Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolution and aberration correction in liquid cell transmission electron microscopy

Abstract

Liquid cell electron microscopy possesses a combination of spatial and temporal resolution that provides a unique view of static structures and dynamic processes in liquids. Optimizing the resolution in liquids requires consideration of both the microscope performance and the properties of the sample. In this Review, we survey the competing factors that determine spatial and temporal resolution for transmission electron microscopy and scanning transmission electron microscopy of liquids. We discuss the effects of sample thickness, stability and dose sensitivity on spatial and temporal resolution. We show that for some liquid samples, spatial resolution can be improved by spherical and chromatic aberration correction. However, other benefits offered by aberration correction may be even more useful for liquid samples. We consider the greater image interpretability offered by spherical aberration correction and the improved dose efficiency for thicker samples offered by chromatic aberration correction. Finally, we discuss the importance of detector and sample parameters for higher resolution in future experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electron density required to reach a desired spatial resolution at 200 keV for typical materials.
Fig. 2: Theoretical maximum image resolution versus thickness of water.
Fig. 3: Resolution in different imaging modes.
Fig. 4: Effect of CS correction in TEM.
Fig. 5: Influence of CC correction on energy-filtered TEM.
Fig. 6: Bright-field TEM images of a thick sample of a whole mount macrophage cell.
Fig. 7: Electron holography and associated analysis of a hydrated bacterial cell.
Fig. 8: In situ TEM of nanocube rotation.
Fig. 9: Time-resolved STEM imaging of gold nanoparticles moving in liquid.

References

  1. 1.

    Ross, F. M. Liquid Cell Electron Microscopy (Cambridge Univ. Press, 2017).

  2. 2.

    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 350, aaa9886 (2015). This article discusses the range of problems accessible with closed liquid cell electron microscopy.

    Google Scholar 

  3. 3.

    de Jonge, N. & Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011). This article provides an overview of the breakthroughs in liquid cell electron microscopy in the 2000s that led to the current growth of the field.

    Google Scholar 

  4. 4.

    de Jonge, N., Peckys, D. B., Kremers, G. J. & Piston, D. W. Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl Acad. Sci. USA 106, 2159–2164 (2009). This is the first demonstration of nanometre resolution in micrometre thick liquids containing a mammalian cell.

    Google Scholar 

  5. 5.

    Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012). This is the first demonstration of the high resolution possible with a graphene liquid cell.

    CAS  Google Scholar 

  6. 6.

    de Jonge, N. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers. Ultramicroscopy 187, 113–125 (2018). This article provides the theory needed to calculate the resolution for TEM and STEM of liquid samples.

    Google Scholar 

  7. 7.

    Nellist, P. D. et al. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004).

    CAS  Google Scholar 

  8. 8.

    de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. & Drouin, D. Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 1114–1119 (2010).

    Google Scholar 

  9. 9.

    Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. & Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460–2465 (2009).

    CAS  Google Scholar 

  10. 10.

    Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. & Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003). This is the first demonstration of TEM and electrochemical control in a liquid cell constructed from silicon microchips with silicon nitride windows.

    CAS  Google Scholar 

  11. 11.

    Textor, M. & de Jonge, N. Strategies for preparing graphene liquid cells for transmission electron microscopy. Nano Lett. 18, 3313–3321 (2018).

    CAS  Google Scholar 

  12. 12.

    Liao, H. G., Niu, K. & Zheng, H. Observation of growth of metal nanoparticles. Chem. Commun. 49, 11720–11727 (2013).

    CAS  Google Scholar 

  13. 13.

    Liao, H. G. et al. Facet development during platinum nanocube growth. Science 345, 916–919 (2014).

    CAS  Google Scholar 

  14. 14.

    Lehnert, T. et al. In situ crystallization of the insoluble anhydrite AII phase in graphene pockets. ACS Nano 11, 7967–7973 (2017).

    CAS  Google Scholar 

  15. 15.

    Kelly, D. J. et al. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett. 18, 1168–1174 (2018).

    CAS  Google Scholar 

  16. 16.

    Woehl, T. J. et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 53–63 (2013).

    CAS  Google Scholar 

  17. 17.

    Bogner, A., Thollet, G., Basset, D., Jouneau, P. H. & Gauthier, C. Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290–301 (2005).

    CAS  Google Scholar 

  18. 18.

    Sugi, H. et al. Dynamic electron microscopy of ATP-induced myosin head movement in living muscle filaments. Proc. Natl Acad. Sci. USA 94, 4378–4392 (1997).

    CAS  Google Scholar 

  19. 19.

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    CAS  Google Scholar 

  20. 20.

    Kolmakov, A. in Liquid Cell Electron Microscopy (ed. Ross, F. M.) 78–105 (Cambridge Univ. Press, 2016).

  21. 21.

    Reimer, L. & Kohl, H. Transmission Electron Microscopy: Physics of Image Formation. (Springer, New York, 2008).

    Google Scholar 

  22. 22.

    Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    CAS  Google Scholar 

  23. 23.

    Schneider, N. M. in Liquid Cell Electron Microscopy (ed. Ross, F. M.) 140–163 (Cambridge Univ. Press, 2016).

  24. 24.

    Jiang, N. & Spence, J. C. H. On the dose-rate threshold of beam damage in TEM. Ultramicroscopy 113, 77–82 (2012).

    CAS  Google Scholar 

  25. 25.

    Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State (Oxford Univ. Press, 2006).

  26. 26.

    Pierson, J., Sani, M., Tomova, C., Godsave, S. & Peters, P. J. Toward visualization of nanomachines in their native cellular environment. Histochem. Cell Biol. 132, 253–262 (2009).

    CAS  Google Scholar 

  27. 27.

    Hoenger, A. & McIntosh, J. R. Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol. 21, 89–96 (2009).

    CAS  Google Scholar 

  28. 28.

    Matricardi, V. R., Moretz, R. C. & Parsons, D. F. Electron diffraction of wet proteins: catalase. Science 177, 268–270 (1972).

    CAS  Google Scholar 

  29. 29.

    Mirsaidov, U. M., Zheng, H., Casana, Y. & Matsudaira, P. Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J. 102, L15–L17 (2012).

    CAS  Google Scholar 

  30. 30.

    Keskin, S. et al. Visualization of multimerization and self-assembly of DNA-functionalized gold nanoparticles using in-liquid transmission electron microscopy. J. Phys. Chem. Lett. 6, 4487–4492 (2015).

    CAS  Google Scholar 

  31. 31.

    Hermannsdörfer, J., Tinnemann, V., Peckys, D. B. & de Jonge, N. The effect of electron beam irradiation in environmental scanning transmission electron microscopy of whole cells in liquid. Microsc. Microanal. 20, 656–665 (2016).

    Google Scholar 

  32. 32.

    de Jonge, N. & Peckys, D. B. Live cell electron microscopy is probably impossible. ACS Nano 10, 9061–9063 (2016).

    Google Scholar 

  33. 33.

    Peckys, D. B. & de Jonge, N. in Liquid Cell Electron Microscopy (ed. Ross, F. M.) 334–355 (Cambridge Univ. Press, 2016).

  34. 34.

    Peckys, D. B., Mazur, P., Gould, K. L. & de Jonge, N. Fully hydrated yeast cells imaged with electron microscopy. Biophys. J. 100, 2522–2529 (2011).

    CAS  Google Scholar 

  35. 35.

    Liv, N. et al. Electron microscopy of living cells during in situ fluorescence microscopy. ACS Nano 10, 265–273 (2016).

    CAS  Google Scholar 

  36. 36.

    Abellan, P. et al. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun. 50, 4873–4880 (2014).

    CAS  Google Scholar 

  37. 37.

    Yamazaki, T. et al. Two types of amorphous protein particles facilitate crystal nucleation. Proc. Natl Acad. Sci. USA 114, 2154–2159 (2017).

    CAS  Google Scholar 

  38. 38.

    Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014). This study reports the modelling of radiolysis effects in water upon electron-beam irradiation.

    CAS  Google Scholar 

  39. 39.

    Hermannsdörfer, J., de Jonge, N. & Verch, A. Electron beam induced chemistry of gold nanoparticles in saline solution. Chem. Comm. 51, 16393–16396 (2015).

    Google Scholar 

  40. 40.

    Woehl, T. J., Evans, J. E., Arslan, L., Ristenpart, W. D. & Browning, N. D. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599–8610 (2012).

    CAS  Google Scholar 

  41. 41.

    Zheng, H. et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009). This is the first observation of nanoparticle growth using liquid cell electron microscopy.

    CAS  Google Scholar 

  42. 42.

    Contarato, D., Denes, P., Doering, D., Joseph, J. & Krieger, B. High speed, radiation hard CMOS pixel sensors for transmission electron microscopy. Phys. Procedia 37, 1504–1510 (2013).

    Google Scholar 

  43. 43.

    Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    CAS  Google Scholar 

  44. 44.

    Stevens, A., Yang, H., Carin, L., Arslan, I. & Browning, N. D. The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. Microscopy 63, 41–51 (2014).

    Google Scholar 

  45. 45.

    Masiel, D. J., Bloom, R. S., Park, S. T. & Reed, B. W. Temporal compressive sensing instrumentation for TEM. Microsc. Microanal. 23, S20–S21 (2017).

    Google Scholar 

  46. 46.

    Rose, A. Television pickup tubes and the problem of noise. Adv. Electron. 1, 131–166 (1948).

    Google Scholar 

  47. 47.

    Egerton, R. F. Control of radiation damage in the TEM. Ultramicroscopy 127, 100–108 (2013).

    CAS  Google Scholar 

  48. 48.

    Rez, P. Comparison of phase contrast transmission electron microscopy with optimized scanning transmission annular dark field imaging for protein imaging. Ultramicroscopy 96, 117–124 (2003).

    CAS  Google Scholar 

  49. 49.

    Joy, D. C. & Joy, C. S. Scanning electron microscope imaging in liquids — some data on electron interactions in water. J. Microsc. 221, 84–99 (2005).

    Google Scholar 

  50. 50.

    Colliex, C., Mory, C., Olins, A. L., Olins, D. E. & Tencé, D. E. Energy filtered STEM imaging of thick biological sections. J. Microsc. 153, 1–21 (1989).

    CAS  Google Scholar 

  51. 51.

    Park, J. et al. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 15, 4737–4744 (2015).

    CAS  Google Scholar 

  52. 52.

    Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

    CAS  Google Scholar 

  53. 53.

    Peckys, D. B., Veith, G. M., Joy, D. C. & de Jonge, N. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLOS ONE 4, e8214 (2009).

    Google Scholar 

  54. 54.

    Klein, K. L., Anderson, I. M. & de Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 242, 117–123 (2011).

    CAS  Google Scholar 

  55. 55.

    Ring, E. A. & de Jonge, N. Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid. Micron 43, 1078–1084 (2012).

    CAS  Google Scholar 

  56. 56.

    Thust, A., Coene, W. M. J., Op de Beeck, M. & Van Dyck, D. Focal-series reconstruction in HRTEM: simulation studies on non-periodic objects. Ultramicroscopy 64, 211–230 (1996).

    CAS  Google Scholar 

  57. 57.

    Kisielowski, C. et al. Imaging columns of the light elements carbon, nitrogen and oxygen with sub angstrom resolution. Ultramicroscopy 89, 243–263 (2001).

    CAS  Google Scholar 

  58. 58.

    Haider, M. et al. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60 (1998).

    CAS  Google Scholar 

  59. 59.

    Lentzen, M. et al. High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233–242 (2002).

    CAS  Google Scholar 

  60. 60.

    Coene, W. & Jansen, A. J. Image delocalisation and high resolution transmission electron microscopic imaging with a field emission gun. Scan. Microsc. 6, S379–S403 (1992).

    Google Scholar 

  61. 61.

    Cervera Gontard, L., Dunin-Borkowski, R. E., Hytch, M. J. & Ozkaya, D. Delocalisation in images of Pt nanoparticles. J. Phys. Conf. Ser. 26, 292–295 (2006).

    Google Scholar 

  62. 62.

    Borisevich, A. Y., Lupini, A. R. & Pennycook, S. J. Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl Acad. Sci. USA 103, 3044–3048 (2006).

    CAS  Google Scholar 

  63. 63.

    de Jonge, N., Sougrat, R., Northan, B. M. & Pennycook, S. J. Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc. Microanal. 16, 54–63 (2010).

    Google Scholar 

  64. 64.

    Nellist, P. D., Cosgriff, E. C., Behan, G. & Kirkland, A. I. Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Microsc. Microanal. 14, 82–88 (2008).

    CAS  Google Scholar 

  65. 65.

    Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    CAS  Google Scholar 

  66. 66.

    Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).

    CAS  Google Scholar 

  67. 67.

    Jia, C. L., Houben, L., Thust, A. & Barthel, J. On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy 110, 500–505 (2010).

    CAS  Google Scholar 

  68. 68.

    Jia, C. L. et al. Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3. Microsc. Microanal. 19, 310–318 (2013).

    CAS  Google Scholar 

  69. 69.

    Takeda, S., Kuwauchi, Y. & Yoshida, H. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 151, 178–190 (2015).

    CAS  Google Scholar 

  70. 70.

    Hansen, T. W. & Wagner, J. B. Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. Microanal. 18, 684–690 (2012).

    CAS  Google Scholar 

  71. 71.

    Barthel, J. & Thust, A. On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy 134, 6–17 (2013).

    CAS  Google Scholar 

  72. 72.

    Tromp, R. M. & Schramm, S. M. Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy. Ultramicroscopy 125, 72–80 (2013).

    CAS  Google Scholar 

  73. 73.

    Haider, M., Hartel, P., Muller, H., Uhlemann, S. & Zach, J. Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. Microanal. 16, 393–408 (2010).

    CAS  Google Scholar 

  74. 74.

    Zach, J. Chromatic correction: a revolution in electron microscopy? Phil. Trans. R. Soc. A 367, 3699–3707 (2009).

    CAS  Google Scholar 

  75. 75.

    Rose, H. H. Future trends in aberration-corrected electron microscopy. Phil. Trans. R. Soc. A 367, 3809–3823 (2009).

    Google Scholar 

  76. 76.

    Kabius, B. et al. First application of CC-corrected imaging for high-resolution and energy-filtered TEM. J. Electron. Microsc. 58, 147–155 (2009).

    CAS  Google Scholar 

  77. 77.

    Leary, R. & Brydson, R. Chromatic aberration correction: the next step in electron microscopy. Adv. Imag. Electron. Phys. 165, 73–130 (2011).

    Google Scholar 

  78. 78.

    Forbes, B. D., Houben, L., Mayer, J., Dunin-Borkowski, R. E. & Allen, L. J. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. Ultramicroscopy 147, 98–105 (2014).

    CAS  Google Scholar 

  79. 79.

    Urban, K. W. et al. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett. 110, 185507 (2013).

    CAS  Google Scholar 

  80. 80.

    Reimer, L. & Ross-Messemer, M. Top-bottom effect in energy-selecting transmission electron microscopy. Ultramicroscopy 21, 385–387 (1987).

    CAS  Google Scholar 

  81. 81.

    Baudoin, J. P., Jinschek, J. R., Boothroyd, C. B., Dunin-Borkowski, R. E. & de Jonge, N. Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell. Microsc. Microanal. 19, 814–820 (2013).

    CAS  Google Scholar 

  82. 82.

    Danev, R. & Nagayama, K. Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243–252 (2001).

    CAS  Google Scholar 

  83. 83.

    Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).

    CAS  Google Scholar 

  84. 84.

    Prozorov, T., Almeida, T. P., Kovacs, A. & Dunin-Borkowski, R. E. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid. J. R. Soc. Interface 14, 20170464 (2017).

    Google Scholar 

  85. 85.

    Shirai, M. et al. In situ electron holographic study of ionic liquid. Ultramicroscopy 146, 125–129 (2014).

    CAS  Google Scholar 

  86. 86.

    Dunin-Borkowski, R. E. & Houben, L. in Liquid Cell Electron Microscopy (ed. Ross, F. M.) 408–433 (Cambridge Univ. Press, 2016).

  87. 87.

    Tanigaki, T. et al. Magnetic field observations in CoFeB/Ta layers with 0.67-nm resolution by electron holography. Sci. Rep. 7, 16598 (2017).

    Google Scholar 

  88. 88.

    Linck, M. et al. Chromatic aberration correction for atomic resolution TEM imaging from 20 to 80 kV. Phys. Rev. Lett. 117, 076101 (2016).

    Google Scholar 

  89. 89.

    Demers, H., Poirier-Demers, N., Drouin, D. & de Jonge, N. Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc. Microanal. 16, 795–804 (2010).

    CAS  Google Scholar 

  90. 90.

    Besztejan, S. et al. Visualization of cellular components in a mammalian cell with liquid-cell transmission electron microscopy. Microsc. Microanal. 23, 46–55 (2017).

    CAS  Google Scholar 

  91. 91.

    de Jonge, N., Verch, A. & Demers, H. The influence of beam broadening on the spatial resolution of annular dark field scanning transmission electron microscopy. Microsc. Microanal. 24, 8–16 (2018).

    Google Scholar 

  92. 92.

    Zaluzec, N. J. The influence of CS/CC correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy 151, 240–249 (2015).

    CAS  Google Scholar 

  93. 93.

    Hohmann-Marriott, M. F. et al. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat. Methods 6, 729–731 (2009).

    CAS  Google Scholar 

  94. 94.

    Hyun, J. K., Ercius, P. & Muller, D. A. Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 1–7 (2008).

    CAS  Google Scholar 

  95. 95.

    Wolf, S. G., Houben, L. & Elbaum, M. Cryo-scanning transmission electron tomography of vitrified cells. Nat. Methods 11, 423–428 (2014).

    CAS  Google Scholar 

  96. 96.

    Lazic, I. & Bosch, E. G. T. Analytical review of direct STEM imaging techniques for thin samples. Adv. Imag. Electron. Phys. 199, 75–184 (2018).

    Google Scholar 

  97. 97.

    Jungjohann, K. L., Evans, J. E., Aguiar, J. A., Arslan, I. & Browning, N. D. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal. 18, 621–627 (2012).

    CAS  Google Scholar 

  98. 98.

    Unocic, R. R. et al. Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale 8, 15581–15588 (2016).

    CAS  Google Scholar 

  99. 99.

    Wang, C., Qiao, Q., Shokuhfar, T. & Klie, R. F. High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater. 26, 3410–3414 (2014).

    CAS  Google Scholar 

  100. 100.

    Barth, J. E. & Kruit, P. Addition of different contributions to the charged particle probe size. Optik 101, 101–109 (1996).

    Google Scholar 

  101. 101.

    van Benthem, K. et al. Three-dimensional ADF imaging of individual atoms by through-focal series stem. Ultramicroscopy 106, 1062–1068 (2006).

    Google Scholar 

  102. 102.

    Dahmen, T., Trampert, P., de Jonge, N. & Slusallek, P. Advanced recording schemes for electron tomography. MRS Bull. 41, 537–541 (2016).

    Google Scholar 

  103. 103.

    Einstein, A. On the motion — required by the molecular kinetic theory of heat — of small particles suspended in a stationary liquid. Ann. Phys. 17, 549–560 (1905).

    CAS  Google Scholar 

  104. 104.

    Browning, N. D. & Evans, J. E. in Liquid Cell Electron Microscopy (ed. Ross, F. M.) 456–475 (Cambridge Univ. Press, 2016).

  105. 105.

    Chee, S. W., Baraissov, Z., Loh, N. D., Matsudaira, P. T. & Mirsaidov, U. Desorption-mediated motion of nanoparticles at the liquid-solid interface. J. Phys. Chem. C 120, 20462–20470 (2016).

    CAS  Google Scholar 

  106. 106.

    Chee, S. W., Loh, D., Mirsaidov, U. & Matsudaira, P. Probing nanoparticle dynamics in 200 nm thick liquid layers at millisecond time resolution. Microsc. Microanal. 21(Suppl. 3), 267–268 (2015).

    Google Scholar 

  107. 107.

    Tian, X., Zheng, H. & Mirsaidov, U. Aggregation dynamics of nanoparticles at solid–liquid interfaces. Nanoscale 9, 10044–10050 (2017).

    CAS  Google Scholar 

  108. 108.

    Chen, X. & Wen, J. In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Res. Lett. 7, 598 (2012).

    Google Scholar 

  109. 109.

    White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. & Regan, B. C. Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 3695–3698 (2012).

    CAS  Google Scholar 

  110. 110.

    Liu, Y., Lin, X.-M., Sun, Y. & Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 135, 3764–3767 (2013).

    CAS  Google Scholar 

  111. 111.

    Tan, S. F., Chee, S. W., Lin, G. H. & Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 50, 1303–1312 (2017).

    CAS  Google Scholar 

  112. 112.

    Verch, A., Pfaff, M. & De Jonge, N. Exceptionally slow movement of gold nanoparticles at a solid:liquid interface investigated by scanning transmission electron microscopy. Langmuir 31, 6956–6964 (2015).

    CAS  Google Scholar 

  113. 113.

    Jiang, N. Note on in situ (scanning) transmission electron microscopy study of liquid samples. Ultramicroscopy 179, 81–83 (2017).

    CAS  Google Scholar 

  114. 114.

    Parent, L. R. et al. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Acc. Chem. Res. 51, 3–11 (2018).

    CAS  Google Scholar 

  115. 115.

    LaGrange, T. et al. Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108, 1441–1449 (2008).

    CAS  Google Scholar 

  116. 116.

    Fu, X., Chen, B., Tang, J., Hassan, M. T. & Zewail, A. H. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science 355, 494–498 (2017).

    CAS  Google Scholar 

  117. 117.

    Evans, J. E., Jungjohann, K. L., Browning, N. D. & Arslan, I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).

    CAS  Google Scholar 

  118. 118.

    Alloyeau, D. et al. Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett. 15, 2574–2581 (2015).

    CAS  Google Scholar 

  119. 119.

    Grogan, J. M., Schneider, N. M., Ross, F. M. & Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 14, 359–364 (2014).

    CAS  Google Scholar 

  120. 120.

    White, E. R. et al. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012).

    CAS  Google Scholar 

  121. 121.

    Sang, X. H. et al. Dynamic scan control in STEM: spiral scans. Adv. Struct. Chem. Imaging 2, 6 (2016).

    Google Scholar 

  122. 122.

    De Yoreo, J. J. & Sommerdijk, N. A. J. M. Investigating materials formation with liquid-phase and cryogenic TEM. Nat. Rev. Mater. 1, 16035 (2016).

    Google Scholar 

  123. 123.

    Park, J. H. et al. Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett. 15, 5314–5320 (2015).

    CAS  Google Scholar 

  124. 124.

    de Jonge, N., Browning, N., Evans, J. E., Chee, S. W. & Ross, F. M. in Liquid Cell Electron Microscopy (ed. Ross, F. M.) 164–188 (Cambridge Univ. Press, 2016).

  125. 125.

    Freitag, B., Kujawa, S., Mul, P. M., Ringnalda, J. & Tiemeijer, P. C. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102, 209–214 (2005).

    CAS  Google Scholar 

  126. 126.

    Krivanek, O. L., Kundmann, M. K. & Kimoto, K. Spatial resolution in EFTEM elemental maps. J. Microsc. 180, 277–287 (1995).

    CAS  Google Scholar 

Download references

Acknowledgements

N.dJ. acknowledges H. Demers, T. Dahmen, M. Elbaum, D. Peckys and S. Wolf for discussions, a fellowship of the Visiting Faculty Program of the Weizmann Institute and E. Arzt for his support through the Leibniz Institute for New Materials (INM). L.H. and R.E.D.-B. are grateful to M. Luysberg, J. Barthel, A. Thust, K. Urban, S. Mi, C. Boothroyd, A. Kovács, J. Mayer, L. Allen, B. Forbes, J. Jinschek, J.-P. Baudoin, L. Cervera Gontard, D. Ozkaya, T. Hansen and M. Bar Sadan for discussions. F.M.R. acknowledges J.H. Park, N. Browning, S.W. Chee, J. Evans, D. Muller, R. Tromp and J. Hannon for helpful discussions.

Author information

Affiliations

Authors

Contributions

All authors contributed to the discussion of content and researched data for the article. R.E.D.-B. and L.H. wrote the section on aberration correction. N.dJ. and F.M.R. wrote the sections on spatial and temporal resolution. All authors edited the article prior to submission.

Corresponding author

Correspondence to Frances M. Ross.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Jonge, N., Houben, L., Dunin-Borkowski, R.E. et al. Resolution and aberration correction in liquid cell transmission electron microscopy. Nat Rev Mater 4, 61–78 (2019). https://doi.org/10.1038/s41578-018-0071-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing