Abstract

The gastrointestinal (GI) tract offers the opportunity to detect physiological and pathophysiological signals from the human body. Ingestible electronics can gain close proximity to major organs through the GI tract and therefore can serve as clinical tools for diagnostics and therapy. In this Review, we summarize the physiological and anatomical characteristics of the GI tract, which present both challenges and opportunities for the development of ingestible devices. We describe recent breakthroughs in materials science, electrical engineering and data science that have permitted the exploration of technologies for sensing and therapy via the GI tract. Novel sensing opportunities include electrochemical, electromagnetic, optical and acoustic protocols, which have the capacity to sense luminal or extra-luminal analytes in the GI tract. We review therapeutic interventions, such as anatomical targeting for drug delivery, delivery of macromolecules and electrical signals. Finally, we investigate major challenges associated with ingestible electronics, including safety, communication, powering, steering and tissue interactions. Ingestible electronics are an exciting area of scientific innovation and they may pave the way for a new era in medicine, enabling patients to receive remote, electronically assisted health care.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

IFAC, dielectric properties of body tissues: http://niremf.ifac.cnr.it/tissprop

References

  1. 1.

    Jacobson, B. & Mackay, R. S. A. pH-endoradiosonde. Lancet 272, 1224 (1957).

  2. 2.

    Mackay, R. S. & Jacobson, B. Endoradiosonde. Nature 179, 1239–1240 (1957).

  3. 3.

    Vonardenne, M. & Sprung, H. B. Über Versuche mit einem verschluckbaren Intestinalsender. Naturwissenschaften 45, 154–155 (1958).

  4. 4.

    Farrar, J. T., Zworykin, V. K. & Baum, J. Pressure-sensitive telemetering capsule for study of gastrointestinal motility. Science 126, 975–976 (1957).

  5. 5.

    Lesho, J. C. & Hogrefe, A. F. Ingestible size continuously transmitting temperature monitoring pill. US Patent 07236885 (1988).

  6. 6.

    Sparling, P. B., Snow, T. K. & Millard-Stafford, M. L. Monitoring core temperature during exercise: ingestible sensor versus rectal thermistor. Aviat. Space Environ. Med. 64, 760–763 (1993).

  7. 7.

    O’Brien, C., Hoyt, R. W., Buller, M. J., Castellani, J. W. & Young, A. J. Telemetry pill measurement of core temperature in humans during active heating and cooling. Med. Sci. Sports Exerc. 30, 468–472 (1998).

  8. 8.

    Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

  9. 9.

    Swain, P. Wireless capsule endoscopy. Gut 52, iv48–iv50 (2003).

  10. 10.

    Xin, L., Liao, Z., Jiang, Y. P. & Li, Z. S. Indications, detectability, positive findings, total enteroscopy, and complications of diagnostic double-balloon endoscopy: a systematic review of data over the first decade of use. Gastrointest. Endosc. 74, 563–570 (2011).

  11. 11.

    Committee, A. T. et al. Wireless capsule endoscopy. Gastrointest. Endosc. 78, 805–815 (2013).

  12. 12.

    Bettinger, C. J. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol. 33, 575–585 (2015).

  13. 13.

    Kim, Y. J., Wu, W., Chun, S. E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–20917 (2013).

  14. 14.

    Yin, L. et al. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 26, 3879–3884 (2014).

  15. 15.

    Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

  16. 16.

    Zhang, S. et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 14, 1065–1071 (2015).

  17. 17.

    Zhu, C. X. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

  18. 18.

    Lei, T. et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl Acad. Sci. USA 114, 5107–5112 (2017).

  19. 19.

    Kang, S. K., Koo, J., Lee, Y. K. & Rogers, J. A. Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51, 988–998 (2018).

  20. 20.

    Bonacchini, G. E. et al. Tattoo-paper transfer as a versatile platform for all-printed organic edible electronics. Adv. Mater. 30, e1706091 (2018).

  21. 21.

    Pan, Y. H. Heading toward artificial intelligence 2.0. Engineering 2, 409–413 (2016).

  22. 22.

    Traverso, G. et al. Physiologic status monitoring via the gastrointestinal tract. PLOS ONE 10, e0141666 (2015).

  23. 23.

    Bettinger, C. J. Advances in materials and structures for ingestible electromechanical medical devices. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.201806470 (2018).

  24. 24.

    Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

  25. 25.

    Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

  26. 26.

    Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

  27. 27.

    Furness, J. B., Callaghan, B. P., Rivera, L. R. & Cho, H. J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71 (2014).

  28. 28.

    Berger, E. H. The distribution of parietal cells in the stomach: a histotopographic study. Am. J. Anat. 54, 87–114 (1934).

  29. 29.

    Adams, D. H. Sleisenger and Fordtran’s gastrointestinal and liver disease. Gut 56, 1175–1175 (2007).

  30. 30.

    Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

  31. 31.

    Waterman, M. & Gralnek, I. M. Capsule endoscopy of the esophagus. J. Clin. Gastroenterol. 43, 605–612 (2009).

  32. 32.

    Blaser, M. J., Chyou, P. H. & Nomura, A. Age at establishment of Helicobacter pylori infection and gastric carcinoma, gastric ulcer, and duodenal ulcer risk. Cancer Res. 55, 562–565 (1995).

  33. 33.

    Hunt, R. H. et al. The stomach in health and disease. Gut 64, 1650–1668 (2015).

  34. 34.

    Fashner, J. & Gitu, A. C. Diagnosis and treatment of peptic ulcer disease and H. pylori infection. Am. Fam. Physician 91, 236–242 (2015).

  35. 35.

    Camilleri, M. et al. Clinical guideline: management of gastroparesis. Am. J. Gastroenterol. 108, 18–37; quiz 38 (2013).

  36. 36.

    Meyer, B., Beglinger, C., Neumayer, M. & Stalder, G. A. Physical characteristics of indigestible solids affect emptying from the fasting human stomach. Gut 30, 1526–1529 (1989).

  37. 37.

    Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).

  38. 38.

    Gronborg, M. et al. Comprehensive proteomic analysis of human pancreatic juice. J. Proteome Res. 3, 1042–1055 (2004).

  39. 39.

    Krause, W. J. Brunner’s glands: a structural, histochemical and pathological profile. Prog. Histochem. Cytochem. 35, 259–367 (2000).

  40. 40.

    Graham, D. Y. et al. Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer. A randomized, controlled study. Ann. Internal Med. 116, 705–708 (1992).

  41. 41.

    Caspary, W. F. Physiology and pathophysiology of intestinal absorption. Am. J. Clin. Nutr. 55, 299S–308S (1992).

  42. 42.

    Kaukinen, K., Maki, M., Partanen, J., Sievanen, H. & Collin, P. Celiac disease without villous atrophy: revision of criteria called for. Dig. Dis. Sci. 46, 879–887 (2001).

  43. 43.

    Cornes, J. S. Number, size, and distribution of Peyer’s patches in the human small intestine. Part I: the development of Peyer’s patches. Gut 6, 225–229 (1965).

  44. 44.

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

  45. 45.

    Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306 (2011).

  46. 46.

    Heyman, M. B. Lactose intolerance in infants, children, and adolescents. Pediatrics 118, 1279–1286 (2006).

  47. 47.

    Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

  48. 48.

    Doherty, T. J. Postoperative ileus: pathogenesis and treatment. Vet. Clin. North Am. Equine Pract. 25, 351–362 (2009).

  49. 49.

    McAlindon, M. E., Ching, H. L., Yung, D., Sidhu, R. & Koulaouzidis, A. Capsule endoscopy of the small bowel. Ann. Transl Med. 4, 369 (2016).

  50. 50.

    DeSesso, J. M. & Jacobson, C. F. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem. Toxicol. 39, 209–228 (2001).

  51. 51.

    Dinan, T. G. & Cryan, J. F. Brain–gut–microbiota axis — mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol. 14, 69–70 (2017).

  52. 52.

    Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

  53. 53.

    Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

  54. 54.

    Keshavarzian, A. et al. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 30, 1351–1360 (2015).

  55. 55.

    Ignacio, A., Morales, C. I., Camara, N. O. & Almeida, R. R. Innate sensing of the gut microbiota: modulation of inflammatory and autoimmune diseases. Front. Immunol. 7, 54 (2016).

  56. 56.

    Spiljar, M., Merkler, D. & Trajkovski, M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front. Immunol. 8, 1353 (2017).

  57. 57.

    Clemente, J. C., Manasson, J. & Scher, J. U. The role of the gut microbiome in systemic inflammatory disease. BMJ 360, j5145 (2018).

  58. 58.

    Gimbert, C. & Lapointe, F. J. Self-tracking the microbiome: where do we go from here? Microbiome 3, 70 (2015).

  59. 59.

    Pascal, V. et al. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).

  60. 60.

    Lehmann, F. S., Burri, E. & Beglinger, C. The role and utility of faecal markers in inflammatory bowel disease. Therap. Adv. Gastroenterol. 8, 23–36 (2015).

  61. 61.

    Hara, A. K., Leighton, J. A., Sharma, V. K. & Fleischer, D. E. Small bowel: preliminary comparison of capsule endoscopy with barium study and CT. Radiology 230, 260–265 (2004).

  62. 62.

    Apostolopoulos, P. et al. Evaluation of capsule endoscopy in active, mild-to-moderate, overt, obscure GI bleeding. Gastrointest. Endosc. 66, 1174–1181 (2007).

  63. 63.

    Gerson, L. B. Use and misuse of small bowel video capsule endoscopy in clinical practice. Clin. Gastroenterol. Hepatol. 11, 1224–1231 (2013).

  64. 64.

    Sung, J. J. et al. An updated Asia Pacific Consensus Recommendations on colorectal cancer screening. Gut 64, 121–132 (2015).

  65. 65.

    Leddin, D. J. et al. Canadian Association of Gastroenterology position statement on screening individuals at average risk for developing colorectal cancer: 2010. Can. J. Gastroenterol. 24, 705–714 (2010).

  66. 66.

    European Colorectal Cancer Screening Guidelines Working Group. European guidelines for quality assurance in colorectal cancer screening and diagnosis: overview and introduction to the full supplement publication. Endoscopy 45, 51–59 (2013).

  67. 67.

    Goenka, M. K., Majumder, S. & Goenka, U. Capsule endoscopy: present status and future expectation. World J. Gastroenterol. 20, 10024–10037 (2014).

  68. 68.

    Van de Bruaene, C., De Looze, D. & Hindryckx, P. Small bowel capsule endoscopy: where are we after almost 15 years of use? World J. Gastrointest. Endosc. 7, 13–36 (2015).

  69. 69.

    Friedel, D., Modayil, R. & Stavropoulos, S. Colon capsule endoscopy: review and perspectives. Gastroenterol. Res. Pract. 2016, 9643162 (2016).

  70. 70.

    Triester, S. L. et al. A meta-analysis of the yield of capsule endoscopy compared to other diagnostic modalities in patients with non-stricturing small bowel Crohn’s disease. Am. J. Gastroenterol. 101, 954–964 (2006).

  71. 71.

    Jensen, M. D., Nathan, T., Rafaelsen, S. R. & Kjeldsen, J. Diagnostic accuracy of capsule endoscopy for small bowel Crohn’s disease is superior to that of MR enterography or CT enterography. Clin. Gastroenterol. Hepatol. 9, 124–129 (2011).

  72. 72.

    Health Quality Ontario. Colon capsule endoscopy for the detection of colorectal polyps: an evidence-based analysis. Ont. Health Technol. Assess. Ser. 15, 1–39 (2015).

  73. 73.

    Eliakim, R. et al. Prospective multicenter performance evaluation of the second-generation colon capsule compared with colonoscopy. Endoscopy 41, 1026–1031 (2009).

  74. 74.

    Spada, C. et al. Second-generation colon capsule endoscopy compared with colonoscopy. Gastrointest. Endosc. 74, 581–589 (2011).

  75. 75.

    Hagel, A. F. et al. Colon capsule endoscopy: detection of colonic polyps compared with conventional colonoscopy and visualization of extracolonic pathologies. Can. J. Gastroenterol. Hepatol. 28, 77–82 (2014).

  76. 76.

    Saurin, J. C., Beneche, N., Chambon, C. & Pioche, M. Challenges and future of wireless capsule endoscopy. Clin. Endosc. 49, 26–29 (2016).

  77. 77.

    Rondonotti, E. et al. Complications, limitations, and failures of capsule endoscopy: a review of 733 cases. Gastrointest. Endosc. 62, 712–716; quiz 752, 754 (2005).

  78. 78.

    Kim, B., Lee, S., Park, J. H. & Park, J. O. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE ASME Trans. Mechatron. 10, 77–86 (2005).

  79. 79.

    Wang, K., Yan, G., Ma, G. & Ye, D. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment. Ann. Biomed. Eng. 37, 210–221 (2009).

  80. 80.

    Quirini, M., Scapellato, S., Valdastri, P., Menciassi, A. & Dario, P. An approach to capsular endoscopy with active motion. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2827–2830 (2007).

  81. 81.

    Glass, P., Cheung, E. & Sitti, M. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Trans. Biomed. Eng. 55, 2759–2767 (2008).

  82. 82.

    Hafezi, H. et al. An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015).

  83. 83.

    Osterberg, L. & Blaschke, T. Adherence to medication. N. Engl. J. Med. 353, 487–497 (2005).

  84. 84.

    Belknap, R. et al. Feasibility of an ingestible sensor-based system for monitoring adherence to tuberculosis therapy. PLOS ONE 8, e53373 (2013).

  85. 85.

    Eisenberger, U. et al. Medication adherence assessment: high accuracy of the new Ingestible Sensor System in kidney transplants. Transplantation 96, 245–250 (2013).

  86. 86.

    Frias, J. et al. Effectiveness of digital medicines to improve clinical outcomes in patients with uncontrolled hypertension and type 2 diabetes: prospective, open-label, cluster-randomized pilot clinical trial. J. Med. Internet Res. 19, e246 (2017).

  87. 87.

    Camilleri, M. et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipation. Neurogastroenterol. Motil. 22, 874–882 (2010).

  88. 88.

    Hasler, W. L. The use of SmartPill for gastric monitoring. Expert Rev. Gastroenterol. Hepatol. 8, 587–600 (2014).

  89. 89.

    Rao, S. S. et al. Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol. Motil. 23, 8–23 (2011).

  90. 90.

    Niven, D. J. et al. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann. Internal Med. 163, 768–777 (2015).

  91. 91.

    Kauer, W. K. H. et al. Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery 122, 874–881 (1997).

  92. 92.

    Finberg, L., Cheung, C. S. & Fleishman, E. The significance of the concentrations of electrolytes in stool water during infantile diarrhea. Am. J. Dis. Child 100, 809–813 (1960).

  93. 93.

    Garner, C. E. et al. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 21, 1675–1688 (2007).

  94. 94.

    Steiger, C., Luhmann, T. & Meinel, L. Oral drug delivery of therapeutic gases — carbon monoxide release for gastrointestinal diseases. J. Control. Release 189, 46–53 (2014).

  95. 95.

    Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

  96. 96.

    Kam, S. Y. et al. Characterization of the human gastric fluid proteome reveals distinct pH-dependent protein profiles: implications for biomarker studies. J. Proteome Res. 10, 4535–4546 (2011).

  97. 97.

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

  98. 98.

    Inadomi, J. M. Screening for colorectal neoplasia. N. Engl. J. Med. 376, 149–156 (2017).

  99. 99.

    Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

  100. 100.

    Duffy, M. J. et al. Use of faecal markers in screening for colorectal neoplasia: a European group on tumor markers position paper. Int. J. Cancer 128, 3–11 (2011).

  101. 101.

    Gisbert, J. P. & McNicholl, A. G. Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig. Liver Dis. 41, 56–66 (2009).

  102. 102.

    Mao, R. et al. Fecal calprotectin in predicting relapse of inflammatory bowel diseases: a meta-analysis of prospective studies. Inflamm. Bowel Dis. 18, 1894–1899 (2012).

  103. 103.

    Costa, F. et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut 54, 364–368 (2005).

  104. 104.

    Garcia-Sanchez, V. et al. Does fecal calprotectin predict relapse in patients with Crohn’s disease and ulcerative colitis? J. Crohns Colitis 4, 144–152 (2010).

  105. 105.

    Rizk, M., Belal, F., Ibrahim, F., Ahmed, S. & El-Enany, N. M. Voltammetric analysis of certain 4-quinolones in pharmaceuticals and biological fluids. J. Pharm. Biomed. Anal. 24, 211–218 (2000).

  106. 106.

    Belal, F., Al-Malaq, H. A. & Al-Majed, A. A. Voltammetric determination of isoxsuprine and fenoterol in dosage forms and biological fluids through nitrosation. J. Pharm. Biomed. Analysis 23, 1005–1015 (2000).

  107. 107.

    Mage, P. L. et al. Closed-loop control of circulating drug levels in live animals. Nat. Biomed. Eng. 1, 0070 (2017).

  108. 108.

    Caffrey, C. M., Twomey, K. & Ogurtsov, V. I. Development of a wireless swallowable capsule with potentiostatic electrochemical sensor for gastrointestinal track investigation. Sens. Actuators B Chem. 218, 8–15 (2015).

  109. 109.

    Rong, G., Corrie, S. R. & Clark, H. A. In vivo biosensing: progress and perspectives. ACS Sens. 2, 327–338 (2017).

  110. 110.

    Arroyo-Curras, N. et al. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl Acad. Sci. USA 114, 645–650 (2017).

  111. 111.

    Campuzano, S., Yanez-Sedeno, P. & Pingarron, J. M. Electrochemical bioaffinity sensors for salivary biomarkers detection. Trends Analyt. Chem. 86, 14–24 (2017).

  112. 112.

    Crespo, G. A. Recent advances in ion-selective membrane electrodes for in situ environmental water analysis. Electrochim. Acta 245, 1023–1034 (2017).

  113. 113.

    Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

  114. 114.

    Morris, D. et al. Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens. Actuators B Chem. 139, 231–236 (2009).

  115. 115.

    Ou, J. Z. et al. Human intestinal gas measurement systems: in vitro fermentation and gas capsules. Trends Biotechnol. 33, 208–213 (2015).

  116. 116.

    Kalantar-Zadeh, K. et al. Intestinal gas capsules: a proof-of-concept demonstration. Gastroenterology 150, 37–39 (2016).

  117. 117.

    Ou, J. Z. et al. Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model. Sci. Rep. 6, 33387 (2016).

  118. 118.

    Campbell, M. G. & Dinca, M. Metal-organic frameworks as active materials in electronic sensor devices. Sensors 17, 1108 (2017).

  119. 119.

    Nakhleh, M. K. et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 11, 112–125 (2017).

  120. 120.

    Chan, D. K., Leggett, C. L. & Wang, K. K. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds. World J. Gastroenterol. 22, 1639–1649 (2016).

  121. 121.

    Rockey, D. C., Koch, J., Cello, J. P., Sanders, L. L. & McQuaid, K. Relative frequency of upper gastrointestinal and colonic lesions in patients with positive fecal occult-blood tests. N. Engl. J. Med. 339, 153–159 (1998).

  122. 122.

    Young, G. P. Screening for colorectal cancer: alternative faecal occult blood tests. Eur. J. Gastroenterol. Hepatol. 10, 205–212 (1998).

  123. 123.

    Schostek, S. et al. Telemetric real-time sensor for the detection of acute upper gastrointestinal bleeding. Biosens. Bioelectron. 78, 524–529 (2016).

  124. 124.

    Qiao, P., Liu, H., Yan, X., Jia, Z. & Pi, X. A. Smart capsule system for automated detection of intestinal bleeding using HSL color recognition. PLOS ONE 11, e0166488 (2016).

  125. 125.

    Tokel, O., Inci, F. & Demirci, U. Advances in plasmonic technologies for point of care applications. Chem. Rev. 114, 5728–5752 (2014).

  126. 126.

    Wijaya, E. et al. Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).

  127. 127.

    Masson, J. F. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2, 16–30 (2017).

  128. 128.

    Gluck, N. et al. A novel prepless X-ray imaging capsule for colon cancer screening. Gut 65, 371–373 (2016).

  129. 129.

    Kimchy, Y. et al. Radiographic capsule-based system for non-cathartic colorectal cancer screening. Abdom. Radiol. 42, 1291–1297 (2017).

  130. 130.

    Lifshitz, R. et al. in Proceedings of SPIE, Volume 10132 — Medical Imaging 2017: Physics of Medical Imaging (eds Flohr, T. G., Lo, J. Y. & Schmidt, T. G.) 101321O (SPIE, 2017).

  131. 131.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03356002 (2018).

  132. 132.

    Goetz, M., Malek, N. P. & Kiesslich, R. Microscopic imaging in endoscopy: endomicroscopy and endocytoscopy. Nat. Rev. Gastroenterol. Hepatol. 11, 11–18 (2014).

  133. 133.

    East, J. E. & Rees, C. J. Making optical biopsy a clinical reality in colonoscopy. Lancet Gastroenterol. Hepatol. 3, 10–12 (2018).

  134. 134.

    Kong, K., Kendall, C., Stone, N. & Notingher, I. Raman spectroscopy for medical diagnostics — from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 89, 121–134 (2015).

  135. 135.

    Wang, K. K. et al. Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence. United European Gastroenterol. J. 3, 230–254 (2015).

  136. 136.

    Rex, D. K. et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest. Endosc. 73, 419–422 (2011).

  137. 137.

    Kitabatake, S. et al. Confocal endomicroscopy for the diagnosis of gastric cancer in vivo. Endoscopy 38, 1110–1114 (2006).

  138. 138.

    Shahid, M. W. et al. Diagnostic accuracy of probe-based confocal laser endomicroscopy and narrow band imaging for small colorectal polyps: a feasibility study. Am. J. Gastroenterol. 107, 231–239 (2012).

  139. 139.

    Gaddam, S. et al. Novel probe-based confocal laser endomicroscopy criteria and interobserver agreement for the detection of dysplasia in Barrett’s esophagus. Am. J. Gastroenterol. 106, 1961–1969 (2011).

  140. 140.

    Tabatabaei, N. et al. Clinical translation of tethered confocal microscopy capsule for unsedated diagnosis of eosinophilic esophagitis. Sci. Rep. 8, 2631 (2018).

  141. 141.

    Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

  142. 142.

    Gora, M. J. et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013).

  143. 143.

    Gora, M. J. et al. Tethered capsule endomicroscopy: from bench to bedside at a primary care practice. J. Biomed. Opt. 21, 104001 (2016).

  144. 144.

    Tearney, G. J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

  145. 145.

    Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006).

  146. 146.

    Odegaard, S., Nesje, L. B., Laerum, O. D. & Kimmey, M. B. High-frequency ultrasonographic imaging of the gastrointestinal wall. Expert Rev. Med. Devices 9, 263–273 (2012).

  147. 147.

    Fatehullah, A. et al. Increased variability in ApcMin/+ intestinal tissue can be measured with microultrasound. Sci. Rep. 6, 29570 (2016).

  148. 148.

    Stewart, F. et al. in 2015 IEEE International Ultrasonics Symposium (IUS 2015) 1032–1035 (IEEE, 2015).

  149. 149.

    Lay, H. S. et al. in 2016 IEEE International Ultrasonics Symposium (IUS 2016) 1254–1257 (IEEE, 2016).

  150. 150.

    Fujimoto, J. G., Pitris, C., Boppart, S. A. & Brezinski, M. E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000).

  151. 151.

    Waldner, M. J. et al. Multispectral optoacoustic tomography in Crohn’s disease: noninvasive imaging of disease activity. Gastroenterology 151, 238–240 (2016).

  152. 152.

    Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med. 376, 1292–1294 (2017).

  153. 153.

    Phan, T. D., Ismail, H., Heriot, A. G. & Ho, K. M. Improving perioperative outcomes: fluid optimization with the esophageal Doppler monitor, a metaanalysis and review. J. Am. Coll. Surg. 207, 935–941 (2008).

  154. 154.

    Schoellhammer, C. M. & Traverso, G. Low-frequency ultrasound for drug delivery in the gastrointestinal tract. Expert Opin. Drug Delivery 13, 1045–1048 (2016).

  155. 155.

    Gedawy, A., Martinez, J., Al-Salami, H. & Dass, C. R. Oral insulin delivery: existing barriers and current counter-strategies. J. Pharmacy Pharmacol. 70, 197–213 (2018).

  156. 156.

    Duggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. Pharmaceutical cocrystals: along the path to improved medicines. Chem. Commun. 52, 640–655 (2016).

  157. 157.

    Schoellhammer, C. M. et al. Ultrasound-mediated gastrointestinal drug delivery. Sci. Transl Med. 7, 310ra168 (2015).

  158. 158.

    Becker, D. et al. Novel orally swallowable IntelliCap(®) device to quantify regional drug absorption in human GI tract using diltiazem as model drug. AAPS PharmSciTech 15, 1490–1497 (2014).

  159. 159.

    Soderlind, E. et al. Validation of the IntelliCap(R) system as a tool to evaluate extended release profiles in human GI tract using metoprolol as model drug. J. Control. Release 217, 300–307 (2015).

  160. 160.

    Santini, J. T. et al. Microchip technology in drug delivery. Ann. Med. 32, 377–379 (2000).

  161. 161.

    Wollborn, J. et al. Overcoming safety challenges in CO therapy — extracorporeal CO delivery under precise feedback control of systemic carboxyhemoglobin levels. J. Control. Release 279, 336–344 (2018).

  162. 162.

    Kiourti, A., Psathas, K. A. & Nikita, K. S. Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges. Bioelectromagnetics 35, 1–15 (2014).

  163. 163.

    Reardon, S. Electroceuticals spark interest. Nature 511, 18 (2014).

  164. 164.

    Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: a jump-start for electroceuticals. Nature 496, 159–161 (2013).

  165. 165.

    van der Schaar, P. J. et al. A novel ingestible electronic drug delivery and monitoring device. Gastrointest. Endosc. 78, 520–528 (2013).

  166. 166.

    Goffredo, R. et al. A swallowable smart pill for local drug delivery. J. Microelectromech. Syst. 25, 362–370 (2016).

  167. 167.

    Yu, W., Rahimi, R., Ochoa, M., Pinal, R. & Ziaie, B. A. Smart capsule with GI-tract-location-specific payload release. IEEE Trans. Biomed. Eng. 62, 2289–2295 (2015).

  168. 168.

    Goole, J. & Amighi, K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int. J. Pharmaceut. 499, 376–394 (2016).

  169. 169.

    Singh, P. & Maibach, H. I. Iontophoresis in drug delivery: basic principles and applications. Crit. Rev. Ther. Drug Carrier Syst. 11, 161–213 (1994).

  170. 170.

    Ita, K. Perspectives on transdermal electroporation. Pharmaceutics 8, 9 (2016).

  171. 171.

    Aran, K. et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl Med. 9, eaaf6413 (2017).

  172. 172.

    Polat, B. E., Hart, D., Langer, R. & Blankschtein, D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J. Control. Release 152, 330–348 (2011).

  173. 173.

    Holland, C. K. & Apfel, R. E. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J. Acoust. Soc. Am. 88, 2059–2069 (1990).

  174. 174.

    Schoellhammer, C. M. et al. Defining optimal permeant characteristics for ultrasound-mediated gastrointestinal delivery. J. Control. Release 268, 113–119 (2017).

  175. 175.

    Schoellhammer, C. M. et al. Ultrasound-mediated delivery of RNA to colonic mucosa of live mice. Gastroenterology 152, 1151–1160 (2017).

  176. 176.

    Cummins, G. et al. Sonopill: a platform for gastrointestinal disease diagnosis and therapeutics. Presented at the 6th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery (CRAS) in Pisa, Italy (2016).

  177. 177.

    Cox, B. F. et al. Ultrasound capsule endoscopy: sounding out the future. Ann. Transl Med. 5, 201 (2017).

  178. 178.

    Li, F. et al. Retention of the capsule endoscope: \a single-center experience of 1000 capsule endoscopy procedures. Gastrointest. Endosc. 68, 174–180 (2008).

  179. 179.

    Cheifetz, A. S. et al. The risk of retention of the capsule endoscope in patients with known or suspected Crohn’s disease. Am. J. Gastroenterol. 101, 2218–2222 (2006).

  180. 180.

    Xin, L., Liao, Z., Du, Y. Q., Jiang, Y. P. & Li, Z. S. Retained capsule endoscopy causing intestinal obstruction — endoscopic retrieval by retrograde single-balloon enteroscopy. J. Interv Gastroenterol. 2, 15–18 (2012).

  181. 181.

    Rogers, A. M., Kuperman, E., Puleo, F. J. & Shope, T. R. Intestinal obstruction by capsule endoscopy in a patient with radiation enteritis. JSLS 12, 85–87 (2008).

  182. 182.

    Skovsen, A. P., Burcharth, J. & Burgdorf, S. K. Capsule endoscopy: a cause of late small bowel obstruction and perforation. Case Rep. Surg. 2013, 458108 (2013).

  183. 183.

    Tashiro, Y. et al. Successful retrieval of a retained capsule endoscope with single incision laparoscopic surgery. Case Rep. Gastroenterol. 8, 206–210 (2014).

  184. 184.

    Bass, D. M., Prevo, M. & Waxman, D. S. Gastrointestinal safety of an extended-release, nondeformable, oral dosage form (OROS®). Drug Saf. 25, 1021–1033 (2002).

  185. 185.

    Li, N., Chen, Z., Ren, W., Li, F. & Cheng, H. M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl Acad. Sci. USA 109, 17360–17365 (2012).

  186. 186.

    Nishide, H. & Oyaizu, K. Toward flexible batteries. Science 319, 737–738 (2008).

  187. 187.

    Inui, T., Koga, H., Nogi, M., Komoda, N. & Suganuma, K. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv. Mater. 27, 1112–1116 (2015).

  188. 188.

    Rai, T., Dantes, P., Bahreyni, B. & Kim, W. S. A. Stretchable RF antenna with silver nanowires. IEEE Electron Device Lett. 34, 544–546 (2013).

  189. 189.

    Han, S. T. et al. An overview of the development of flexible sensors. Adv. Mater. 29, 1700375 (2017).

  190. 190.

    Miyashita, S. et al. in 2016 IEEE International Conference on Robotics and Automation (ICRA 2016) 909–916 (IEEE, 2018).

  191. 191.

    du Plessis d’Argentre, A. et al. in 2018 IEEE International Conference on Robotics and Automation (ICRA 2018) 1511–1518 (IEEE, 2018).

  192. 192.

    Chyan, Y. et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018).

  193. 193.

    Dagdeviren, C. et al. Flexible piezoelectric devices for gastrointestinal motility sensing. Nat. Biomed. Engineer. 1, 807–817 (2017).

  194. 194.

    Keller, A., Stevens, L., Wallace, G. G. & Panhuis, M. I. H. 3D printed edible hydrogel electrodes. MRS Adv. 1, 527–532 (2016).

  195. 195.

    Ghosh, U., Ning, S., Wang, Y. & Kong, Y. L. Addressing unmet clinical needs with 3D printing technologies. Adv. Healthc. Mater. 7, e1800417 (2018).

  196. 196.

    Chirwa, L. C., Hammond, P. A., Roy, S. & Cumming, D. R. Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz. IEEE Trans. Biomed. Eng. 50, 484–492 (2003).

  197. 197.

    Chan, Y. M. H. M., Wu, K. L. & Wang, X. Experimental study of radiation efficiency from an ingested source inside a human body model. Conf. Proc. IEEE Eng. Med. Biol. Soc. 7, 7754–7757 (2005).

  198. 198.

    Mackay, R. S. Radio telemetering from within the body: inside information is revealed by tiny transmitters that can be swallowed or implanted in man or animal. Science 134, 1196–1202 (1961).

  199. 199.

    Hyoung, C. H. et al. Human body communication system and method. US Patent 12808178 (2008).

  200. 200.

    Chang, T. C., Wang, M. L., Charthad, J., Weber, M. J. & Arbabian, A. in 2017 IEEE International Solid-State Circuits Conference 460–461 (IEEE, 2017).

  201. 201.

    Nikolayev, D., Zhadobov, M., Sauleau, R. & Karban, P. in Advances in Body-Centric Wireless Communication: Applications and State-of-the-Art 143–186 (Institution of Engineering and Technology, 2016).

  202. 202.

    Xu, F. et al. Controllably degradable transient electronic antennas based on water-soluble PVA/TiO2 films. J. Mater. Sci. 53, 2638–2647 (2018).

  203. 203.

    Barnett, B., Ofer, D., Sriramulu, S. & Stringfellow, R. in Batteries for Sustainability Ch. 9 (ed. Brodd, R. J.) 285–318 (Springer New York, 2013).

  204. 204.

    Ciuti, G., Menciassi, A. & Dario, P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011).

  205. 205.

    Assat, G. & Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

  206. 206.

    Chan, C. K. et al. in Materials for Sustainable Energy 187–191 (World Scientific, 2010).

  207. 207.

    Braga, M. H. C. M. S., Murchison, A. J. & Goodenough, J. B. Nontraditional, safe, high voltage rechargeable cells of long cycle life. J. Am. Chem. Soc. 140, 6343–6352 (2018).

  208. 208.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

  209. 209.

    Dong, K. et al. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment. Biosens. Bioelectron. 41, 916–919 (2013).

  210. 210.

    Ramadass, Y. K. & Chandrakasan, A. P. in 2010 IEEE International Solid-State Circuits Conference (ISSCC 2010) 486–487 (IEEE, 2010).

  211. 211.

    Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).

  212. 212.

    Farrar, J. T., Berkley, C. & Zworykin, V. K. Telemetering of intraenteric pressure in man by an externally energized wireless capsule. Science 131, 1814 (1960).

  213. 213.

    Ben Amar, A., Kouki, A. B. & Cao, H. Power approaches for implantable medical devices. Sensors 15, 28889–28914 (2015).

  214. 214.

    Lenaerts, B. & Puers, R. An inductive power link for a wireless endoscope. Biosens. Bioelectron. 22, 1390–1395 (2007).

  215. 215.

    Poon, A. S. Y., O’Driscoll, S. & Meng, T. H. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 58, 1739–1750 (2010).

  216. 216.

    Ma, Y., Luo, Z., Steiger, C., Traverso, G. & Adib, F. in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication 417–431 (ACM, New York, NY, 2018).

  217. 217.

    Traverso, G., Kirtane, A. R., Schoellhammer, C. M. & Langer, R. Convergence for translation: drug-delivery research in multidisciplinary teams. Angew. Chem. Int. Ed. 57, 4156–4163 (2018).

  218. 218.

    Kim, H. M. et al. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointest. Endosc. 72, 381–387 (2010).

  219. 219.

    Mosse, C. A., Mills, T. N., Appleyard, M. N., Kadirkamanathan, S. S. & Swain, C. P. Electrical stimulation for propelling endoscopes. Gastrointest. Endosc. 54, 79–83 (2001).

  220. 220.

    Woo, S. H., Kim, T. W., Mohy-Ud-Din, Z., Park, I. Y. & Cho, J. H. Small intestinal model for electrically propelled capsule endoscopy. Biomed. Eng. Online 10, 108 (2011).

  221. 221.

    Singeap, A. M., Stanciu, C. & Trifan, A. Capsule endoscopy: the road ahead. World J. Gastroenterol. 22, 369–378 (2016).

  222. 222.

    Carpi, F., Galbiati, S. & Carpi, A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomed. Pharmacother. 60, 370–374 (2006).

  223. 223.

    Sendoh, M., Ishiyama, K. & Arai, K. I. Fabrication of magnetic actuator for use in a capsule endoscope. IEEE Trans. Magn. 39, 3232–3234 (2003).

  224. 224.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03482661 (2018).

  225. 225.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03441945 (2018).

  226. 226.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02846155 (2016).

  227. 227.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02219529 (2015).

  228. 228.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01903629 (2015).

  229. 229.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03420729 (2018).

  230. 230.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02536144 (2018).

  231. 231.

    Keller, J. et al. Inspection of the human stomach using remote-controlled capsule endoscopy: a feasibility study in healthy volunteers (with videos). Gastrointest. Endosc. 73, 22–28 (2011).

  232. 232.

    Rey, J. F. et al. Feasibility of stomach exploration with a guided capsule endoscope. Endoscopy 42, 541–545 (2010).

  233. 233.

    Rey, J. F. et al. Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope. Gastrointest. Endosc. 75, 373–381 (2012).

  234. 234.

    Carpi, F., Galbiati, S. & Carpi, A. Controlled navigation of endoscopic capsules: concept and preliminary experimental investigations. IEEE Trans. Biomed. Eng. 54, 2028–2036 (2007).

  235. 235.

    Carpi, F. & Pappone, C. Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system. IEEE Trans. Biomed. Eng. 56, 1482–1490 (2009).

  236. 236.

    Arezzo, A. et al. Experimental assessment of a novel robotically-driven endoscopic capsule compared to traditional colonoscopy. Dig. Liver Dis. 45, 657–662 (2013).

  237. 237.

    Slawinski, P. R., Obstein, K. L. & Valdastri, P. Emerging issues and future developments in capsule endoscopy. Tech. Gastrointest. Endosc. 17, 40–46 (2015).

  238. 238.

    Yan, X. H. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

  239. 239.

    Sitti, M. Miniature soft robots — road to the clinic. Nat. Rev. Mater. 3, 74–75 (2018).

  240. 240.

    Toennies, J. L., Tortora, G., Simi, M., Valdastri, P. & Webster, R. J. Swallowable medical devices for diagnosis and surgery: the state of the art. Proc. Inst. Mech. Eng. C 224, 1397–1414 (2010).

  241. 241.

    Yim, S., Gultepe, E., Gracias, D. H. & Sitti, M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans. Biomed. Eng. 61, 513–521 (2014).

  242. 242.

    Yim, S. & Sitti, M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28, 183–194 (2012).

  243. 243.

    Kong, K., Yim, S., Choi, S. & Jeon, D. A. Robotic biopsy device for capsule endoscopy. J. Med. Devices 6, 031004 (2012).

  244. 244.

    Simi, M., Gerboni, G., Menciassi, A. & Valdastri, P. Magnetic torsion spring mechanism for a wireless biopsy capsule. J. Med. Devices 7, 041009 (2013).

  245. 245.

    Gorlewicz, J. L. et al. Wireless insufflation of the gastrointestinal tract. IEEE Trans. Biomed. Eng. 60, 1225–1233 (2013).

  246. 246.

    Quaglia, C. et al. Wireless robotic capsule for releasing bioadhesive patches in the gastrointestinal tract. J. Med. Devices 8, 014503 (2013).

  247. 247.

    Leung, B. H. K. et al. A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect. IEEE Trans. Biomed. Eng. 64, 1106–1114 (2017).

  248. 248.

    Woods, S. P. & Constandinou, T. G. Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. IEEE Trans. Biomed. Eng. 60, 945–953 (2013).

  249. 249.

    Hassan, C., Zullo, A., Winn, S. & Morini, S. Cost-effectiveness of capsule endoscopy in screening for colorectal cancer. Endoscopy 40, 414–421 (2008).

  250. 250.

    Gerson, L. & Lin, O. S. Cost-benefit analysis of capsule endoscopy compared with standard upper endoscopy for the detection of Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 5, 319–325 (2007).

  251. 251.

    Lu, Y. P. & Horsley, D. A. Modeling, fabrication, and characterization of piezoelectric micromachined ultrasonic transducer arrays based on cavity SOI wafers. J. Microelectromech. Syst. 24, 1142–1149 (2015).

  252. 252.

    Sezen, A. S. et al. Passive wireless MEMS microphones for biomedical applications. J. Biomech. Eng. 127, 1030–1034 (2005).

  253. 253.

    Arshak, K., Korostynska, O., Morris, D., Jafer, E. & Lyons, G. A review of low-power wireless sensor microsystems for biomedical capsule diagnosis. Microelectron. Int. 21, 8–19 (2004).

  254. 254.

    Zhang, R. et al. Design and performance analysis of capacitive micromachined ultrasonic transducer (CMUT) array for underwater imaging. Microsys. Technol. 22, 2939–2947 (2016).

  255. 255.

    Gaikwad, A. M., Chu, H. N., Qeraj, R., Zamarayeva, A. M. & Steingart, D. A. Reinforced electrode architecture for a flexible battery with paperlike characteristics. Energy Technol. 1, 177–185 (2013).

  256. 256.

    Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

  257. 257.

    Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

  258. 258.

    Basar, M. R., Malek, F., Juni, K. M., Idris, M. S. & Saleh, M. I. M. Ingestible wireless capsule technology: a review of development and future indication. Int. J. Antennas Propag. 2012, 807165 (2012).

  259. 259.

    Koziolek, M. et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the intellicap(®) system. J. Pharm. Sci. 104, 2855–2863 (2015).

  260. 260.

    Sugrue, M. & Redfern, M. Computerized phonoenterography: the clinical investigation of a new system. J. Clin. Gastroenterol. 18, 139–144 (1994).

  261. 261.

    Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

  262. 262.

    Becker, C., Neurath, M. F. & Wirtz, S. The intestinal microbiota in inflammatory bowel disease. ILAR J. 56, 192–204 (2015).

  263. 263.

    Seyedi, M., Ghuloom, G. & Cutler, A. F. Diagnosis of gastric H. pylori using a self-contained ingestible pH probe with radio transmitter. Gastroenterology 114, A282 (1998).

  264. 264.

    Bins, M. et al. Prevalence of achlorhydria in a normal population and its relation to serum gastrin. Hepatogastroenterology 31, 41–43 (1984).

  265. 265.

    Houpt, T. R. Gastric pressures in pigs during eating and drinking. Physiol. Behav. 56, 311–317 (1994).

  266. 266.

    Reintam Blaser, A., Malbrain, M. & Regli, A. Abdominal pressure and gastrointestinal function: an inseparable couple? Anaesthesiol. Intensive Ther. 49, 146–158 (2017).

  267. 267.

    Rao, S. S. et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin. Gastroenterol. Hepatol. 7, 537–544 (2009).

  268. 268.

    Vu, T., Lin, F., Alshurafa, N. & Xu, W. Y. Wearable food intake monitoring technologies: a comprehensive review. Computers 6, 4 (2017).

Download references

Acknowledgements

The authors thank H. Sun, currently a visiting student at the Massachusetts Institute of Technology (MIT), for help with the artwork. This work was funded in part by the Alexander von Humboldt Foundation (Feodor Lynen Fellowship to C.S.), the National Institutes of Health (grant no. EB-000244) and a Max Planck Research Award (to R.L., award letter dated 11 Feb 2008). G.T. was supported in part by the Division of Gastroenterology, Brigham and Women’s Hospital.

Author information

Author notes

    • Phillip Nadeau

    Present address: Analog Devices, Inc, Boston, MA, USA

Affiliations

  1. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Christoph Steiger
    • , Alex Abramson
    • , Robert Langer
    •  & Giovanni Traverso
  2. Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

    • Christoph Steiger
    •  & Giovanni Traverso
  3. Microsystem Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Phillip Nadeau
    •  & Anantha P. Chandrakasan
  4. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Robert Langer
    •  & Giovanni Traverso

Authors

  1. Search for Christoph Steiger in:

  2. Search for Alex Abramson in:

  3. Search for Phillip Nadeau in:

  4. Search for Anantha P. Chandrakasan in:

  5. Search for Robert Langer in:

  6. Search for Giovanni Traverso in:

Contributions

C.S., A.A., P.N. and G.T. wrote the article. A.C. and R.L. edited and reviewed the article prior to submission. All authors contributed to the discussion.

Competing interests

All authors are co-inventors on multiple patents or patent applications describing ingestible electronics and auxiliary systems. G.T. and R.L. have financial interest in Suono Bio, Celero Systems and Lyndra, Inc. These companies are developing a set of distinct approaches to drug delivery and, in some instances, incorporate electronics into their systems. P.N. is an employee of Analog Devices, Inc.

Corresponding author

Correspondence to Giovanni Traverso.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41578-018-0070-3