Abstract
Many extracellular matrices (ECMs) have a filamentous architecture, which influences cell growth and phenotype and imparts tissues with specific properties. Man-made fibrillar hydrogels can function as biomimetic materials to reproduce the filamentous nature and properties of ECMs and to serve as scaffolds for 3D cell culture and tissue engineering. Different types of synthetic nanofibrillar hydrogels have been developed, with diverse mechanisms of assembly and a variety of physical properties and applications. In this Review, we explore the design and properties of biomimetic man-made nanofibrillar hydrogels. We discuss the assembly of peptides, block copolymer worm-like micelles and filamentous nanoparticles into fibrillar hydrogels and investigate the relationship between structure and physical as well as biochemical properties. Potential applications for 3D cell culture and tissue engineering are examined, and the properties and structure of natural and man-made fibrillar hydrogels are compared. Finally, we critically assess current challenges and future directions of the field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Theocharis, A. D., Skandalis, S. S., Gialeli, C. & Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016).
Bosman, F. T. & Stamenkovic, I. Functional structure and composition of the extracellular matrix. J. Pathol. 200, 423–428 (2003).
MacKintosh, F. C., Kas, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995). In this study, the authors develop a model for fibrillar gels that explains the elastic properties of these networks, including the concentration dependence of their storage modulus.
Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell. Biol. 10, 34–43 (2009).
Dufort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell. Biol. 12, 308–319 (2011).
Alam, N. et al. The integrin—growth factor receptor duet. J. Cell. Physiol. 213, 649–653 (2007).
Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009). This review discusses how extracellular matrix fibres influence growth factor signalling.
Chau, M., Sriskandha, S. E., Thérien-Aubin, H. & Kumacheva, E. in Advances in Polymer Science Vol. 268 167–199 (Springer, NY, 2015).
Huxley, A. F. Muscular contraction. J. Physiol. 243, 1–43 (1974).
Madison, K. C. Barrier function of the skin: ‘La Raison d’Être’ of the epidermis. J. Invest. Dermatol. 121, 231–241 (2003).
Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009).
Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).
Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).
Morgan, C. E. et al. Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 10, 899–909 (2016).
Ulijn, R. V. & Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008).
Greenfield, M. A., Hoffman, J. R., Olvera de la Cruz, M. & Stupp, S. I. Tunable mechanics of peptide nanofiber gels. Langmuir 26, 3641–3647 (2010).
Sur, S., Newcomb, C. J., Webber, M. J. & Stupp, S. I. Tuning supramolecular mechanics to guide neuron development. Biomaterials 34, 4749–4757 (2013).
Blanazs, A. et al. Sterilizable gels from thermoresponsive block copolymer worms. J. Am. Chem. Soc. 134, 9741–9748 (2012).
Simon, K. A. et al. Disulfide-based diblock copolymer worm gels: a wholly-synthetic thermoreversible 3D matrix for sheet-based cultures. Biomacromolecules 16, 3952–3958 (2015).
Warren, N. J., Rosselgong, J., Madsen, J. & Armes, S. P. Disulfide-functionalized diblock copolymer worm gels. Biomacromolecules 16, 2514–2521 (2015).
Chau, M. et al. Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals. Biomacromolecules 16, 2455–2462 (2015). In this study, the authors report the structure–property relationships of ionically gelled cellulose nanocrystal hydrogels, including how the strength and number of interactions between building blocks influence the stiffness and mesh size of the hydrogels.
Li, Y. et al. Supramolecular nanofibrillar thermoreversible hydrogel for growth and release of cancer spheroids. Angew. Chemie Int. Ed. 55, 1–6 (2016).
Liu, M. et al. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydr. Polym. 152, 832–840 (2016).
Nata, I. F., Wang, S. S.-S., Wu, T.-M. & Lee, C.-K. β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr. Polym. 90, 1509–1514 (2012).
De France, K. J. et al. Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes. Nano Lett. 17, 6487–6495 (2017).
Prabhakaran, M. P., Venugopal, J. & Ramakrishna, S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 5, 2884–2893 (2009).
Lim, S. H. & Mao, H. Electrospun scaffolds for stem cell engineering. Adv. Drug Deliv. Rev. 61, 1084–1096 (2009).
Lu, A., Zhu, J., Zhang, G. & Sun, G. Gelatin nanofibers fabricated by extruding immiscible polymer solution blend and their application in tissue engineering. J. Mater. Chem. 21, 18674–18680 (2011).
Kumbar, S. G., James, R., Nukavarapu, S. P. & Laurencin, C. T. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater. 3, 034002 (2008).
Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell. Biol. 15, 771–785 (2014).
Ushiki, T. Preserving the original architecture of elastin components in the formic acid-digested aorta by an alternative procedure for scanning electron microscopy. J. Electron. Microsc. (Tokyo). 41, 60–63 (1992).
Baldwin, A. K., Simpson, A., Steer, R., Cain, S. A. & Kielty, C. M. Elastic fibres in health and disease. Expert Rev. Mol. Med. 15, e8 (2013).
Arribas, S. M., Hinek, A. & González, M. C. Elastic fibres and vascular structure in hypertension. Pharmacol. Ther. 111, 771–791 (2006).
Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell. Biol. 15, 802–812 (2014).
Gelse, K., Pöschl, E. & Aigner, T. Collagens - structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).
Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60–61, 27–37 (2017).
Pereira, M. et al. The incorporation of fibrinogen into extracellular matrix is dependent on active assembly of a fibronectin matrix. J. Cell Sci. 115, 609–617 (2002).
Moriya, K. et al. A fibronectin-independent mechanism of collagen fibrillogenesis in adult liver remodeling. Gastroenterology 140, 1653–1663 (2011).
Singh, P., Carraher, C. & Schwarzbauer, J. E. Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397–419 (2010).
Bachman, H., Nicosia, J., Dysart, M. & Barker, T. H. Utilizing fibronectin integrin-binding specificity to control cellular responses. Adv. Wound Care 4, 501–511 (2015).
Baneyx, G., Baugh, L. & Vogel, V. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 98, 14464–14468 (2001).
Ohashi, T., Kiehart, D. P. & Erickson, H. P. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc. Natl Acad. Sci. USA 96, 2153–2158 (1999).
Fang, M., Yuan, J., Peng, C. & Li, Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 35, 2871–2882 (2014).
Cox, T. R. & Erler, J. T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4, 165–178 (2011).
Rybinski, B., Franco-Barraza, J. & Cukierman, E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol. Genom. 46, 223–244 (2014).
Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).
Malik, R., Lelkes, P. I. & Cukierman, E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 33, 230–236 (2015).
Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA 106, 18267–18272 (2009).
Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013). In this work, polyisocyanopeptide fibrils are used to explore how fibril stiffness and the degree of fibril bundling impact the elastic properties of the resulting hydrogels.
Vogel, V. Mechanotransducion involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).
Notbohm, J., Lesman, A., Rosakis, P., Tirrell, D. A. & Ravichandran, G. Microbuckling of fibrin provides a mechanism for cell mechanosensing. J. R. Soc. Interface 12, 20150320 (2015).
Winer, J. P., Oake, S. & Janmey, P. A. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLOS ONE 4, e6382 (2009).
Aghvami, M., Billiar, K. L. & Sander, E. A. Fiber network models predict enhanced cell mechanosensing on fibrous gels. J. Biomech. Eng. 138, 101006 (2016).
Worthington, P. et al. β-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Anal. Biochem. 535, 25–34 (2017).
Branco, M. C., Pochan, D. J., Wagner, N. J. & Schneider, J. P. Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels. Biomaterials 30, 1339–1347 (2009).
Altunbas, A., Lee, S. J., Rajasekaran, S. A., Schneider, J. P. & Pochan, D. J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32, 5906–5914 (2011).
Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010). This work demonstrates that the alignment of fibres enables human mesenchymal stem cell alignment and facilitates the formation of action potentials between cardiomyocytes.
Cheng, T.-Y., Chen, M.-H., Chang, W.-H., Huang, M.-Y. & Wang, T.-W. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34, 2005–2016 (2013).
Yang, Z. & Zhao, X. A. 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int. J. Nanomed. 6, 303–310 (2011).
Lewis, L., Derakhshandeh, M., Hatzikiriakos, S. G., Hamad, W. Y. & MacLachlan, M. J. Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17, 2747–2754 (2016).
Bhattacharya, M. et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control. Release 164, 291–298 (2012).
Lou, Y.-R. et al. The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 23, 380–392 (2014).
Raghavan, S. R. & Douglas, J. F. The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links? Soft Matter 8, 8539–8546 (2012).
Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA 104, 7791–7796 (2007).
Thérien-Aubin, H. et al. Temperature-responsive nanofibrillar hydrogels for cell encapsulation. Biomacromolecules 17, 3244–3251 (2016).
Schneider, J. P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002).
Banwell, E. F. et al. Rational design and application of responsive α-helical peptide hydrogels. Nat. Mater. 8, 596–600 (2009).
Pashuck, E. T., Cui, H. & Stupp, S. I. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc. 132, 6041–6046 (2010).
Stupp, S. I. Self-assembly and biomaterials. Nano Lett. 10, 4783–4786 (2010).
Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469–479 (2011).
Yokoi, H., Kinoshita, T. & Zhang, S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl Acad. Sci. USA 102, 8414–8419 (2004).
O’Leary, L. E. R., Fallas, J. A., Bakota, E. L., Kang, M. K. & Hartgerink, J. D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 3, 821–828 (2011).
Sarkar, B., O’Leary, L. E. R. & Hartgerink, J. D. Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J. Am. Chem. Soc. 136, 14417–14424 (2014).
Smith, A. M. et al. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv. Mater. 20, 37–41 (2008).
Jayawarna, V. et al. Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater. 5, 934–943 (2009).
Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide amphophile nanofibers. Science 294, 1684–1688 (2001). This article is the first to report the self-assembly of peptide amphiphiles into nanofibres, demonstrating their potential use as a scaffold for bone mineralization.
Rajangam, K. et al. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett. 6, 2086–2090 (2006).
Stendahl, J. C., Rao, M. S., Guler, M. O. & Stupp, S. I. Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv. Funct. Mater. 16, 499–508 (2006).
Paramonov, S. E., Jun, H.-W. & Hartgerink, J. D. Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 128, 7291–7298 (2006).
Newcomb, C. J. et al. Supramolecular nanofibers enhance growth factor signaling by increasing lipid raft mobility. Nano Lett. 16, 3042–3050 (2016).
Shah, R. N. et al. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl Acad. Sci. USA 107, 3293–3298 (2010).
Mata, A. et al. Biomaterials Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 31, 6004–6012 (2010).
Webber, M. J. et al. Capturing the stem cell paracrine effect using heparin-presenting nanofibres to treat cardiovascular diseases. J. Tissue Eng. Regen. Med. 4, 600–610 (2010).
Bates, C. M. & Bates, F. S. 50th anniversary perspective: block polymers-pure potential. Macromolecules 50, 3–22 (2017).
Won, Y.-Y., Davis, H. T. & Bates, F. S. Giant wormlike rubber micelles. Science 283, 960–963 (1999).
Warren, N. J., Mykhaylyk, O. O., Mahmood, D., Ryan, A. J. & Armes, S. P. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J. Am. Chem. Soc. 136, 1023–1033 (2014).
Won, Y.-Y., Paso, K., Davis, H. T. & Bates, F. S. Comparison of original and cross-linked wormlike micelles of poly(ethylene oxide- b -butadiene) in water: rheological properties and effects of poly(ethylene oxide) addition. J. Phys. Chem. B 105, 8302–8311 (2001).
Nagarajan, R. Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18, 31–38 (2002).
Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 72, 1525–1568 (1975).
Lovett, J. R. et al. Can percolation theory explain the gelation behavior of diblock copolymer worms? Chem. Sci. 9, 7138–7144 (2018).
Penfold, N. J. W. et al. pH-Responsive non-ionic diblock copolymers: protonation of a morpholine end-group induces an order–order transition. Polym. Chem. 7, 79–88 (2016).
Lovett, J. R., Warren, N. J., Ratcliffe, L. P. D., Kocik, M. K. & Armes, S. P. pH-responsive non-ionic diblock copolymers: ionization of carboxylic acid end-groups induces an order-order morphological transition. Angew. Chemie Int. Ed. 54, 1279–1283 (2015).
Araki, J., Yamanaka, Y. & Ohkawa, K. Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym. J. 44, 713–717 (2012).
Zhang, X. et al. Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer (Guildf) 51, 4398–4407 (2010).
De France, K. J., Hoare, T. & Cranston, E. D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 4609–4631 (2017).
Way, A. E., Hsu, L., Shanmuganathan, K., Weder, C. & Rowan, S. J. pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett. 1, 1001–1006 (2012).
Abe, K. & Yano, H. Formation of hydrogels from cellulose nanofibers. Carbohydr. Polym. 85, 733–737 (2011).
Dufresne, A. Nanocellulose: a new ageless bionanomaterial. Mater. Today 16, 220–227 (2013).
Saito, T., Kimura, S., Nishiyama, Y. & Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491 (2007).
Wada, M., Okano, T. & Sugiyama, J. Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4, 221–232 (1997).
Sugiyama, J., Vuong, R. & Chanzy, H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168–4175 (1991).
Saxena, I. M. & Brown, R. M. Cellulose biosynthesis: current views and evolving concepts. Ann. Bot. 96, 9–21 (2005).
Baker, A. A., Helbert, W., Sugiyama, J. & Miles, M. J. High-resolution atomic force microscopy of native valonia cellulose I microcrystals. J. Struct. Biol. 119, 129–138 (1997).
Jakob, H. F., Tschegg, S. E. & Fratzl, P. Hydration dependence of the wood-cell wall structure in picea abies. A small-angle X-ray scattering study. Macromolecules 29, 8435–8440 (1996).
Sehaqui, H., Zhou, Q. & Berglund, L. A. Nanostructured biocomposites of high toughness — a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7, 7342–7350 (2011).
Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010).
Sanna, R. et al. Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels. Cellulose 20, 2393–2402 (2013).
Dong, X. M. & Gray, D. G. Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13, 2404–2409 (1997).
Lin, N. & Dufresne, A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6, 5384–5393 (2014).
De France, K. J., Chan, K. J. W., Cranston, E. D. & Hoare, T. Enhanced mechanical properties in cellulose nanocrystal–poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17, 649–660 (2016).
Prince, E. et al. Patterning of structurally anisotropic composite hydrogel sheets. Biomacromolecules 19, 1276–1284 (2018).
Fernández-Colino, A., Arias, F. J., Alonso, M. & Rodríguez-Cabello, J. C. Self-organized ECM-mimetic model based on an amphiphilic multiblock silk-elastin-like corecombinamer with a concomitant dual physical gelation process. Biomacromolecules 15, 3781–3793 (2014).
Marelli, B., Ghezzi, C. E., James-Bhasin, M. & Nazhat, S. N. Fabrication of injectable, cellular, anisotropic collagen tissue equivalents with modular fibrillar densities. Biomaterials 37, 183–193 (2015).
Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
Sano, K., Ishida, Y. & Aida, T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem. Int. Ed. Engl. 57, 2–14 (2018).
Chau, M. et al. Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem. Mater. 28, 3406–3415 (2016).
Lin, P., Zhang, T., Wang, X., Yu, B. & Zhou, F. Freezing molecular orientation under stretch for high mechanical strength but anisotropic hydrogels. Small 12, 4386–4392 (2016).
Prang, P. et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27, 3560–3569 (2006).
Sleep, E. et al. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proc. Natl Acad. Sci. USA 114, E7919–E7928 (2017).
Håkansson, K. M. O. Online determination of anisotropy during cellulose nanofibril assembly in a flow focusing device. RSC Adv. 5, 18601–18608 (2015).
Mawer, P. J. et al. Small-angle neutron scattering from peptide nematic fluids and hydrogels under shear. Langmuir 19, 4940–4949 (2003).
Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell. Biol. 10, 63–73 (2009).
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Ng, M. R. & Brugge, J. S. A. Stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16, 455–457 (2009).
Truong, D. et al. Breast cancer cell invasion into a three dimensional tumor-stroma microenvironment. Sci. Rep. 6, 34094 (2016).
Anseth, K. S., Bowman, C. N. & Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 17, 1647–1657 (1996).
Almdal, K., Dyre, J., Hvidt, S. & Kramer, O. Towards a phenomenological definition of the term ‘gel’. Polym. Gels Networks 1, 5–17 (1993).
De Rosa, M. E. & Winter, H. H. The effect of entanglements on the rheological behavior of polybutadiene critical gels. Rheol. Acta 33, 220–237 (1994).
Münstera, S. et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl Acad. Sci. USA 110, 12197–12202 (2013).
Brown, A. E. X., Litvinov, R. I., Discher, D. E., Purohit, P. K. & Weisel, J. W. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325, 741–744 (2009).
Janmey, P. A. et al. Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007).
Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).
Ozbas, B., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Semiflexible chain networks formed via self-assembly of β-hairpin molecules. Phys. Rev. Lett. 93, 268106 (2004).
Verber, R., Blanazs, A. & Armes, S. P. Rheological studies of thermo-responsive diblock copolymer worm gels. Soft Matter 8, 9923–9932 (2012).
Lovett, J. R. et al. A robust cross-linking strategy for block copolymer worms prepared via polymerization-induced self-assembly. Macromolecules 49, 2928–2941 (2016).
Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2012).
White, J. A. & Deen, W. M. Agarose-dextran gels as synthetic analogs of glomerular basement membrane: water permeability. Biophys. J. 82, 2081–2089 (2002).
Wallace, D. G. & Rosenblatt, J. Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 55, 1631–1649 (2003).
Johnson, E. M. & Deen, W. M. Hydraulic permeability of agarose gels. AIChE J. 42, 1220–1224 (1996).
Yang, Y., Motte, S. & Kaufman, L. J. Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31, 5678–5688 (2010).
Serpooshan, V., Quinn, T. M., Muja, N. & Nazhat, S. N. Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomater. 9, 4673–4680 (2013).
Amsden, B. An obstruction-scaling model for diffusion in homogeneous hydrogels. Macromolecules 32, 874–879 (1999).
Whitaker, S. Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986).
Erikson, A., Anderson, N. H., Naess, S. N., Sikorski, P. & de Lange Davies, C. Physical and chemical modification of collagen gels: impact on diffusion. Biopolymers 89, 135–143 (2007).
Ramanujan, S. et al. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys. J. 83, 1650–1660 (2002).
Boekhoven, J. & Stupp, S. I. 25th anniversary article: supramolecular materials for regenerative medicine. Adv. Mater. 26, 1642–1659 (2014).
Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A. & Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113, 1677–1686 (2000).
Mata, A. et al. Micropatterning of bioactive self-assembling gels. Soft Matter 5, 1228–1236 (2009).
Taraballi, F. et al. Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures. Front. Neuroeng. 3, 1 (2010).
Zupancich, J. A., Bates, F. S. & Hillmyer, M. A. Synthesis and self-assembly of RGD-functionalized PEO-PB amphiphiles. Biomacromolecules 10, 1554–1563 (2009).
Cheng, G., Castelletto, V., Jones, R. R., Connon, C. J. & Hamley, I. W. Hydrogelation of self-assembling RGD-based peptides. Soft Matter 7, 1326–1333 (2010).
Zhou, M. et al. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30, 2523–2530 (2009).
Storrie, H. et al. Supramolecular crafting of cell adhesion. Biomaterials 28, 4608–4618 (2007).
Webber, M. J. et al. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater. 6, 3–11 (2010).
Lee, S. S. et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 4, 131–141 (2015).
Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006).
Li, Y. & Kumacheva, E. Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci. Adv. 4, eaas8998 (2018).
Ranga, A., Gjorevski, N. & Lutolf, M. P. Drug discovery through stem cell-based organoid models. Adv. Drug Deliv. Rev. 69–70, 19–28 (2014).
Canton, I. et al. Mucin-inspired thermoresponsive synthetic hydrogels induce stasis in human pluripotent stem cells and human embryos. ACS Cent. Sci. 2, 65–74 (2016).
Kambe, Y., Murakoshi, A., Urakawa, H., Kimura, Y. & Yamaoka, T. Vascular induction and cell infiltration into peptide-modified bioactive silk fibroin hydrogels. J. Mater. Chem. B 5, 7557–7571 (2017).
Dvir, T., Timko, B. P., Kohane, D. S. & Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6, 13–22 (2011).
Pääkko, M. et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 1934–1941 (2007).
Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65, 109–126 (2002).
Sill, T. J. & von Recum, H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006 (2008).
Oberpenning, F., Meng, J., Yoo, J. J. & Atala, A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17, 149–155 (1999).
Yan, C. et al. Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft Matter 6, 5143–5156 (2010).
Zhang, M. et al. Self-healing supramolecular gels formed by crown ether based host – guest interactions. Angew. Chem. Int. Ed. Engl. 124, 7117–7121 (2012).
Acerbi, I. et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7, 1120–1134 (2015).
Engler, A. J., Richert, L., Wong, J. Y., Picart, C. & Discher, D. E. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570, 142–154 (2004).
Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).
Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Viscoelastic properties of model segments of collagen molecules. Matrix Biol. 31, 141–149 (2012).
Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290 (2006).
Tarakanova, A., Yeo, G. C., Baldock, C., Weiss, A. S. & Buehler, M. J. Molecular model of human tropoelastin and implications of associated mutations. Proc. Natl Acad. Sci. USA 115, 201801205 (2018).
Stylianopoulos, T., Diop-frimpong, B., Munn, L. L. & Jain, R. K. Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation. Biophys. J. 99, 3119–3128 (2010).
Shi, C., Wright, G. J., Ex-Lubeskie, C. L., Bradshaw, A. D. & Yao, H. Relationship between anisotropic diffusion properties and tissue morphology in porcine TMJ disc. Osteoarthr. Cartil. 21, 625–633 (2013).
Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).
Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006).
Birgersdotter, A., Sandberg, R. & Ernberg, I. Gene expression perturbation in vitro — a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 15, 405–412 (2005).
Moreno-Arotzena, O., Meier, J., del Amo, C. & García-Aznar, J. Characterization of fibrin and collagen gels for engineering wound healing models. Materials (Basel). 8, (1636–1651 (2015).
Cukierman, E. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
Yamamoto, K., Yokoi, H. & Otani, A. Hierarchical structure of the fibrillar hydrogel network of a self-assembled synthetic peptide revealed by x-ray scattering and atmospheric scanning electron microscopy. Macromol. Symp. 358, 85–94 (2015).
Oldberg, A. et al. Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc. Natl Acad. Sci. USA 104, 13966–13971 (2007).
Yamamoto, S. et al. Atomic force microscopic studies of isolated collagen fibrils of the bovine cornea and sclera. Arch. Histol. Cytol. 60, 371–378 (1997).
Komai, Y. & Ushiki, T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest. Ophthalmol. Vis. Sci. 32, 2244–2258 (1991).
Barton, S. P. & Marks, R. Measurement of collagen-fibre diameter in human skin. J. Cutan. Pathol. 11, 18–26 (1984).
Silver, F. H., Kato, Y. P., Ohno, M. & Wasserman, A. J. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J. Long. Term. Eff. Med. Implants 2, 165–198 (1992).
Ushiki, T. & Murakumo, M. Scanning electron microscopic studies of tissue elastin components exposed by a KOH-collagenase or simple KOH digestion method. Arch. Histol. Cytol. 54, 427–436 (1991).
Singer, I. I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16, 675–685 (1979).
Chen, L. B., Murray, A., Segal, R. A., Bushnell, A. & Walsh, M. L. Studies on intercellular LETS glycoprotein matrices. Cell 14, 377–391 (1978).
He, S., Cao, H., Antovic, A. & Blombäck, M. Modifications of flow measurement to determine fibrin gel permeability and the preliminary use in research and clinical materials. Blood Coagul. Fibrinolysis 16, 61–67 (2005).
Gersh, K. C., Nagaswami, C. & Weisel, J. W. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb. Haemost. 102, 1169–1175 (2010).
Ryan, E. A., Mockros, L. F., Weisel, J. W. & Lorand, L. Structural origins of fibrin clot rheology. Biophys. J. 77, 2813–2826 (1999).
Piechocka, I. K., Bacabac, R. G., Potters, M., Mackintosh, F. C. & Koenderink, G. H. Structural hierarchy governs fibrin gel mechanics. Biophys. J. 98, 2281–2289 (2010).
Allen, P., Melero-Martin, J. & Bischoff, J. Type I collagen, fibrin and PuraMatrixmatrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J. Tissue Eng. Regen. Med. 5, e74–e86 (2011).
Jansen, K. A. et al. The role of network architecture in collagen mechanics. Biophys. J. 114, 2665–2678 (2018).
Chen, W. et al. Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohydr. Polym. 117, 950–956 (2015).
Rabionet, M., Yeste, M., Puig, T. & Ciurana, J. Electrospinning PCL scaffolds manufacture for three-dimensional breast cancer cell culture. Polymers (Basel) 9, (328 (2017).
Vaquette, C. & Cooper-White, J. A simple method for fabricating 3D multilayered composite scaffolds. Acta Biomater. 9, 4599–4608 (2013).
Vaquette, C. & Cooper-White, J. J. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 7, 2544–2557 (2011).
Haj, J., Haj Khalil, T., Falah, M., Zussman, E. & Srouji, S. An ECM-mimicking, mesenchymal stem cell-embedded hybrid scaffold for bone regeneration. Biomed Res. Int. 2017, 8591073 (2017).
Acknowledgements
The authors are grateful to the Natural Sciences and Engineering Research Council (NSERC) of Canada (Discovery Grant) for their financial support. E.K. thanks the Canada Research Chairs Program. E.P. is grateful to the NSERC of Canada Graduate Scholarship-Doctoral Program.
Author information
Authors and Affiliations
Contributions
E.P. and E.K. wrote and edited the manuscript. E.P. researched data for the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Prince, E., Kumacheva, E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat Rev Mater 4, 99–115 (2019). https://doi.org/10.1038/s41578-018-0077-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-018-0077-9