 10, 9026–9035 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Kamminga, M. E. et al. Micropatterned 2D hybrid perovskite thin films with enhanced photoluminescence lifetimes. ACS Appl. Mater. Interfaces 10, 12878–12885 (2018).

    CAS  Article  Google Scholar 

  66. 66.

    He, X. et al. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29, 1604510 (2017).

    Article  CAS  Google Scholar 

  67. 67.

    Chen, Y.-X. et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 138, 16196–16199 (2016).

    CAS  Article  Google Scholar 

  68. 68.

    Horváth, E. et al. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 14, 6761–6766 (2014).

    Article  CAS  Google Scholar 

  69. 69.

    Deng, W. et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 28, 2201–2208 (2016).

    CAS  Article  Google Scholar 

  70. 70.

    Gao, L. et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 16, 7446–7454 (2016).

    CAS  Article  Google Scholar 

  71. 71.

    Im, J.-H. et al. Nanowire perovskite solar cell. Nano Lett. 15, 2120–2126 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Zhu, P. et al. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett. 16, 871–876 (2016).

    CAS  Article  Google Scholar 

  73. 73.

    Petrov, A. A. et al. New insight into the formation of hybrid perovskite nanowires via structure directing adducts. Chem. Mater. 29, 587–594 (2017).

    CAS  Article  Google Scholar 

  74. 74.

    Gupta, S., Kershaw, S. V. & Rogach, A. L. 25th Anniversary article: ion exchange in colloidal nanocrystals. Adv. Mater. 25, 6923–6944 (2013).

    CAS  Article  Google Scholar 

  75. 75.

    Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    CAS  Article  Google Scholar 

  76. 76.

    Dou, L. et al. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl Acad. Sci. USA 114, 7216–7221 (2017).

    CAS  Article  Google Scholar 

  77. 77.

    Pan, D. et al. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 18, 1807–1813 (2018).

    CAS  Article  Google Scholar 

  78. 78.

    Tian, W., Leng, J., Zhao, C. & Jin, S. Long-distance charge carrier funneling in perovskite nanowires enabled by built-in halide gradient. J. Am. Chem. Soc. 139, 579–582 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    Wang, Y. et al. Epitaxial halide perovskite lateral double heterostructure. ACS Nano 11, 3355–3364 (2017).

    CAS  Article  Google Scholar 

  80. 80.

    Kong, Q. et al. Phase-transition–induced p-n junction in single halide perovskite nanowire. Proc. Natl Acad. Sci. USA 115, 8889–8894 (2018).

    CAS  Article  Google Scholar 

  81. 81.

    Nasilowski, M., Mahler, B., Lhuillier, E., Ithurria, S. & Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934–10982 (2016).

    CAS  Article  Google Scholar 

  82. 82.

    Weidman, M. C., Goodman, A. J. & Tisdale, W. A. Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 29, 5019–5030 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS  Article  Google Scholar 

  84. 84.

    Stoumpos, C. C. et al. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017).

    CAS  Article  Google Scholar 

  85. 85.

    Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    CAS  Article  Google Scholar 

  86. 86.

    Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    CAS  Article  Google Scholar 

  87. 87.

    Niu, W., Eiden, A., Prakash, G. V. & Baumberg, J. J. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl. Phys. Lett. 104, 171111 (2014).

    Article  CAS  Google Scholar 

  88. 88.

    Yaffe, O. et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 92, 045414 (2015).

    Article  CAS  Google Scholar 

  89. 89.

    Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

    CAS  Article  Google Scholar 

  90. 90.

    Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Article  Google Scholar 

  91. 91.

    Ma, D. et al. Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics. Nano Res. 10, 2117–2129 (2017).

    CAS  Article  Google Scholar 

  92. 92.

    Tyagi, P., Arveson, S. M. & Tisdale, W. A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6, 1911–1916 (2015).

    CAS  Article  Google Scholar 

  93. 93.

    Sichert, J. A. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15, 6521–6527 (2015).

    CAS  Article  Google Scholar 

  94. 94.

    Yang, S. et al. Ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem. Int. Ed. 56, 4252–4255 (2017).

    CAS  Article  Google Scholar 

  95. 95.

    Weidman, M. C., Seitz, M., Stranks, S. D. & Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016).

    CAS  Article  Google Scholar 

  96. 96.

    Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    CAS  Article  Google Scholar 

  97. 97.

    Wheeler, L. M., Anderson, N. C., Bliss, T. S., Hautzinger, M. P. & Neale, N. R. Dynamic evolution of 2D layers within perovskite nanocrystals via salt pair extraction and reinsertion. J. Phys. Chem. C 122, 14029–14038 (2018).

    CAS  Article  Google Scholar 

  98. 98.

    Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

    CAS  Article  Google Scholar 

  99. 99.

    Bohn, B. J. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 18, 5231–5238 (2018).

    CAS  Article  Google Scholar 

  100. 100.

    Wu, Y. et al. In situ passivation of PbBr6 4− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett. 3, 2030–2037 (2018).

    CAS  Article  Google Scholar 

  101. 101.

    Shamsi, J. et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016).

    CAS  Article  Google Scholar 

  102. 102.

    Liu, J. et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016).

    CAS  Article  Google Scholar 

  103. 103.

    Wang, Y., Shi, Y., Xin, G., Lian, J. & Shi, J. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15, 4741–4749 (2015).

    CAS  Article  Google Scholar 

  104. 104.

    Ma, C. et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28, 3683–3689 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Cheng, H.-C. et al. van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016).

    CAS  Article  Google Scholar 

  106. 106.

    Leguy, A. M. A. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015).

    CAS  Article  Google Scholar 

  107. 107.

    Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 126, 11414–11417 (2014).

    Article  Google Scholar 

  108. 108.

    Ling, Y. et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28, 305–311 (2016).

    CAS  Article  Google Scholar 

  109. 109.

    Yang, S. et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).

    CAS  Article  Google Scholar 

  110. 110.

    Ma, Z.-Q., Shao, Y., Wong, P. K., Shi, X. & Pan, H. Structural and electronic properties of two-dimensional organic–inorganic halide perovskites and their stability against moisture. J. Phys. Chem. C 122, 5844–5853 (2018).

    CAS  Article  Google Scholar 

  111. 111.

    Liu, J., Leng, J., Wu, K., Zhang, J. & Jin, S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 139, 1432–1435 (2017).

    CAS  Article  Google Scholar 

  112. 112.

    Shang, Q. et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett. 8, 4431–4438 (2017).

    CAS  Article  Google Scholar 

  113. 113.

    Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    CAS  Article  Google Scholar 

  114. 114.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  Article  Google Scholar 

  115. 115.

    McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).

    CAS  Article  Google Scholar 

  116. 116.

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Article  Google Scholar 

  117. 117.

    Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Article  Google Scholar 

  118. 118.

    Zhao, B. et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J. Am. Chem. Soc. 140, 11716–11725 (2018).

    CAS  Article  Google Scholar 

  119. 119.

    Levchuk, I. et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 17, 2765–2770 (2017).

    CAS  Article  Google Scholar 

  120. 120.

    Protesescu, L. et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

    CAS  Article  Google Scholar 

  121. 121.

    Fu, Y. et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 17, 4405–4414 (2017).

    CAS  Article  Google Scholar 

  122. 122.

    Wang, C., Chesman, A. S. R. & Jasieniak, J. J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 53, 232–235 (2017).

    CAS  Article  Google Scholar 

  123. 123.

    Fu, Y. et al. Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films. Chem. Mater. 29, 8385–8394 (2017).

    CAS  Article  Google Scholar 

  124. 124.

    Zhang, T. et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017).

    Article  CAS  Google Scholar 

  125. 125.

    Wang, Q. et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017).

    CAS  Article  Google Scholar 

  126. 126.

    Li, B. et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1076 (2018).

    Article  CAS  Google Scholar 

  127. 127.

    Fang, H.-H. et al. Unravelling light-induced degradation of layered perovskite crystals and design of efficient encapsulation for improved photostability. Adv. Funct. Mater. 28, 1800305 (2018).

    Article  CAS  Google Scholar 

  128. 128.

    Fan, Z. et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates. Joule 1, 548–562 (2017).

    CAS  Article  Google Scholar 

  129. 129.

    Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photonics 10, 295–302 (2016).

    CAS  Article  Google Scholar 

  130. 130.

    Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    CAS  Article  Google Scholar 

  131. 131.

    Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).

    CAS  Article  Google Scholar 

  132. 132.

    Röder, R. et al. Continuous wave nanowire lasing. Nano Lett. 13, 3602–3606 (2013).

    Article  CAS  Google Scholar 

  133. 133.

    Mayer, B. et al. Continuous wave lasing from individual GaAs-AlGaAs core-shell nanowires. Appl. Phys. Lett. 108, 071107 (2016).

    Article  CAS  Google Scholar 

  134. 134.

    Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. O. & Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 8, 10947–10952 (2014).

    CAS  Article  Google Scholar 

  135. 135.

    Mayer, B. et al. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4, 2931 (2013).

    Article  CAS  Google Scholar 

  136. 136.

    Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 7, 963–968 (2013).

    CAS  Article  Google Scholar 

  137. 137.

    Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571–4577 (2015).

    CAS  Article  Google Scholar 

  138. 138.

    Zhang, Q. et al. Advances in small perovskite-based lasers. Small Methods 1, 1700163 (2017).

    Article  CAS  Google Scholar 

  139. 139.

    Evans, T. J. et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2018).

    Article  CAS  Google Scholar 

  140. 140.

    Gu, Z. et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4, 472–479 (2016).

    CAS  Article  Google Scholar 

  141. 141.

    Zhang, W. et al. Controlling the cavity structures of two-photon pumped perovskite microlasers. Adv. Mater. 28, 4040–4046 (2016).

    CAS  Article  Google Scholar 

  142. 142.

    Mao, W. et al. Controlled growth of monocrystalline organo-lead halide perovskite and its application in photonic devices. Angew. Chem. Int. Ed. 56, 12486–12491 (2017).

    CAS  Article  Google Scholar 

  143. 143.

    Deng, W. et al. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 17, 2482–2489 (2017).

    CAS  Article  Google Scholar 

  144. 144.

    Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    CAS  Article  Google Scholar 

  145. 145.

    Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).

    CAS  Article  Google Scholar 

  146. 146.

    Era, M., Morimoto, S., Tsutsui, T. & Saito, S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 65, 676–678 (1994).

    CAS  Article  Google Scholar 

  147. 147.

    Liang, D. et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016).

    CAS  Article  Google Scholar 

  148. 148.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Article  Google Scholar 

  149. 149.

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).

    CAS  Article  Google Scholar 

  150. 150.

    Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).

    CAS  Article  Google Scholar 

  151. 151.

    Zhang, S. et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv. Mater. 29, 1606600 (2017).

    Article  CAS  Google Scholar 

  152. 152.

    Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Article  CAS  Google Scholar 

  153. 153.

    Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article  CAS  Google Scholar 

  154. 154.

    Chen, Z. et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv. Mater. 29, 1603157 (2017).

    Article  CAS  Google Scholar 

  155. 155.

    Congreve, D. N. et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics 4, 476–481 (2017).

    CAS  Article  Google Scholar 

  156. 156.

    Sadhanala, A. et al. Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15, 6095–6101 (2015).

    CAS  Article  Google Scholar 

  157. 157.

    Nah, S. et al. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains. Nat. Photonics 11, 285–288 (2017).

    CAS  Article  Google Scholar 

  158. 158.

    deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    CAS  Article  Google Scholar 

  159. 159.

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    CAS  Article  Google Scholar 

  160. 160.

    Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  CAS  Google Scholar 

  161. 161.

    Frost, J. M., Whalley, L. D. & Walsh, A. Slow cooling of hot polarons in halide perovskite solar cells. ACS Energy Lett. 2, 2647–2652 (2017).

    CAS  Article  Google Scholar 

  162. 162.

    Wang, Y. et al. Cation dynamics governed thermal properties of lead halide perovskite nanowires. Nano Lett. 18, 2772–2779 (2018).

    CAS  Article  Google Scholar 

  163. 163.

    Zhu, H. et al. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29, 1603072 (2017).

    Article  CAS  Google Scholar 

  164. 164.

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    CAS  Article  Google Scholar 

  165. 165.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Article  Google Scholar 

  166. 166.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  Article  Google Scholar 

  167. 167.

    Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    CAS  Article  Google Scholar 

  168. 168.

    Dobrovolsky, A., Merdasa, A., Unger, E. L., Yartsev, A. & Scheblykin, I. G. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nat. Commun. 8, 34 (2017).

    Article  CAS  Google Scholar 

  169. 169.

    Gillin, W. P., Dunstan, D. J., Homewood, K. P., Howard, L. K. & Sealy, B. J. Interdiffusion in InGaAs/GaAs quantum well structures as a function of depth. J. Appl. Phys. 73, 3782–3786 (1993).

    CAS  Article  Google Scholar 

  170. 170.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    CAS  Article  Google Scholar 

  171. 171.

    Fraser, M. D., Höfling, S. & Yamamoto, Y. Physics and applications of exciton–polariton lasers. Nat. Mater. 15, 1049–1052 (2016).

    CAS  Article  Google Scholar 

  172. 172.

    Zhang, S. et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater. 6, 1701032 (2018).

    Article  CAS  Google Scholar 

  173. 173.

    Du, W. et al. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 5, 2051–2059 (2018).

    CAS  Article  Google Scholar 

  174. 174.

    Shang, Q. et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett. 18, 3335–3343 (2018).

    CAS  Article  Google Scholar 

  175. 175.

    Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    CAS  Article  Google Scholar 

  176. 176.

    Klaas, M. et al. Evolution of temporal coherence in confined exciton-polariton condensates. Phys. Rev. Lett. 120, 017401 (2018).

    CAS  Article  Google Scholar 

  177. 177.

    Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    CAS  Article  Google Scholar 

  178. 178.

    Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).

    CAS  Article  Google Scholar 

  179. 179.

    Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

    CAS  Article  Google Scholar 

  180. 180.

    Walters, G. & Sargent, E. H. Electro-optic response in germanium halide perovskites. J. Phys. Chem. Lett. 9, 1018–1027 (2018).

    CAS  Article  Google Scholar 

  181. 181.

    Lin, Y. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

    CAS  Article  Google Scholar 

  182. 182.

    Xiao, X. et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3, 684–688 (2018).

    CAS  Article  Google Scholar 

  183. 183.

    Fu, Y. et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc. 140, 15675–15683 (2018).

    CAS  Article  Google Scholar 

  184. 184.

    Tan, Z. et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J. Am. Chem. Soc. 138, 16612–16615 (2016).

    CAS  Article  Google Scholar 

  185. 185.

    Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    CAS  Article  Google Scholar 

  186. 186.

    Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

    CAS  Article  Google Scholar 

  187. 187.

    Whang, D., Jin, S. & Lieber, C. M. Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3, 951–954 (2003).

    CAS  Article  Google Scholar 

  188. 188.

    Lee, W. et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl Acad. Sci. USA 114, 8693–8697 (2017).

    CAS  Article  Google Scholar 

  189. 189.

    Zhang, H. et al. 2D Ruddlesden–Popper perovskites microring laser array. Adv. Mater. 30, 1706186 (2018).

    Article  CAS  Google Scholar 

  190. 190.

    Xing, J. et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun. 9, 3541 (2018).

    Article  CAS  Google Scholar 

  191. 191.

    Fujita, T., Sato, Y., Kuitani, T. & Ishihara, T. Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B 57, 12428–12434 (1998).

    CAS  Article  Google Scholar 

  192. 192.

    Lanty, G., Lauret, J. S., Deleporte, E., Bouchoule, S. & Lafosse, X. UV polaritonic emission from a perovskite-based microcavity. Appl. Phys. Lett. 93, 081101 (2008).

    Article  CAS  Google Scholar 

  193. 193.

    Wang, J. et al. Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano 12, 8382–8389 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.J., Y.F. and M.P.H. are supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering (award no. DE-FG02-09ER46664). X.-Y.Z. is supported by the US Department of Energy, Office of Science, Basic Energy Sciences (grant no. SE-0000234931). J.C. thanks the China Scholarship Council for support.

Author information

Affiliations

Authors

Contributions

Y.F. and S.J. discussed the content of the article and Y.F. researched data for the article. All authors contributed to the writing and editing of the article prior to submission.

Corresponding author

Correspondence to Song Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Zhu, H., Chen, J. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater 4, 169–188 (2019). https://doi.org/10.1038/s41578-019-0080-9

Download citation

Further reading