Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing crystallization in phase-change materials for universal memory and neuro-inspired computing

Abstract

The global demand for data storage and processing has increased exponentially in recent decades. To respond to this demand, research efforts have been devoted to the development of non-volatile memory and neuro-inspired computing technologies. Chalcogenide phase-change materials (PCMs) are leading candidates for such applications, and they have become technologically mature with recently released competitive products. In this Review, we focus on the mechanisms of the crystallization dynamics of PCMs by discussing structural and kinetic experiments, as well as ab initio atomistic modelling and materials design. Based on the knowledge at the atomistic level, we depict routes to improve the parameters of phase-change devices for universal memory. Moreover, we discuss the role of crystallization in enabling neuro-inspired computing using PCMs. Finally, we present an outlook for future opportunities of PCMs, including all-photonic memories and processors, flexible displays with nanopixel resolution and nanoscale switches and controllers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Current and emerging computing units.
Fig. 2: Prototypical phase-change materials.
Fig. 3: Nucleation rate by materials design.
Fig. 4: Crystal growth from atomistic simulations.
Fig. 5: Temperature-dependent dynamics of phase-change materials.
Fig. 6: The performance of phase-change devices.
Fig. 7: Phase-change neuro-inspired computing.

References

  1. 1.

    Gu, M., Zhang, Q. & Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 1, 16070 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Big data needs a hardware revolution [editorial]. Nature 554, 145–146 (2018).

  3. 3.

    Does AI have a hardware problem? [editorial]. Nat. Electron. 1, 205–205 (2018).

  4. 4.

    Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 10, 191–194 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 10, 187–191 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Scott, J. F. & de Araujo, C. A. P. Ferroelectric memories. Science 246, 1400–1405 (1989).

    CAS  Article  Google Scholar 

  9. 9.

    Pan, F., Gao, S., Chen, C., Song, C. & Zeng, F. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R 83, 1–59 (2014).

    Article  Google Scholar 

  10. 10.

    Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

    Article  Google Scholar 

  11. 11.

    Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Service, R. F. The brain chip. Science 345, 614–616 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2016).

    Google Scholar 

  15. 15.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  16. 16.

    Lankhorst, M. H. R., Ketelaars, B. W. & Wolters, R. A. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703–708 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    Li, X.-B., Chen, N.-K., Wang, X.-P. & Sun, H.-B. Phase-change superlattice materials toward low power consumption and high density data storage: microscopic picture, working principles, and optimization. Adv. Funct. Mater. 28, 1803380 (2018).

    Article  CAS  Google Scholar 

  20. 20.

    Kwon, D.-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Liu, S. et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28, 10623–10629 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Yang, Y. & Huang, R. Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274–287 (2018).

    Article  Google Scholar 

  24. 24.

    Mangin, S. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 210–215 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, S. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg(1/3)Nb(2/3))0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Park, B. H. et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Liu, C. et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13, 404–410 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

    Article  Google Scholar 

  31. 31.

    Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    Kim, K., Chen, C. L., Truong, Q., Shen, A. M. & Chen, Y. A carbon nanotube synapse with dynamic logic and learning. Adv. Mater. 25, 1693–1698 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Ouyang, J., Chu, C.-W., Szmanda, C. R., Ma, L. & Yang, Y. Programmable polymer thin film and non-volatile memory device. Nat. Mater. 3, 918–922 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Article  CAS  Google Scholar 

  35. 35.

    Hruska, J. Intel, Micron reveal Xpoint, a new memory architecture that could outclass DDR4 and NAND. ExtremeTech https://www.extremetech.com/extreme/211087-intel-micron-reveal-xpoint-a-new-memory-architecture-that-claims-to-outclass-both-ddr4-and-nand (2015).

  36. 36.

    Choe, J. Intel 3D XPoint memory die removed from Intel OptaneTM PCM (Phase Change Memory). TechInsights http://www.techinsights.com/about-techinsights/overview/blog/intel-3D-xpoint-memory-die-removed-from-intel-optane-pcm (2017).

  37. 37.

    Fong, S. W., Neumann, C. M. & Wong, H.-S. P. Phase-change memory — towards a storage-class memory. IEEE Trans. Electron Devices 64, 4374–4385 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Hruska, J. Intel announces new optane DC persistent memory. ExtremeTech https://www.extremetech.com/extreme/270270-intel-announces-new-optane-dc-persistent-memory (2018).

  39. 39.

    Wuttig, M. Towards a universal memory. Nat. Mater. 4, 265–266 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    Rao, F. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358, 1423–1427 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Salinga, M. et al. Monatomic phase change memory. Nat. Mater. 17, 681–685 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Ovshinsky, S. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  43. 43.

    Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Zhang, W. et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Zhang, W. et al. Density functional theory guided advances in phase-change materials and memories. MRS Bull. 40, 856–865 (2015).

    Article  Google Scholar 

  46. 46.

    Raty, J.-Y. et al. Aging mechanism of amorphous phase change materials. Nat. Commun. 6, 7467 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Gabardi, S., Caravati, S., Sosso, G. C., Behler, J. & Bernasconi, M. Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe. Phys. Rev. B 92, 054201 (2015).

    Article  CAS  Google Scholar 

  48. 48.

    Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).

    CAS  Article  Google Scholar 

  49. 49.

    Wang, J.-J., Xu, Y.-Z., Mazzarello, R., Wuttig, M. & Zhang, W. A review on disorder-driven metal-insulator transition in crystalline vacancy-rich GeSbTe phase-change materials. Materials 10, 862 (2017).

    Article  CAS  Google Scholar 

  50. 50.

    Jeyasingh, R. et al. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. Nano Lett. 14, 3419–3426 (2014).

    CAS  Article  Google Scholar 

  51. 51.

    Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201 (2010).

    Article  Google Scholar 

  52. 52.

    Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    Raoux, S. & Wuttig, M. (eds) Phase Change Materials: Science and Applications (Springer US, 2008).

  54. 54.

    Waldecker, L. et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 14, 991–995 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Wright, C. D. Phase-change devices: crystal-clear neuronal computing. Nat. Nanotechol. 11, 655–656 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H. S. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    Li, Y. et al. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks. Adv. Elect. Mater. 1, 1500125 (2015).

    Article  CAS  Google Scholar 

  58. 58.

    Ovshinsky, S. R. The ovonic cognitive computer — a new paradigm. Presented at the 2004 European Phase Change and Ovonic Symposium (E/PCOS).

  59. 59.

    Wright, C. D., Wang, L., Aziz, M. M., Diosdado, J. A. V. & Ashwin, P. Phase-change processors, memristors and memflectors. Phys. Status Solidi B 249, 1978–1984 (2012).

    CAS  Article  Google Scholar 

  60. 60.

    Chua, L. O. Memristor — the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  61. 61.

    Chua, L. O. How we predicted the memristor. Nat. Electron. 1, 322–322 (2018).

    Article  Google Scholar 

  62. 62.

    Li, Y. et al. Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3, 1619 (2013).

    Article  CAS  Google Scholar 

  63. 63.

    Chen, M., Rubin, K. A. & Barton, R. W. Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502 (1986).

    CAS  Article  Google Scholar 

  64. 64.

    Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991).

    CAS  Article  Google Scholar 

  65. 65.

    Iwasaki, H. et al. Completely erasable phase-change optical disc. II. Application of Ag-In-Sb-Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn J. Appl. Phys. 32, 5241–5247 (1993).

    CAS  Article  Google Scholar 

  66. 66.

    Afonso, C. N., Solis, J., Catalina, F. & Kalpouzos, C. Ultrafast reversible phase-change in GeSb films for erasable optical storage. Appl. Phys. Lett. 60, 3123–3125 (1992).

    CAS  Article  Google Scholar 

  67. 67.

    Lencer, D. et al. A map for phase-change materials. Nat. Mater. 7, 972–977 (2008).

    CAS  Article  Google Scholar 

  68. 68.

    Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C. & Raty, J.-Y. Incipient metals: functional materials with a unique bonding mechanism. Adv. Mater. 30, 1803777 (2018).

    Article  CAS  Google Scholar 

  69. 69.

    Zhu, M. et al. Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding. Adv. Mater. 30, 1706735 (2018).

    Article  CAS  Google Scholar 

  70. 70.

    Lencer, D., Salinga, M. & Wuttig, M. Design rules for phase-change materials in data storage applications. Adv. Mater. 23, 2030–2058 (2011).

    CAS  Article  Google Scholar 

  71. 71.

    Meinders, E. R., Mijiritskii, A. V., van Pieterson, L. & Wuttig, M. Optical Data Storage: Phase-Change Media and Recording (Springer Netherlands, 2006).

  72. 72.

    Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).

    Article  Google Scholar 

  73. 73.

    Kelton, K. F. & Greer, A. L. Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, Oxford, 2010).

  74. 74.

    Kalb, J. A., Spaepen, F. & Wuttig, M. Kinetics of crystal nucleation in undercooled droplets of Sb and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 054910 (2005).

    Article  CAS  Google Scholar 

  75. 75.

    Kalb, J., Spaepen, F. & Wuttig, M. Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389 (2003).

    CAS  Article  Google Scholar 

  76. 76.

    Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    CAS  Article  Google Scholar 

  77. 77.

    Lee, B. S. et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009).

    CAS  Article  Google Scholar 

  78. 78.

    Zhang, B. et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 108, 191902 (2016).

    Article  CAS  Google Scholar 

  79. 79.

    Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011).

    CAS  Article  Google Scholar 

  80. 80.

    Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).

    Article  Google Scholar 

  81. 81.

    Massobrio, C., Du, J., Bernasconi, M. & Salmon, P. S. (eds) Molecular Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory Alloys (Springer International Publishing, Switzerland, 2015).

  82. 82.

    Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 91, 171906 (2007).

    Article  CAS  Google Scholar 

  83. 83.

    Akola, J. & Jones, R. Structural phase transitions on the nanoscale: the crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007).

    Article  CAS  Google Scholar 

  84. 84.

    Xu, M., Cheng, Y., Sheng, H. & Ma, E. Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys. Rev. Lett. 103, 195502 (2009).

    CAS  Article  Google Scholar 

  85. 85.

    Bouzid, A., Ori, G., Boero, M., Lampin, E. & Massobrio, C. Atomic-scale structure of the glassy Ge2Sb2Te5 phase change material: a quantitative assessment via first-principles molecular dynamics Phys. Rev. B 96, 224204 (2017).

    Article  Google Scholar 

  86. 86.

    Mazzarello, R., Caravati, S., Angioletti-Uberti, S., Bernasconi, M. & Parrinello, M. Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials. Phys. Rev. Lett. 104, 085503 (2010).

    Article  CAS  Google Scholar 

  87. 87.

    Deringer, V. L. et al. Bonding nature of local structural motifs in amorphous GeTe. Angew. Chem. Int. Ed. 53, 10817–10820 (2014).

    CAS  Article  Google Scholar 

  88. 88.

    Mitrofanov, K. V. et al. Ge L3-edge X-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge2Sb2Te5. J. Appl. Phys. 115, 173501 (2014).

    Article  CAS  Google Scholar 

  89. 89.

    Hirata, A., Ichitsubo, T., Guan, P. F., Fujita, T. & Chen, M. W. Distortion of local atomic structures in amorphous Ge-Sb-Te phase change materials. Phys. Rev. Lett. 120, 205502 (2018).

    CAS  Article  Google Scholar 

  90. 90.

    Kohara, S. et al. Structural basis for the fast phase change of Ge2Sb2Te5: ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006).

    Article  CAS  Google Scholar 

  91. 91.

    Kühne, T., Krack, M., Mohamed, F. & Parrinello, M. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).

    Article  CAS  Google Scholar 

  92. 92.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k:atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    CAS  Article  Google Scholar 

  93. 93.

    CPMD. http://www.cpmd.org, copyright IBM Corp. 1990–2015, copyright MPI für Festkörperforschung Stuttgart 1997–2001.

  94. 94.

    Hegedüs, J. & Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat. Mater. 7, 399–405 (2008).

    Article  CAS  Google Scholar 

  95. 95.

    Lee, T. H. & Elliott, S. R. Ab initio computer simulation of the early stages of crystallization: application to Ge2Sb2Te5 phase-change materials. Phys. Rev. Lett. 107, 145702 (2011).

    CAS  Article  Google Scholar 

  96. 96.

    Skelton, J. M., Pallipurath, A. R., Lee, T.-H. & Elliott, S. R. Atomistic origin of the enhanced crystallization speed and n-type conductivity in bi-doped Ge-Sb-Te phase-change materials. Adv. Funct. Mater. 24, 7291–7300 (2014).

    CAS  Article  Google Scholar 

  97. 97.

    Kalikka, J., Akola, J., Larrucea, J. & Jones, R. O. Nucleus-driven crystallization of amorphous Ge2Sb2Te5: a density functional study. Phys. Rev. B 86, 144113 (2012).

    Article  CAS  Google Scholar 

  98. 98.

    Kalikka, J., Akola, J. & Jones, R. O. Simulation of crystallization in Ge2Sb2Te5: a memory effect in the canonical phase-change material. Phys. Rev. B 90, 184109 (2014).

    Article  CAS  Google Scholar 

  99. 99.

    Kalikka, J., Akola, J. & Jones, R. O. Crystallization processes in the phase change material Ge2Sb2Te5: unbiased density functional/molecular dynamics simulations. Phys. Rev. B 94, 134105 (2016).

    Article  CAS  Google Scholar 

  100. 100.

    Branicio, P. S. et al. Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale Ge2Sb2Te5: an ab initio molecular dynamics study. Phys. Rev. Mater. 2, 043401 (2018).

    Article  Google Scholar 

  101. 101.

    Bai, K., Tan, T. L., Branicio, P. S. & Sullivan, M. B. Time-temperature-transformation and continuous-heating-transformation diagrams of GeSb2Te4 from nanosecond-long ab initio molecular dynamics simulations. Acta Mater. 121, 257–265 (2016).

    CAS  Article  Google Scholar 

  102. 102.

    Akola, J. & Jones, R. O. Speeding up crystallization. Science 358, 1386–1386 (2017).

    CAS  Article  Google Scholar 

  103. 103.

    Wang, W.-J. et al. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Appl. Phys. Lett. 93, 043121 (2008).

    Article  CAS  Google Scholar 

  104. 104.

    Zheng, Y. et al. Direct observation of metastable face-centered cubic Sb2Te3 crystal. Nano Res. 9, 3453–3462 (2016).

    CAS  Article  Google Scholar 

  105. 105.

    Caravati, S., Bernasconi, M. & Parrinello, M. First-principles study of liquid and amorphous Sb2Te3. Phys. Rev. B 81, 014201 (2010).

    Article  CAS  Google Scholar 

  106. 106.

    Guo, Y.-R. et al. Structural signature and transition dynamics of Sb2Te3 melt upon fast cooling. Phys. Chem. Chem. Phys. 20, 11768–11775 (2018).

    CAS  Article  Google Scholar 

  107. 107.

    Zhu, M. et al. One order of magnitude faster phase change at reduced power in Ti-Sb-Te. Nat. Commun. 5, 4086 (2014).

    CAS  Article  Google Scholar 

  108. 108.

    Rao, F. et al. Direct observation of titanium-centered octahedra in titanium-antimony-tellurium phase-change material. Nat. Commun. 6, 10040 (2015).

    CAS  Article  Google Scholar 

  109. 109.

    Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    CAS  Article  Google Scholar 

  110. 110.

    Deringer, V. L., Tchougreeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    CAS  Article  Google Scholar 

  111. 111.

    Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    CAS  Article  Google Scholar 

  112. 112.

    Maintz, S., Deringer, V. L., Tchougreeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    CAS  Article  Google Scholar 

  113. 113.

    Nascimento, M. L. F. & Zanotto, E. D. Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass. Phys. Rev. B 73, 024209 (2006).

    Article  CAS  Google Scholar 

  114. 114.

    Wuttig, M. & Salinga, M. Phase-change materials: fast transformers. Nat. Mater. 11, 270–271 (2012).

    CAS  Article  Google Scholar 

  115. 115.

    Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279–283 (2012).

    CAS  Article  Google Scholar 

  116. 116.

    Ronneberger, I., Zhang, W., Eshet, H. & Mazzarello, R. Crystallization properties of the Ge2Sb2Te5 phase-change compound from advanced simulations. Adv. Funct. Mater. 25, 6407–6413 (2015).

    CAS  Article  Google Scholar 

  117. 117.

    Ronneberger, I., Zhang, W. & Mazzarello, R. Crystal growth of Ge2Sb2Te5 at high temperatures. MRS Commun. 8, 1018–1023 (2018).

    CAS  Article  Google Scholar 

  118. 118.

    Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    CAS  Article  Google Scholar 

  119. 119.

    ten Wolde, P., Ruiz-Montero, M. J. & Frenkel, D. Simulation of homogeneous crystal nucleation close to coexistence. Faraday Discuss. 104, 93–110 (1996).

    Article  Google Scholar 

  120. 120.

    Zhang, W. et al. How fragility makes phase-change data storage robust: insights from ab initio simulations. Sci. Rep. 4, 6529 (2014).

    CAS  Article  Google Scholar 

  121. 121.

    Hegedus, J. & Elliott, S. R. Computer-simulation design of new phase-change memory materials. Phys. Status Solidi A 207, 510–515 (2010).

    CAS  Article  Google Scholar 

  122. 122.

    Sosso, G. C., Miceli, G., Caravati, S., Behler, J. & Bernasconi, M. Neural-network interatomic potential for the phase change material GeTe. Phys. Rev. B 85, 174103 (2012).

    Article  CAS  Google Scholar 

  123. 123.

    Sosso, G. et al. Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations. J. Phys. Chem. Lett. 4, 4241–4246 (2013).

    CAS  Article  Google Scholar 

  124. 124.

    Sosso, G. C., Behler, J. & Bernasconi, M. Breakdown of Stokes-Einstein relation in the supercooled liquid state of phase change materials. Phys. Status Solidi B 249, 1880–1885 (2012).

    CAS  Article  Google Scholar 

  125. 125.

    Sosso, G., Colombo, J., Behler, J., Del Gado, E. & Bernasconi, M. Dynamical Heterogeneities in the supercooled liquid state of the phase change compound GeTe. J. Phys. Chem. B 118, 13621 (2014).

    CAS  Article  Google Scholar 

  126. 126.

    Zipoli, F. & Curioni, A. Reactive potential for the study of phase-change materials: GeTe. New J. Phys. 15, 123006 (2013).

    Article  CAS  Google Scholar 

  127. 127.

    Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, 115201 (2016).

    Article  CAS  Google Scholar 

  128. 128.

    Gabardi, S. et al. Atomistic simulations of the crystallization and aging of GeTe nanowires. J. Phys. Chem. C 121, 23827–23838 (2017).

    CAS  Article  Google Scholar 

  129. 129.

    Rupp, M. Machine learning for quantum mechanics in a nutshell. Int. J. Quant. Chem. 115, 1058–1073 (2015).

    CAS  Article  Google Scholar 

  130. 130.

    Behler, J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, 12828–12840 (2017).

    CAS  Article  Google Scholar 

  131. 131.

    Deringer, V. L. et al. Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J. Phys. Chem. Lett. 9, 2879–2885 (2018).

    CAS  Article  Google Scholar 

  132. 132.

    Deringer, V. L. & Csányi, G. Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B 95, 094203 (2017).

    Article  Google Scholar 

  133. 133.

    Mocanu, F. C. et al. Modeling the phase-change memory material Ge2Sb2Te5 with a machine-learned interatomic potential. J. Phys. Chem. B 122, 8998–9006 (2018).

    CAS  Article  Google Scholar 

  134. 134.

    Ciocchini, N., Cassinerio, M., Fugazza, D. & Ielmini, D. Evidence for non-Arrhenius kinetics of crystallization in phase change memory devices. IEEE Trans. Electron Devices 60, 3767–3774 (2013).

    Article  Google Scholar 

  135. 135.

    Sebastian, A., Le Gallo, M. & Krebs, D. Crystal growth within a phase change memory cell. Nat. Commun. 5, 4314 (2014).

    CAS  Article  Google Scholar 

  136. 136.

    Chen, Y. et al. Unraveling the crystallization kinetics of supercooled liquid GeTe by ultrafast calorimetry. Cryst. Growth Des. 17, 3687–3693 (2017).

    CAS  Article  Google Scholar 

  137. 137.

    Chen, B., de Wal, D., ten Brink, G. H., Palasantzas, G. & Kooi, B. J. Resolving crystallization kinetics of GeTe phase-change nanoparticles by ultrafast calorimetry. Cryst. Growth Des. 18, 1041–1046 (2018).

    CAS  Article  Google Scholar 

  138. 138.

    Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    CAS  Article  Google Scholar 

  139. 139.

    Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    CAS  Article  Google Scholar 

  140. 140.

    Kelton, K. F. Kinetic and structural fragility-a correlation between structures and dynamics in metallic liquids and glasses. J. Phys. Condens. Matter 29, 023002 (2017).

    CAS  Article  Google Scholar 

  141. 141.

    Shelby, R. M. & Raoux, S. Crystallization dynamics of nitrogen-doped Ge2Sb2Te5. J. Appl. Phys. 105, 104902 (2009).

    Article  CAS  Google Scholar 

  142. 142.

    Lee, T. H., Loke, D. & Elliott, S. R. Microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials. Adv. Mater. 27, 5477–5483 (2015).

    CAS  Article  Google Scholar 

  143. 143.

    Cho, J.-Y. et al. The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics. Acta Mater. 94, 143–151 (2015).

    CAS  Article  Google Scholar 

  144. 144.

    Orava, J., Hewak, D. W. & Greer, A. L. Fragile-to-strong crossover in supercooled liquid Ag-In-Sb-Te studied by ultrafast calorimetry. Adv. Funct. Mater. 25, 4851–4858 (2015).

    CAS  Article  Google Scholar 

  145. 145.

    Orava, J., Weber, H., Kaban, I. & Greer, A. L. Viscosity of liquid Ag-In-Sb-Te: evidence of a fragile-to-strong crossover. J. Chem. Phys. 144, 194503 (2016).

    CAS  Article  Google Scholar 

  146. 146.

    Kalb, J., Spaepen, F., Leervad Pedersen, T. P. & Wuttig, M. Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 94, 4908–4912 (2003).

    CAS  Article  Google Scholar 

  147. 147.

    Kalb, J., Spaepen, F. & Wuttig, M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240 (2004).

    CAS  Article  Google Scholar 

  148. 148.

    Eising, G., Van Damme, T. & Kooi, B. J. Unraveling crystal growth in GeSb phase-change films in between the glass-transition and melting temperatures. Cryst. Growth Des. 14, 3392–3397 (2014).

    CAS  Article  Google Scholar 

  149. 149.

    Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Ultra-fast calorimetry study of Ge2Sb2Te5 crystallization between dielectric layers. Appl. Phys. Lett. 101, 091906 (2012).

    Article  CAS  Google Scholar 

  150. 150.

    Li, Z., Si, C., Zhou, J., Xu, H. & Sun, Z. Yttrium-doped Sb2Te3: a promising material for phase-change memory. ACS Appl. Mater. Interfaces 8, 26126–26134 (2016).

    CAS  Article  Google Scholar 

  151. 151.

    Cheng, Y. & Ma, E. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379–473 (2011).

    CAS  Article  Google Scholar 

  152. 152.

    Greer, A. L. New horizons for glass formation and stability. Nat. Mater. 14, 542–546 (2015).

    CAS  Article  Google Scholar 

  153. 153.

    Mattsson, J. et al. Soft colloids make strong glasses. Nature 462, 83–86 (2009).

    CAS  Article  Google Scholar 

  154. 154.

    Bruns, G. et al. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).

    Article  CAS  Google Scholar 

  155. 155.

    Im, D. H. et al. A unified 7.5nm dash-type confined cell for high performance PRAM device. Presented at the 2008 IEEE International Electron Devices Meeting (IEDM).

  156. 156.

    Behrndt, K. H. Formation of amorphous films. J. Vac. Sci. Technol. 7, 385–398 (1970).

    CAS  Article  Google Scholar 

  157. 157.

    Hauser, J. J. Hopping conductivity in amorphous antimony. Phys. Rev. B 9, 2623–2626 (1974).

    CAS  Article  Google Scholar 

  158. 158.

    Sohn, S. et al. Nanoscale size effects in crystallization of metallic glass nanorods. Nat. Commun. 6, 8157 (2015).

    Article  Google Scholar 

  159. 159.

    Raoux, S., Jordan-Sweet, J. L. & Kellock, A. J. Crystallization properties of ultrathin phase change film. J. Appl. Phys. 103, 114310 (2008).

    Article  CAS  Google Scholar 

  160. 160.

    Simpson, R. E. et al. Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Lett. 10, 414–419 (2010).

    CAS  Article  Google Scholar 

  161. 161.

    Caldwell, M. A., Raoux, S., Wang, R. Y., Philip Wong, H. S. & Milliron, D. J. Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles. J. Mater. Chem. 20, 1285 (2010).

    CAS  Article  Google Scholar 

  162. 162.

    Chen, B., ten Brink, G. H., Palasantzas, G. & Kooi, B. J. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 6, 39546 (2016).

    CAS  Article  Google Scholar 

  163. 163.

    Lee, S.-H., Jung, Y. & Agarwal, R. Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. Nano Lett. 8, 3303–3309 (2008).

    CAS  Article  Google Scholar 

  164. 164.

    Wu, W. et al. Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory. Nanoscale 10, 7228–7237 (2018).

    CAS  Article  Google Scholar 

  165. 165.

    Zhang, W. & Ma, E. Phase-change memory: single-element glass to record data. Nat. Mater. 17, 654–655 (2018).

    CAS  Article  Google Scholar 

  166. 166.

    Yu, S. & Chen, P.-Y. Emerging memory technologies recent trends and prospects. IEEE Solid State Circuits Mag. 8, 43–56 (2016).

    Article  Google Scholar 

  167. 167.

    Kim, I. S. et al. High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications [abstract 19.3]. Presented at the 2010 VLSI Technology Symposium.

  168. 168.

    Kim, W. et al. ALD-based confined PCM with a metallic liner toward unlimited endurance [abstract 4.2]. Presented at the 2016 IEEE International Electron Devices Meeting (IEDM).

  169. 169.

    Pedersen, T. et al. Mechanical stresses upon crystallization in phase change materials. Appl. Phys. Lett. 79, 3597 (2001).

    CAS  Article  Google Scholar 

  170. 170.

    Xie, Y. et al. Self-healing of a confined phase change memory device with a metallic surfactant layer. Adv. Mater. 30, 1705587 (2018).

    Article  CAS  Google Scholar 

  171. 171.

    Wu, Q. et al. Increasing the atomic packing efficiency of phase-change memory glass to reduce the density change upon crystallization. Adv. Electron. Mater. 4, 1800127 (2018).

    Article  CAS  Google Scholar 

  172. 172.

    Lung, H.-L. Toward the unlimited cycling endurance of phase-change memory. Presented at the 2017 European Phase Change and Ovonic Symposium (E\PCOS).

  173. 173.

    Ahn, C. Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15, 6809–6814 (2015).

    CAS  Article  Google Scholar 

  174. 174.

    Kim, C. Fullerene thermal insulation for phase change memory. Appl. Phys. Lett. 92, 013109 (2008).

    Article  CAS  Google Scholar 

  175. 175.

    Xiong, F. Self-aligned nanotube-nanowire phase change memory. Nano Lett. 13, 464–469 (2013).

    CAS  Article  Google Scholar 

  176. 176.

    Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

    CAS  Article  Google Scholar 

  177. 177.

    Ahn, E. C., Wong, H.-S. P. & Pop, E. Carbon nanomaterials for non-volatile memories. Nat. Rev. Mater. 3, 18009 (2018).

    CAS  Article  Google Scholar 

  178. 178.

    Adler, D., Henisch, H. K. & Mott, S. N. The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 50, 209–220 (1978).

    CAS  Article  Google Scholar 

  179. 179.

    Adler, D., Shur, M. S., Silver, M. & Ovshinsky, S. R. Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289–3309 (1980).

    CAS  Article  Google Scholar 

  180. 180.

    Redaelli, A. et al. Electronic switching effect and phase change transition in chalcogenide materials. IEEE Electron Device Lett. 25, 684 (2004).

    CAS  Article  Google Scholar 

  181. 181.

    Zalden, P. et al. Picosecond electric-field-induced threshold switching in phase-change materials. Phys. Rev. Lett. 117, 067601 (2016).

    Article  CAS  Google Scholar 

  182. 182.

    Anbarasu, M., Wimmer, M., Bruns, G., Salinga, M. & Wuttig, M. Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl. Phys. Lett. 100, 143505 (2012).

    Article  CAS  Google Scholar 

  183. 183.

    Ielmini, D., Lacaita, A. L. & Mantegazza, D. Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Devices 54, 308–315 (2007).

    CAS  Article  Google Scholar 

  184. 184.

    Singh, S., Ediger, M. D. & de Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 12, 139–144 (2013).

    CAS  Article  Google Scholar 

  185. 185.

    Kim, S. et al. A phase change memory cell with metallic surfactant layer as a resistance drift stabilizer [abstract 30.7]. Presented 2013 IEEE International Electron Devices Meeting (IEDM).

  186. 186.

    Koelmans, W. W. et al. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).

    Article  Google Scholar 

  187. 187.

    Ambrogio, S. et al. Equivalent-accuracy accelerated neural network training using analogue memory. Nature 558, 60–67 (2018).

    CAS  Article  Google Scholar 

  188. 188.

    Sebastian, A. et al. Tutorial: brain-inspired computing using phase-change memory devices. J. Appl. Phys. 124, 111101 (2018).

    Article  CAS  Google Scholar 

  189. 189.

    Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

  190. 190.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

    Article  Google Scholar 

  191. 191.

    Suri, M. et al. Addition of HfO2 interface layer for improved synaptic performance of phase change memory (PCM) devices. Solid State Electron. 79, 227–232 (2013).

    Article  CAS  Google Scholar 

  192. 192.

    Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

    Article  CAS  Google Scholar 

  193. 193.

    Skelton, J. M., Loke, D., Lee, T. & Elliott, S. R. Ab initio molecular-dynamics simulation of neuromorphic computing in phase-change memory materials. ACS Appl. Mater. Interfaces 7, 14223–14230 (2015).

    CAS  Article  Google Scholar 

  194. 194.

    Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M. & Hicken, R. J. Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23, 3408–3413 (2011).

    CAS  Article  Google Scholar 

  195. 195.

    Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018).

    Article  Google Scholar 

  196. 196.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).

    CAS  Article  Google Scholar 

  197. 197.

    Ríos, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377 (2014).

    Article  CAS  Google Scholar 

  198. 198.

    Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    Article  CAS  Google Scholar 

  199. 199.

    Zhang, Q. et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett. 43, 94–97 (2018).

    CAS  Article  Google Scholar 

  200. 200.

    Cheng, Z., Ríos, C., Pernice, W. H. P., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017).

    Article  CAS  Google Scholar 

  201. 201.

    Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 8, 1256 (2017).

    CAS  Article  Google Scholar 

  202. 202.

    Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    CAS  Article  Google Scholar 

  203. 203.

    Ríos, C., Hosseini, P., Taylor, R. A. & Bhaskaran, H. Color depth modulation and resolution in phase-change material nanodisplays. Adv. Mater. 28, 4720–4726 (2016).

    CAS  Article  Google Scholar 

  204. 204.

    Polking, M. J. et al. Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. Phys. Rev. Lett. 111, 037401 (2013).

    Article  CAS  Google Scholar 

  205. 205.

    Li, P. et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    CAS  Article  Google Scholar 

  206. 206.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2015).

    Article  CAS  Google Scholar 

  207. 207.

    Sa, B. & Sun, Z. Electron interactions and Dirac fermions in graphene-Ge2Sb2Te5 superlattices. J. Appl. Phys. 115, 233714 (2014).

    Article  CAS  Google Scholar 

  208. 208.

    Kulju, S., Akola, J., Prendergast, D. & Jones, R. O. Tuning electronic properties of graphene heterostructures by amorphous-to-crystalline phase transitions. Phys. Rev. B 93, 195443 (2016).

    Article  CAS  Google Scholar 

  209. 209.

    Song, W.-D., Shi, L.-P., Miao, X.-S. & Chong, C.-T. Synthesis and characteristics of a phase-change magnetic material. Adv. Mater. 20, 2394–2397 (2008).

    CAS  Article  Google Scholar 

  210. 210.

    Li, Y. & Mazzarello, R. Magnetic contrast in phase-change materials doped with Fe impurities. Adv. Mater. 24, 1429–1433 (2012).

    CAS  Article  Google Scholar 

  211. 211.

    Zhang, W., Ronneberger, I., Li, Y. & Mazzarello, R. Magnetic properties of crystalline and amorphous phase-change materials doped with 3d impurities. Adv. Mater. 24, 4387–4391 (2012).

    CAS  Article  Google Scholar 

  212. 212.

    Skelton, J. M. & Elliott, S. R. In silico optimization of phase-change materials for digital memories: a survey of first-row transition-metal dopants for Ge2Sb2Te5. J. Phys. Condens. Matter 25, 205801 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Y.-X. Zhou and J.-J. Wang for their help with figure preparations and R. Feng for useful discussions. W.Z. thanks the support of the National Natural Science Foundation of China (61774123 and 51621063), 111 Project 2.0 (BP2018008), the Youth Thousand Talents Program of China, the Young Talent Support Plan, Xi’an Jiaotong University and the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies. R.M. and M.W. acknowledge funding from Deutsche Forschungsgemeinschaft within SFB 917 ‘Nanoswitches’. E.M. is supported at Johns Hopkins University by the US Department of Energy, Office of Basic Energy Sciences, Department of Materials Sciences and Engineering (DOE-BES-DMSE) under grant DE-FG02-13ER46056.

Author information

Affiliations

Authors

Contributions

W.Z. researched the data and wrote the manuscript. R.M., M.W. and E.M. edited the manuscript. All authors made a substantial contribution to the discussion of content.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Mazzarello, R., Wuttig, M. et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater 4, 150–168 (2019). https://doi.org/10.1038/s41578-018-0076-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing