Review Article | Published:

Reprogrammable recovery and actuation behaviour of shape-memory polymers

Nature Reviews Materialsvolume 4pages116133 (2019) | Download Citation

Abstract

Shape memory is the capability of a material to be deformed and fixed into a temporary shape. Recovery of the original shape can then be triggered only by an external stimulus. Shape-memory polymers are highly deformable materials that can be programmed to recover a memorized shape in response to a variety of environmental and spatially localized stimuli as a one-way effect. The shape-memory function can also be generated as a reversible effect enabling actuation behaviour through macroscale deformation and processing, specifically by dictating the macromolecular orientation of actuation units and of the skeleton structure of geometry-determining units in the polymers. Shape-memory polymers can be programmed and reprogrammed into arbitrary shapes. Both recovery and actuation behaviour are reprogrammable. In this Review, we outline the common basis and key differences between the two shape-memory behaviours of polymers in terms of mechanism, fabrication schemes and characterization methods. We discuss which combination of macromolecular architecture and macroscale processing is necessary for coordinated, decentralized and responsive physical behaviour. The extraction of relevant thermomechanical information is described, and design criteria are shown for microscale and macroscale morphologies to gain high levels of recovered or actuation strains as well as on-demand 2D-to-3D shape transformations. Finally, real-world applications and key future challenges are highlighted.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Poppinga, S. et al. Toward a new generation of smart biomimetic actuators for architecture. Adv. Mater. 30, 1703653 (2018).

  2. 2.

    Poppinga, S. et al. Hygroscopic motions of fossil conifer cones. Sci. Rep. 7, 40302 (2017).

  3. 3.

    Swain, M. V. Shape memory behaviour in partially stabilized zirconia ceramics. Nature 324, 148–152 (1986).

  4. 4.

    Mohd Jani, J., Leary, M., Subic, A. & Gibson, M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014).

  5. 5.

    Lendlein, A. & Kelch, S. Shape-memory polymers. Angew. Chem., Int. Ed. 41, 2034–2057 (2002).

  6. 6.

    Qiu, Y. & Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 64, 49–60 (2012).

  7. 7.

    Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

  8. 8.

    Löwenberg, C., Balk, M., Wischke, C., Behl, M. & Lendlein, A. Shape-memory hydrogels: evolution of structural principles to enable shape switching of hydrophilic polymer networks. Acc. Chem. Res. 50, 723–732 (2017).

  9. 9.

    Rousseau, I. A. & Mather, P. T. Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300–15301 (2003).

  10. 10.

    Lendlein, A., Jiang, H., Jünger, O. & Langer, R. Light-induced shape-memory polymers. Nature 434, 879 (2005). A one-way shape-memory effect is programmed and directly triggered by light in a polymer network containing side groups capable of undergoing a photoreversible reaction.

  11. 11.

    Wagermaier, W., Kratz, K., Heuchel, M. & Lendlein, A. Shape-memory polymers and shape-changing polymers. Adv. Polym. Sci. 226, 97–145 (2010).

  12. 12.

    Charlesby, A. Atomic Radiation and Polymers (Pergamon Press, NY, 1960).

  13. 13.

    Mondal, S. & Hu, J. L. Temperature stimulating shape memory polyurethane for smart clothing. Indian J. Fibre Text. Res. 31, 66–71 (2006).

  14. 14.

    Lendlein, A., Behl, M., Hiebl, B. & Wischke, C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 7, 357–379 (2010).

  15. 15.

    Liu, Y. et al. Development of a smart, anti-water polyurethane polymer hair coating for style setting. Int. J. Cosmet. Sci. 38, 305–311 (2016).

  16. 16.

    Huang, W., Yang, B., An, L., Li, C. & Chan, Y. Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86, 114105 (2005).

  17. 17.

    Yang, B., Huang, W., Li, C., Lee, C. & Li, L. On the effects of moisture in a polyurethane shape memory polymer. Smart Mater. Struct. 13, 191 (2003).

  18. 18.

    Zhou, S. et al. Hydrogen bonding interaction of poly(D,L-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 19, 247–253 (2007).

  19. 19.

    Dong, J. & Weiss, R. A. Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 44, 8871–8879 (2011).

  20. 20.

    Liu, G., Ding, X., Cao, Y., Zheng, Z. & Peng, Y. Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 37, 2228–2232 (2004).

  21. 21.

    Zotzmann, J., Behl, M., Hofmann, D. & Lendlein, A. Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(ε-caprolactone)-segments. Adv. Mater. 22, 3424–3429 (2010).

  22. 22.

    Behl, M., Kratz, K., Zotzmann, J., Nöchel, U. & Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 25, 4466–4469 (2013). The reversible, bidirectional shape-memory effect is realized for polymers by translating reversible effects from the nanoscale to the macroscale, enabling reprogrammable soft actuators.

  23. 23.

    Kratz, K., Madbouly, S. A., Wagermaier, W. & Lendlein, A. Temperature-memory polymer networks with crystallizable controlling units. Adv. Mater. 23, 4058–4062 (2011).

  24. 24.

    Xie, T. Tunable polymer multi-shape memory effect. Nature 464, 267 (2010). A one-way multi-shape-memory effect is obtained by thermomechanical processing of a commercially available polymer.

  25. 25.

    Miaudet, P. et al. Shape and temperature memory of nanocomposites with broadened glass transition. Science 318, 1294–1296 (2007). A one-way temperature-memory effect is enabled for a nanocomposite with a glass transition covering a broad temperature range.

  26. 26.

    Bellin, I., Kelch, S. & Lendlein, A. Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J. Mater. Chem. 17, 2885–2891 (2007).

  27. 27.

    Bellin, I., Kelch, S., Langer, R. & Lendlein, A. Polymeric triple-shape materials. Proc. Natl Acad. Sci. USA 103, 18043–18047 (2006).

  28. 28.

    Behl, M., Bellin, I., Kelch, S., Wagermaier, W. & Lendlein, A. One-step process for creating triple-shape capability of AB polymer networks. Adv. Funct. Mater. 19, 102–108 (2009).

  29. 29.

    Koerner, H., Price, G., Pearce, N. A., Alexander, M. & Vaia, R. A. Remotely actuated polymer nanocomposites — stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115 (2004). Remote actuation of a one-way shape-memory effect is achieved by indirectly heating a composite containing carbon nanotubes with infrared light.

  30. 30.

    Mohr, R. et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl Acad. Sci. USA 103, 3540–3545 (2006). A one-way shape-memory effect is magnetically triggered for a nanocomposite by sequentially coupling magnetosensitivity and thermosensitivity.

  31. 31.

    Zhao, Q., Qi, H. J. & Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49, 79–120 (2015).

  32. 32.

    Hu, J., Zhu, Y., Huang, H. & Lu, J. Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012).

  33. 33.

    Jiang, H., Kelch, S. & Lendlein, A. Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006).

  34. 34.

    Aoki, D., Teramoto, Y. & Nishio, Y. SH-containing cellulose acetate derivatives: preparation and characterization as a shape memory-recovery material. Biomacromolecules 8, 3749–3757 (2007).

  35. 35.

    Zheng, N., Fang, Z., Zou, W., Zhao, Q. & Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. Engl. 55, 11421–11425 (2016).

  36. 36.

    Zhao, Q., Zou, W., Luo, Y. & Xie, T. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2, e1501297 (2016).

  37. 37.

    Xie, T. & Rousseau, I. A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50, 1852–1856 (2009).

  38. 38.

    Yakacki, C. M. et al. Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008).

  39. 39.

    Behl, M., Kratz, K., Noechel, U., Sauter, T. & Lendlein, A. Temperature-memory polymer actuators. Proc. Natl Acad. Sci. USA 110, 12555–12559 (2013).

  40. 40.

    Chung, T., Romo-Uribe, A. & Mather, P. T. Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184–192 (2008).

  41. 41.

    Naue, I. F. & Wilhelm, M. Das Entropierad: maschine aus konformationsänderungen [German]. Phys. Unserer Zeit 44, 36–39 (2013).

  42. 42.

    Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307 (2004).

  43. 43.

    Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647 (2016).

  44. 44.

    Liu, Y., Gall, K., Dunn, M. L., Greenberg, A. R. & Diani, J. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22, 279–313 (2006).

  45. 45.

    Tobushi, H., Okumura, K., Endo, M. & Hayashi, S. Thermomechanical properties of polyurethane-shape memory polymer foam. J. Intell. Mater. Syst. Struct. 12, 283–287 (2001).

  46. 46.

    Liu, Y., Gall, K., Dunn, M. L. & McCluskey, P. Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Mater. Struct. 12, 947 (2003).

  47. 47.

    Gall, K. et al. Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res. A 73, 339–348 (2005).

  48. 48.

    Fabrizio, Q., Loredana, S. & Anna, S. E. Shape memory epoxy foams for space applications. Mater. Lett. 69, 20–23 (2012).

  49. 49.

    Khan, F., Koo, J.-H., Monk, D. & Eisbrenner, E. Characterization of shear deformation and strain recovery behavior in shape memory polymers. Polym. Test. 27, 498–503 (2008).

  50. 50.

    Nguyen, T. D. Modeling shape-memory behavior of polymers. Polym. Rev. 53, 130–152 (2013).

  51. 51.

    Heuchel, M., Sauter, T., Kratz, K. & Lendlein, A. Thermally induced shape-memory effects in polymers: quantification and related modeling approaches. J. Polym. Sci. B Polym. Phys. 51, 621–637 (2013).

  52. 52.

    Li, J., Rodgers, W. R. & Xie, T. Semi-crystalline two-way shape memory elastomer. Polymer 52, 5320–5325 (2011).

  53. 53.

    Leng, J., Zhang, D., Liu, Y., Yu, K. & Lan, X. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light. Appl. Phys. Lett. 96, 111905 (2010).

  54. 54.

    Leng, J., Lan, X., Liu, Y. & Du, S. Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders. Smart Mater. Struct. 18, 074003 (2009).

  55. 55.

    Suzuki, K., Yamada, H., Miura, H. & Takanobu, H. Self-assembly of three dimensional micro mechanisms using thermal shrinkage of polyimide. Microsyst. Technol. 13, 1047–1053 (2007).

  56. 56.

    Leong, T. G. et al. Tetherless thermobiochemically actuated microgrippers. Proc. Natl Acad. Sci. USA 106, 703–708 (2009).

  57. 57.

    Hawkes, E. et al. Programmable matter by folding. Proc. Natl Acad. Sci. USA 107, 12441–12445 (2010).

  58. 58.

    Yi, Y. W. & Liu, C. Magnetic actuation of hinged microstructures. J. Microelectromech. Syst. 8, 10–17 (1999).

  59. 59.

    Judy, J. W. & Muller, R. S. Magnetically actuated, addressable microstructures. J. Microelectromech. Syst. 6, 249–256 (1997).

  60. 60.

    Guan, J., He, H., Hansford, D. J. & Lee, L. J. Self-folding of three-dimensional hydrogel microstructures. J. Phys. Chem. B 109, 23134–23137 (2005).

  61. 61.

    Lee, K. M., Koerner, H., Vaia, R. A., Bunning, T. J. & White, T. J. Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318–4324 (2011).

  62. 62.

    Liu, N., Xie, Q., Huang, W., Phee, S. & Guo, N. Formation of micro protrusion arrays atop shape memory polymer. J. Micromech. Microeng. 18, 027001 (2008).

  63. 63.

    Jin, B. et al. Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot. Sci. Adv. 4, eaao3865 (2018).

  64. 64.

    Mao, Y. et al. 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 6, 24761 (2016).

  65. 65.

    Ge, Q., Qi, H. J. & Dunn, M. L. Active materials by four-dimension printing. Appl. Phys. Lett. 103, 131901 (2013).

  66. 66.

    Ge, Q., Dunn, C. K., Qi, H. J. & Dunn, M. L. Active origami by 4D printing. Smart Mater. Struct. 23, 094007 (2014).

  67. 67.

    Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646 (2014). An elegant demonstration is given for the applicability of the reversible shape-memory effect to origami-based methods.

  68. 68.

    Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

  69. 69.

    Metcalfe, A. et al. Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24, 491–497 (2003).

  70. 70.

    De Nardo, L. et al. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility. Acta Biomater. 5, 1508–1518 (2009).

  71. 71.

    Sokolowski, W. M. & Tan, S. C. Advanced self-deployable structures for space applications. J. Spacecr. Rockets 44, 750–754 (2007).

  72. 72.

    Weigel, T., Schinkel, G. & Lendlein, A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev. Med. Devices 3, 835–851 (2006).

  73. 73.

    Di Prima, M. et al. Deformation of epoxy shape memory polymer foam. Part I: experiments and macroscale constitutive modeling. Mech. Mater. 42, 304–314 (2010).

  74. 74.

    Sauter, T., Kratz, K. & Lendlein, A. Pore-size distribution controls shape-memory properties on the macro-and microscale of polymeric foams. Macromol. Chem. Phys. 214, 1184–1188 (2013).

  75. 75.

    Zharinova, E. et al. Water-blown polyurethane foams showing a reversible shape-memory effect. Polymers 8, 412 (2016).

  76. 76.

    Mitragotri, S. & Kost, J. Low-frequency sonophoresis: a noninvasive method of drug delivery and diagnostics. Biotechnol. Prog. 16, 488–492 (2000).

  77. 77.

    Mitragotri, S., Blankschtein, D. & Langer, R. Ultrasound-mediated transdermal protein delivery. Science 269, 850–853 (1995).

  78. 78.

    Mesiwala, A. H. et al. High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med. Biol 28, 389–400 (2002).

  79. 79.

    Zhang, P., Behl, M., Peng, X., Razzaq, M. Y. & Lendlein, A. Ultrasonic cavitation induced shape-memory effect in porous polymer networks. Macromol. Rapid Commun. 37, 1897–1903 (2016).

  80. 80.

    Wang, Z. et al. Programmable, pattern-memorizing polymer surface. Adv. Mater. 23, 3669–3673 (2011).

  81. 81.

    Reddy, S., Arzt, E. & del Campo, A. Bioinspired surfaces with switchable adhesion. Adv. Mater. 19, 3833–3837 (2007).

  82. 82.

    Xie, T. & Xiao, X. Self-peeling reversible dry adhesive system. Chem. Mater. 20, 2866–2868 (2008).

  83. 83.

    Kim, S., Sitti, M., Xie, T. & Xiao, X. Reversible dry micro-fibrillar adhesives with thermally controllable adhesion. Soft Matter 5, 3689–3693 (2009).

  84. 84.

    Wang, R., Xiao, X. & Xie, T. Viscoelastic behavior and force nature of thermo-reversible epoxy dry adhesives. Macromol. Rapid Commun. 31, 295–299 (2010).

  85. 85.

    Eisenhaure, J. D., Xie, T., Varghese, S. & Kim, S. Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl. Mater. Interfaces 5, 7714–7717 (2013).

  86. 86.

    Huang, Y. et al. Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive. ACS Appl. Mater. Interfaces 8, 35628–35633 (2016).

  87. 87.

    Chen, C. M. & Yang, S. Directed water shedding on high-aspect-ratio shape memory polymer micropillar arrays. Adv. Mater. 26, 1283–1288 (2014).

  88. 88.

    Xu, H. et al. Deformable, programmable, and shape-memorizing micro-optics. Adv. Funct. Mater. 23, 3299–3306 (2013).

  89. 89.

    Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

  90. 90.

    Nelson, B. A., King, W. P. & Gall, K. Shape recovery of nanoscale imprints in a thermoset “shape memory” polymer. Appl. Phys. Lett. 86, 103108 (2005).

  91. 91.

    Wornyo, E., Gall, K., Yang, F. & King, W. Nanoindentation of shape memory polymer networks. Polymer 48, 3213–3225 (2007).

  92. 92.

    Liu, N., Huang, W., Phee, S., Fan, H. & Chew, K. A generic approach for producing various protrusive shapes on different size scales using shape-memory polymer. Smart Mater. Struct. 16, N47 (2007).

  93. 93.

    Wischke, C., Schossig, M. & Lendlein, A. Shape-memory effect of micro-/nanoparticles from thermoplastic multiblock copolymers. Small 10, 83–87 (2014).

  94. 94.

    Wischke, C. & Lendlein, A. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices. Langmuir 30, 2820–2827 (2014).

  95. 95.

    Fang, L. et al. Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope. ChemPhysChem 19, 2078 (2018).

  96. 96.

    Liu, Y. et al. Two-level shape changes of polymeric microcuboids prepared from crystallizable copolymer networks. Macromolecules 50, 2518–2527 (2017).

  97. 97.

    Davis, K. A., Burke, K. A., Mather, P. T. & Henderson, J. H. Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32, 2285–2293 (2011).

  98. 98.

    Zhang, Q., Sauter, T., Fang, L., Kratz, K. & Lendlein, A. Shape-memory capability of copolyetheresterurethane microparticles prepared via electrospraying. Macromol. Mater. Eng. 300, 522–530 (2015).

  99. 99.

    Fu, C. C. et al. Tunable nanowrinkles on shape memory polymer sheets. Adv. Mater. 21, 4472–4476 (2009).

  100. 100.

    Jiang, Y., Fang, L., Kratz, K. & Lendlein, A. Influence of compression direction on the shape-memory effect of micro-cylinder arrays prepared from semi-crystalline polymer networks. MRS Adv. 1, 1985–1993 (2016).

  101. 101.

    Cox, L. M. et al. Influences of substrate adhesion and particle size on the shape memory effect of polystyrene particles. Langmuir 32, 3691–3698 (2016).

  102. 102.

    Cox, L. M. et al. Light-stimulated permanent shape reconfiguration in cross-linked polymer microparticles. ACS Appl. Mater. Interfaces 9, 14422–14428 (2017).

  103. 103.

    Jiang, C., Uto, K., Ebara, M., Aoyagi, T. & Ichiki, T. Implementation of poly (ε-caprolactone) sheet-based shape-memory polymer microvalves into plastic-based microfluidic devices. Jpn. J. Appl. Phys. 54, 06FN02 (2015).

  104. 104.

    Ebara, M., Uto, K., Idota, N., Hoffman, J. M. & Aoyagi, T. Rewritable and shape-memory soft matter with dynamically tunable microchannel geometry in a biological temperature range. Soft Matter 9, 3074–3080 (2013).

  105. 105.

    Steidle, N. E., Schneider, M., Ahrens, R., Worgull, M. & Guber, A. E. in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 6659–6662 (IEEE, 2013).

  106. 106.

    Worgull, M. et al. Hot embossing and thermoforming of biodegradable three-dimensional wood structures. RSC Adv. 3, 20060–20064 (2013).

  107. 107.

    Kim, D.-H. et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107, 565–570 (2010).

  108. 108.

    Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance on well-defined micro-and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003).

  109. 109.

    Turner, S. A., Zhou, J., Sheiko, S. S. & Ashby, V. S. Switchable micropatterned surface topographies mediated by reversible shape memory. ACS Appl. Mater. Interfaces 6, 8017–8021 (2014).

  110. 110.

    Ebara, M., Uto, K., Idota, N., Hoffman, J. M. & Aoyagi, T. Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv. Mater. 24, 273–278 (2012).

  111. 111.

    Uto, K., Aoyagi, T., DeForest, C. A., Hoffman, A. S. & Ebara, M. A. Combinational effect of “bulk” and “surface” shape-memory transitions on the regulation of cell alignment. Adv. Healthc. Mater. 6, 1601439 (2017).

  112. 112.

    Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002). A degradable, elastic thermoplastic is designed to exhibit a thermally triggered one-way shape-memory effect with potential medical applications.

  113. 113.

    Neffe, A. T., Hanh, B. D., Steuer, S. & Lendlein, A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 21, 3394–3398 (2009).

  114. 114.

    Stylios, G. K. & Wan, T. Shape memory training for smart fabrics. Trans. Inst. Meas. Control 29, 321–336 (2007).

  115. 115.

    Farhan, M. et al. Noncontinuously responding polymeric actuators. ACS Appl. Mater. Interfaces 9, 33559–33564 (2017).

  116. 116.

    Huang, L. et al. Ultrafast digital printing toward 4D shape changing materials. Adv. Mater. 29, 1605390 (2017).

  117. 117.

    Zarek, M. et al. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28, 4449–4454 (2016). This study demonstrates a fabrication scheme for responsive electronic devices based on one-way shape-memory polymers using 3D printing.

  118. 118.

    Ge, Q. et al. Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 6, 31110 (2016).

  119. 119.

    Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

  120. 120.

    Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

  121. 121.

    Mazzolai, B. & Mattoli, V. Robotics: generation soft. Nature 536, 400 (2016).

  122. 122.

    Sadeghi, A., Mondini, A. & Mazzolai, B. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4, 211–223 (2017).

  123. 123.

    Sadeghi, A., Tonazzini, A., Popova, L. & Mazzolai, B. A novel growing device inspired by plant root soil penetration behaviors. PLOS ONE 9, e90139 (2014).

  124. 124.

    Fischer, P., Nelson, B. J. & Yang, G.-Z. New materials for next-generation robots. Sci. Robot. 2, eaap9294 (2018).

  125. 125.

    Lendlein, A. Fabrication of reprogrammable shape-memory polymer actuators for robotics. Sci. Robot. 3, eaat9090 (2018).

  126. 126.

    Pierce, B. F., Bellin, K., Behl, M. & Lendlein, A. Demonstrating the influence of water on shape-memory polymer networks based on poly[(rac-lactide)-co-glycolide] segments in vitro. Int. J. Artif. Organs 34, 172–179 (2011).

  127. 127.

    Behl, M., Zotzmann, J. & Lendlein, A. One-way and reversible dual-shape effect of polymer networks based on polypentadecalactone segments. Int. J. Artif. Organs 34, 231–237 (2011).

  128. 128.

    Sauter, T., Heuchel, M., Kratz, K. & Lendlein, A. Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polymer Rev. 53, 6–40 (2013).

  129. 129.

    Mazurek-Budzyn´ska, M. et al. Poly(carbonate-urea-urethane) networks exhibiting high-strain shape-memory effect. Polym. Adv. Technol. 28, 1285–1293 (2017).

  130. 130.

    Sauter, T. et al. Shape-memory properties of polyetherurethane foams prepared by thermally induced phase separation. Adv. Engineer. Mater. 14, 818–824 (2012).

  131. 131.

    Friess, F., Nöchel, U., Lendlein, A. & Wischke, C. Polymer micronetworks with shape-memory as future platform to explore shape-dependent biological effects. Adv. Healthc. Mater. 3, 1986–1990 (2014).

Download references

Acknowledgements

The authors thank K. Schmaelzlin for her help and support with the preparation of the manuscript and W. Yan for technical support, performing the measurements displayed in figure 4e.

Author information

Affiliations

  1. Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany

    • Andreas Lendlein
    •  & Oliver E. C. Gould
  2. Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany

    • Andreas Lendlein

Authors

  1. Search for Andreas Lendlein in:

  2. Search for Oliver E. C. Gould in:

Contributions

The manuscript was written by A.L. and O.E.C.G. The figures were prepared by A.L. and O.E.C.G.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Andreas Lendlein.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41578-018-0078-8