Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Material approaches to active tissue mechanics

Abstract

Communities of epithelial cells communicate through intercellular interactions, allowing them to coordinate their motility, which plays a key role in homeostasis, morphogenesis and cancer metastasis. Each cell in the epithelium is a constitutive energy-consuming agent, which can generate forces and interact with other cells through cell–cell junctions. Forces applied through external stimuli or endogenous cellular events are balanced by the cells within the epithelium, resulting in the adjustment of internal tissue contractile stresses and tissue reorganization. Materials science and microengineering techniques can be combined to create controllable environments to study epithelial movement and mechanics. By modulating the cell–material interface and by applying principles of active matter, key aspects of epithelial dynamics and mechanosensing mechanisms can be investigated. In this Review, we discuss epithelial tissues as active materials with particular rheological properties and active behaviours at different length scales. We highlight 2D and 3D materials for the study of epithelial dynamics and summarize key methods for the probing of epithelial mechanics. Tissue responses to mechanical stimuli are examined from the molecular level to the tissue level, and the effects of the shape, architecture and stiffness of the microenvironment are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanosensitive molecular networks and signalling.
Fig. 2: Theoretical modelling.
Fig. 3: Epithelial tissue as active matter.
Fig. 4: Cell responses to substrate stiffness.
Fig. 5: Cell responses to 2D and 3D environments.
Fig. 6: Cell responses to out-of-plane structures.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell (Garland Science, New York, 2007).

    Google Scholar 

  2. Sakar, M. S. et al. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat. Commun. 7, 11036 (2016).

    CAS  Google Scholar 

  3. Cetera, M. et al. Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat. Commun. 5, 5511 (2014).

    CAS  Google Scholar 

  4. Puliafito, A. et al. Collective and single cell behavior in epithelial contact inhibition. Proc. Natl Acad. Sci. USA 109, 739–744 (2012).

    CAS  Google Scholar 

  5. Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009).

    CAS  Google Scholar 

  6. Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    CAS  Google Scholar 

  7. Collinet, C., Rauzi, M., Lenne, P.-F. & Lecuit, T. Local and tissue-scale forces drive oriented junction growth during tissue extension. Nat. Cell Biol. 17, 1247–1258 (2015).

    CAS  Google Scholar 

  8. Ladoux, B. & Mège, R.-M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell. Biol. 18, 743–757 (2017).

    CAS  Google Scholar 

  9. Balaji, R. et al. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue. Sci. Rep. 7, 42786 (2017).

    CAS  Google Scholar 

  10. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nat. Phys. 8, 628–634 (2012).

    CAS  Google Scholar 

  11. Vedula, S. R. K. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA 109, 12974–12979 (2012).

    CAS  Google Scholar 

  12. Gomez, G. A., McLachlan, R. W. & Yap, A. S. Productive tension: force-sensing and homeostasis of cell–cell junctions. Trends Cell Biol. 21, 499–505 (2011).

    CAS  Google Scholar 

  13. Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    CAS  Google Scholar 

  14. Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545 (2012).

    CAS  Google Scholar 

  15. Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199–3214 (2006).

    CAS  Google Scholar 

  16. Maruthamuthu, V., Sabass, B., Schwarz, U. S. & Gardel, M. L. Cell-ECM traction force modulates endogenous tension at cell–cell contacts. Proc. Natl Acad. Sci. USA 108, 4708–4713 (2011).

    CAS  Google Scholar 

  17. Mège, R. M. & Ishiyama, N. Integration of cadherin adhesion and cytoskeleton at adherens junctions. Cold Spring Harb. Perspect. Biol. 9, a028738 (2017).

    Google Scholar 

  18. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    CAS  Google Scholar 

  19. Gupta, M. et al. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 6, 7525 (2015).

    CAS  Google Scholar 

  20. Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).

    CAS  Google Scholar 

  21. Sunyer, R. et al. Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353, 1157–1161 (2016).

    CAS  Google Scholar 

  22. Haigo, S. L. & Bilder, D. Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331, 1071–1074 (2011).

    CAS  Google Scholar 

  23. Nam, K.-H. et al. Multiscale cues drive collective cell migration. Sci. Rep. 6, 29749 (2016).

    CAS  Google Scholar 

  24. Shields, M. A., Dangi-Garimella, S., Redig, A. J. & Munshi, H. G. Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. Biochem. J. 441, 541–552 (2012).

    CAS  Google Scholar 

  25. Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 924 (2017).

    Google Scholar 

  26. Grossman, M. et al. Tumor cell invasion can be blocked by modulators of collagen fibril alignment that control assembly of the extracellular matrix. Cancer Res. 76, 4249–4258 (2016).

    CAS  Google Scholar 

  27. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Google Scholar 

  28. Erdogan, B. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 216, 3799–3816 (2017).

    CAS  Google Scholar 

  29. Ruprecht, V. et al. How cells respond to environmental cues — insights from bio-functionalized substrates. J. Cell Sci. 130, 51–61 (2017).

    CAS  Google Scholar 

  30. Xi, W., Sonam, S., Saw, T. B., Ladoux, B. & Lim, C. T. Emergent patterns of collective cell migration under tubular confinement. Nat. Commun. 8, 1517 (2017).

    Google Scholar 

  31. Yevick, H. G., Duclos, G., Bonnet, I. & Silberzan, P. Architecture and migration of an epithelium on a cylindrical wire. Proc. Natl Acad. Sci. USA 112, 5944–5949 (2015).

    CAS  Google Scholar 

  32. Saw, T. B. et al. Topological defects in epithelia govern cell death and extrusion. Nature 544, 212–216 (2017).

    CAS  Google Scholar 

  33. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11594–11599 (2005).

    CAS  Google Scholar 

  34. Salomon, J. et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat. Commun. 8, 13998 (2017).

    CAS  Google Scholar 

  35. Prost, J., Jülicher, F. & Joanny, J. F. Active gel physics. Nat. Phys. 11, 111–117 (2015).

    CAS  Google Scholar 

  36. Huang, G. et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 117, 12764–12850 (2017).

    CAS  Google Scholar 

  37. Rosales, A. M. & Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1, 15012 (2016).

    CAS  Google Scholar 

  38. Xia, Y. N. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998).

    CAS  Google Scholar 

  39. Vedula, S. R. K. et al. Mechanics of epithelial closure over non-adherent environments. Nat. Commun. 6, 6111 (2015).

    CAS  Google Scholar 

  40. Das, T. et al. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat. Cell Biol. 17, 276–287 (2015).

    CAS  Google Scholar 

  41. Segerer, F. J., Thüroff, F., Piera Alberola, A., Frey, E. & Rädler, J. O. Emergence and persistence of collective cell migration on small circular micropatterns. Phys. Rev. Lett. 114, 228102 (2015).

    Google Scholar 

  42. Wong, I. Y. et al. Collective and individual migration following the epithelial–mesenchymal transition. Nat. Mater. 13, 1063–1071 (2014).

    CAS  Google Scholar 

  43. Karuri, N. W. et al. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J. Cell Sci. 117, 3153–3164 (2004).

    CAS  Google Scholar 

  44. Shao, Y. & Fu, J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv. Mater. 26, 1494–1533 (2013).

    Google Scholar 

  45. Théry, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123, 4201–4213 (2010).

    Google Scholar 

  46. Alom Ruiz, S. & Chen, C. S. Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007).

    Google Scholar 

  47. Curtis, A. S., Forrester, J. V., McInnes, C. & Lawrie, F. Adhesion of cells to polystyrene surfaces. J. Cell Biol. 97, 1500–1506 (1983).

    CAS  Google Scholar 

  48. Ravasio, A. et al. Regulation of epithelial cell organization by tuning cell-substrate adhesion. Integr. Biol. 7, 1228–1241 (2015).

    CAS  Google Scholar 

  49. Trepat, X. et al. Physical forces during collective cell migration. Nat. Phys. 5, 426–430 (2009).

    CAS  Google Scholar 

  50. Liang, C.-C., Park, A. Y. & Guan, J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007).

    CAS  Google Scholar 

  51. Nikolic, D. L., Boettiger, A. N., Bar-Sagi, D., Carbeck, J. D. & Shvartsman, S. Y. Role of boundary conditions in an experimental model of epithelial wound healing. Am. J. Physiol. Cell Physiol. 291, C68–C75 (2006).

    CAS  Google Scholar 

  52. Fong, E., Tzlil, S. & Tirrell, D. A. Boundary crossing in epithelial wound healing. Proc. Natl Acad. Sci. USA 107, 19302–19307 (2010).

    CAS  Google Scholar 

  53. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    CAS  Google Scholar 

  54. Ravasio, A. et al. Gap geometry dictates epithelial closure efficiency. Nat. Commun. 6, 7683 (2015).

    Google Scholar 

  55. Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA 109, 10891–10896 (2012).

    CAS  Google Scholar 

  56. Murrell, M., Kamm, R. & Matsudaira, P. Tension, free space, and cell damage in a microfluidic wound healing assay. PLOS ONE 6, e24283 (2011).

    CAS  Google Scholar 

  57. Nie, F.-Q. et al. On-chip cell migration assay using microfluidic channels. Biomaterials 28, 4017–4022 (2007).

    CAS  Google Scholar 

  58. Doxzen, K. et al. Guidance of collective cell migration by substrate geometry. Integr. Biol. 5, 1026–1035 (2013).

    CAS  Google Scholar 

  59. Desai, R. A., Rodriguez, N. M. & Chen, C. S. in Micropatterning in Cell Biology: Part A 1st edn Vol. 119 (eds Piel, M. & Théry, M.) 3–16 (Academic Press, 2014).

  60. Masters, T. et al. Easy fabrication of thin membranes with through holes. Application to protein patterning. PLOS ONE 7, e44261 (2012).

    CAS  Google Scholar 

  61. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    CAS  Google Scholar 

  62. Huo, F. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    CAS  Google Scholar 

  63. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47, 10.16.1–10.16.16 (2010).

    Google Scholar 

  64. Feng, W. et al. Surface patterning via thiolyne click chemistry: an extremely fast and versatile approach to superhydrophilic-superhydrophobic micropatterns. Adv. Mater. Interfaces 1, 1400269 (2014).

    Google Scholar 

  65. Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    CAS  Google Scholar 

  66. Grevesse, T., Versaevel, M., Circelli, G., Desprez, S. & Gabriele, S. A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues. Lab. Chip 13, 777–780 (2013).

    CAS  Google Scholar 

  67. Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964–2974 (2007).

    CAS  Google Scholar 

  68. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5, 383–388 (2004).

    CAS  Google Scholar 

  69. Oria, R. et al. Force loading explains spatial sensing of ligands by cells. Nature 552, 219–224 (2017).

    CAS  Google Scholar 

  70. Cohen, D. J., Gloerich, M. & Nelson, W. J. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction. Proc. Natl Acad. Sci. USA 113, 14698–14703 (2016).

    CAS  Google Scholar 

  71. Li, Q. et al. Extracellular matrix scaffolding guides lumen elongation by inducing anisotropic intercellular mechanical tension. Nat. Cell Biol. 18, 311–318 (2016).

    CAS  Google Scholar 

  72. Azioune, A., Storch, M., Bornens, M., Thery, M. & Piel, M. Simple and rapid process for single cell micro-patterning. Lab. Chip 9, 1640–1642 (2009).

    CAS  Google Scholar 

  73. Pasche, S., De Paul, S. M., Vörös, J., Spencer, N. D. & Textor, M. Poly(l-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir 19, 9216–9225 (2003).

    CAS  Google Scholar 

  74. Strale, P.-O. et al. Multiprotein printing by light-induced molecular adsorption. Adv. Mater. 28, 2024–2029 (2016).

    CAS  Google Scholar 

  75. Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).

    CAS  Google Scholar 

  76. Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 2679–2684 (2006).

    CAS  Google Scholar 

  77. Lee, S.-H., Moon, J. J. & West, J. L. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962–2968 (2008).

    CAS  Google Scholar 

  78. Rolli, C. G. et al. Switchable adhesive substrates: revealing geometry dependence in collective cell behavior. Biomaterials 33, 2409–2418 (2012).

    CAS  Google Scholar 

  79. Kim, S. N. et al. ECM stiffness regulates glial migration in Drosophila and mammalian glioma models. Development 141, 3233–3242 (2014).

    CAS  Google Scholar 

  80. Wang, P.-Y., Tsai, W.-B. & Voelcker, N. H. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater. 8, 519–530 (2012).

    CAS  Google Scholar 

  81. Kim, T. H. et al. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials 40, 51–60 (2015).

    CAS  Google Scholar 

  82. Byrant, S. J. & Anseth, K. S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59, 63–72 (2001).

    Google Scholar 

  83. Marklein, R. A. & Burdick, J. A. Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter 6, 136–143 (2010).

    CAS  Google Scholar 

  84. Willits, R. K. & Skornia, S. L. Effect of collagen gel stiffness on neurite extension. J. Biomater. Sci. Polym. Ed. 15, 1521–1531 (2004).

    CAS  Google Scholar 

  85. Murrell, M., Kamm, R. & Matsudaira, P. Substrate viscosity enhances correlation in epithelial sheet movement. Biophys. J. 101, 297–306 (2011).

    CAS  Google Scholar 

  86. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642–649 (2012).

    CAS  Google Scholar 

  87. Zheng, J. Y. et al. Epithelial monolayers coalesce on a viscoelastic substrate through redistribution of vinculin. Biophys. J. 113, 1585–1598 (2017).

    CAS  Google Scholar 

  88. Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9, 449 (2018).

    Google Scholar 

  89. Rao, R. R., Peterson, A. W., Ceccarelli, J., Putnam, A. J. & Stegemann, J. P. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis 15, 253–264 (2012).

    CAS  Google Scholar 

  90. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    CAS  Google Scholar 

  91. Roeder, B. A., Kokini, K., Sturgis, J. E., Robinson, J. P. & Voytik-Harbin, S. L. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124, 214–222 (2002).

    Google Scholar 

  92. McDaniel, D. P. et al. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys. J. 92, 1759–1769 (2007).

    CAS  Google Scholar 

  93. Francis-Sedlak, M. E. et al. Characterization of type I collagen gels modified by glycation. Biomaterials 30, 1851–1856 (2009).

    CAS  Google Scholar 

  94. Mason, B. N., Starchenko, A., Williams, R. M., Bonassar, L. J. & Reinhart-King, C. A. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 9, 4635–4644 (2013).

    CAS  Google Scholar 

  95. Licup, A. J. et al. Stress controls the mechanics of collagen networks. Proc. Natl Acad. Sci. USA 112, 9573–9578 (2015).

    CAS  Google Scholar 

  96. Nam, S., Hu, K. H., Butte, M. J. & Chaudhuri, O. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc. Natl Acad. Sci. USA 113, 5492–5497 (2016).

    CAS  Google Scholar 

  97. Kim, J. et al. Stress-induced plasticity of dynamic collagen networks. Nat. Commun. 8, 842 (2017).

    Google Scholar 

  98. Ban, E. et al. Mechanisms of plastic deformation in collagen networks induced by cellular forces. Biophys. J. 114, 450–461 (2018).

    CAS  Google Scholar 

  99. de Wild, M., Pomp, W. & Koenderink, G. H. Thermal memory in self-assembled collagen fibril networks. Biophys. J. 105, 200–210 (2013).

    Google Scholar 

  100. Lo, C. T., Throckmorton, D. J., Singh, A. K. & Herr, A. E. Photopolymerized diffusion-defined polyacrylamide gradient gels for on-chip protein sizing. Lab. Chip 8, 1273–1279 (2008).

    CAS  Google Scholar 

  101. Hadden, W. J. et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl Acad. Sci. USA 114, 5647–5652 (2017).

    CAS  Google Scholar 

  102. Lo, C.-M., Wang, H.-B., Dembo, M. & Wang, Y. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    CAS  Google Scholar 

  103. Hartman, C. D., Isenberg, B. C., Chua, S. G. & Wong, J. Y. Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc. Natl Acad. Sci. USA 113, 11190–11195 (2016).

    CAS  Google Scholar 

  104. Sunyer, R., Jin, A. J., Nossal, R. & Sackett, D. L. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLOS ONE 7, e46107 (2012).

    CAS  Google Scholar 

  105. Nemier, S., Hayenga, H. N. & West, J. L. PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105, 636–644 (2009).

    Google Scholar 

  106. Vincent, L. G., Choi, Y. S., Alonso-Latorre, B., del Álamo, J. C. & Engler, A. J. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8, 472–484 (2013).

    CAS  Google Scholar 

  107. Kuo, C. R., Xian, J., Brenton, J. D., Franze, K. & Sivaniah, E. Complex stiffness gradient substrates for studying mechanotactic cell migration. Adv. Mater. 24, 6059–6064 (2012).

    CAS  Google Scholar 

  108. Wong, S., Guo, W.-H. & Wang, Y.-L. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. Proc. Natl Acad. Sci. USA 111, 17176–17181 (2014).

    CAS  Google Scholar 

  109. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    CAS  Google Scholar 

  110. Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P. & Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104, 8281–8286 (2007).

    CAS  Google Scholar 

  111. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA 109, 6933–6938 (2012).

    CAS  Google Scholar 

  112. Tong, M. H., Huang, N., Ngan, A. H. W., Du, Y. & Chan, B. P. Preferential sensing and response to microenvironment stiffness of human dermal fibroblast cultured on protein micropatterns fabricated by 3D multiphoton biofabrication. Sci. Rep. 7, 12402 (2017).

    Google Scholar 

  113. Lipton, J. I. & Lipson, H. 3D printing variable stiffness foams using viscous thread instability. Sci. Rep. 6, 29996 (2016).

    Google Scholar 

  114. Wang, Y. et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128, 44–55 (2017).

    CAS  Google Scholar 

  115. Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003).

    CAS  Google Scholar 

  116. Clark, P., Connolly, P., Curtis, A. S., Dow, J. A. & Wilkinson, C. D. Topographical control of cell behaviour: II. Multiple grooved substrata. Development 108, 635–644 (1990).

    CAS  Google Scholar 

  117. Xia, Y. et al. Complex optical surfaces formed by replica molding against elastomeric masters. Science 273, 347–349 (1996).

    CAS  Google Scholar 

  118. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    CAS  Google Scholar 

  119. Sung, J. H., Yu, J., Luo, D., Shuler, M. L. & March, J. C. Microscale 3D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab. Chip 11, 389–392 (2011).

    CAS  Google Scholar 

  120. Yu, J., Peng, S., Luo, D. & March, J. C. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109, 2173–2178 (2012).

    CAS  Google Scholar 

  121. Costello, C. M. et al. Microscale bioreactors for in situ characterization of GI epithelial cell physiology. Sci. Rep. 7, 12515 (2017).

    Google Scholar 

  122. Schindler, M. et al. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26, 5624–5631 (2005).

    CAS  Google Scholar 

  123. Saha, S. et al. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial–mesenchymal transition. Langmuir 28, 2028–2034 (2012).

    CAS  Google Scholar 

  124. Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G. & Bissell, M. J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105, 223–235 (1989).

    CAS  Google Scholar 

  125. Nelson, C. M., Inman, J. L. & Bissell, M. J. Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat. Protoc. 3, 674–678 (2008).

    CAS  Google Scholar 

  126. Lynn, A. K., Yannas, I. V. & Bonfield, W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. Part B 71, 343–354 (2004).

    CAS  Google Scholar 

  127. Lim, K. S., Martens, P. & Poole-Warren, L. in Functional Hydrogels as Biomaterials (eds Li, J., Osada, Y. & Cooper-White, J.) 1–29 (Springer, Berlin, Heidelberg, 2018).

    Google Scholar 

  128. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS  Google Scholar 

  129. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    CAS  Google Scholar 

  130. Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007).

    CAS  Google Scholar 

  131. Nelson, C. M., VanDuijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006).

    CAS  Google Scholar 

  132. Trappmann, B. et al. Matrix degradability controls multicellularity of 3D cell migration. Nat. Commun. 8, 371 (2017).

    Google Scholar 

  133. Legant, W. R. et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl Acad. Sci. USA 106, 10097–10102 (2009).

    CAS  Google Scholar 

  134. Chen, Z. et al. Lung microtissue array to screen the fibrogenic potential of carbon nanotubes. Sci. Rep. 6, 31304 (2016).

    CAS  Google Scholar 

  135. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    CAS  Google Scholar 

  136. Vedula, S. R. K. et al. Epithelial bridges maintain tissue integrity during collective cell migration. Nat. Mater. 13, 87–96 (2014).

    CAS  Google Scholar 

  137. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    CAS  Google Scholar 

  138. A.-Hassan, E. et al. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564–1578 (1998).

    CAS  Google Scholar 

  139. Fernandez-Sanchez, M. E. et al. Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    CAS  Google Scholar 

  140. Yao, M. et al. Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5, 4525 (2014).

    CAS  Google Scholar 

  141. Bambardekar, K., Clement, R., Blanc, O., Chardes, C. & Lenne, P. F. Direct laser manipulation reveals the mechanics of cell contacts in vivo. Proc. Natl Acad. Sci. USA 112, 1416–1421 (2015).

    CAS  Google Scholar 

  142. Evans, E. & Yeung, A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56, 151–160 (1989).

    CAS  Google Scholar 

  143. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

    CAS  Google Scholar 

  144. Li, Q. S., Lee, G. Y. H., Ong, C. N. & Lim, C. T. AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609–613 (2008).

    CAS  Google Scholar 

  145. Roan, E., Wilhelm, K. R. & Waters, C. M. Kymographic imaging of the elastic modulus of epithelial cells during the onset of migration. Biophys. J. 109, 2051–2057 (2015).

    CAS  Google Scholar 

  146. Koser, D. E. et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    CAS  Google Scholar 

  147. Sugimura, K., Lenne, P.-F. & Graner, F. Measuring forces and stresses in situ in living tissues. Development 143, 186–196 (2016).

    CAS  Google Scholar 

  148. Weber, G. F., Bjerke, M. A. & DeSimone, D. W. A. Mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22, 104–115 (2012).

    CAS  Google Scholar 

  149. Marjoram, R. J., Guilluy, C. & Burridge, K. Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. Methods 94, 19–26 (2016).

    CAS  Google Scholar 

  150. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS  Google Scholar 

  151. Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab. Chip 12, 2165–2174 (2012).

    CAS  Google Scholar 

  152. Hart, K. C. et al. E-Cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape. Proc. Natl Acad. Sci. USA 114, E5845–E5853 (2017).

    CAS  Google Scholar 

  153. Gudipaty, S. A. et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017).

    CAS  Google Scholar 

  154. Cartagena-Rivera, A. X., Van Itallie, C. M., Anderson, J. M. & Chadwick, R. S. Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat. Commun. 8, 1030 (2017).

    Google Scholar 

  155. Jurchenko, C. & Salaita, K. S. Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol. Cell. Biol. 35, 2570–2582 (2015).

    CAS  Google Scholar 

  156. Cai, D. et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157, 1146–1159 (2014).

    CAS  Google Scholar 

  157. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    CAS  Google Scholar 

  158. Eder, D., Basler, K. & Aegerter, C. M. Challenging FRET-based E-cadherin force measurements in Drosophila. Sci. Rep. 7, 13692 (2017).

    Google Scholar 

  159. Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

    CAS  Google Scholar 

  160. Bonnet, I. et al. Mechanical state, material properties and continuous description of an epithelial tissue. J. R. Soc. Interface 9, 2614–2623 (2012).

    Google Scholar 

  161. Farhadifar, R., Röper, J.-C., Aigouy, B., Eaton, S. & Jülicher, F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    CAS  Google Scholar 

  162. Vig, D. K., Hamby, A. E. & Wolgemuth, C. W. On the quantification of cellular velocity fields. Biophys. J. 110, 1469–1475 (2016).

    CAS  Google Scholar 

  163. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Google Scholar 

  164. Dembo, M. & Wang, Y.-L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    CAS  Google Scholar 

  165. Campàs, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Google Scholar 

  166. Bergert, M. et al. Confocal reference free traction force microscopy. Nat. Commun. 7, 12814 (2016).

    CAS  Google Scholar 

  167. Malinverno, C. et al. Endocytic reawakening of motility in jammed epithelia. Nat. Mater. 16, 587–596 (2017).

    CAS  Google Scholar 

  168. Hall, M. S. et al. Toward single cell traction microscopy within 3D collagen matrices. Exp. Cell Res. 319, 2396–2408 (2013).

    CAS  Google Scholar 

  169. Gjorevski, N., Piotrowski, S. A., Varner, V. D. & Nelson, C. M. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci. Rep. 5, 11458 (2015).

    Google Scholar 

  170. Tambe, D. T. et al. Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLOS ONE 8, e55172 (2013).

    CAS  Google Scholar 

  171. Nier, V. et al. Inference of internal stress in a cell monolayer. Biophys. J. 110, 1625–1635 (2016).

    CAS  Google Scholar 

  172. Ishihara, S. & Sugimura, K. Bayesian inference of force dynamics during morphogenesis. J. Theor. Biol. 313, 201–211 (2012).

    Google Scholar 

  173. Ishihara, S. et al. Comparative study of non-invasive force and stress inference methods in tissue. Eur. Phys. J. E 36, 45 (2013).

    CAS  Google Scholar 

  174. Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).

    CAS  Google Scholar 

  175. Mohagheghian, E. et al. Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nat. Commun. 9, 1878 (2018).

    Google Scholar 

  176. Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    CAS  Google Scholar 

  177. Zhou, E. H. et al. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc. Natl Acad. Sci. USA 106, 10632–10637 (2009).

    CAS  Google Scholar 

  178. Xu, J., Tseng, Y. & Wirtz, D. Strain Hardening of actin filament networks regulation by the dynamic cross-linking protein α-actinin. J. Biol. Chem. 275, 35886–35892 (2000).

    CAS  Google Scholar 

  179. Pruitt, B. L., Dunn, A. R., Weis, W. I. & Nelson, W. J. Mechano-transduction: from molecules to tissues. PLOS Biol. 12, e1001996 (2014).

    Google Scholar 

  180. David, R. et al. Tissue cohesion and the mechanics of cell rearrangement. Development 141, 3672–3682 (2014).

    CAS  Google Scholar 

  181. Seddiki, R. et al. Force-dependent binding of vinculin to α-catenin regulates cell–cell contact stability and collective cell behavior. Mol. Biol. Cell 29, 380–388 (2017).

    Google Scholar 

  182. Ranft, J. et al. Fluidization of tissues by cell division and apoptosis. Proc. Natl Acad. Sci. USA 107, 20863–20868 (2010).

    CAS  Google Scholar 

  183. Harris, A. R. et al. Characterizing the mechanics of cultured cell monolayers. Proc. Natl Acad. Sci. USA 109, 16449–16454 (2012).

    CAS  Google Scholar 

  184. Thoumine, O. & Ott, A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110, 2109–2116 (1997).

    CAS  Google Scholar 

  185. Uroz, M. et al. Regulation of cell cycle progression by cell–cell and cell–matrix forces. Nat. Cell Biol. 20, 646–654 (2018).

    CAS  Google Scholar 

  186. Gardel, M. L., Kasza, K. E., Brangwynne, C. P., Liu, J. & Weitz, D. A. Mechanical response of cytoskeletal networks. Methods Cell Biol. 89, 487–519 (2008).

    CAS  Google Scholar 

  187. Dalhaimer, P., Discher, D. E. & Lubensky, T. C. Crosslinked actin networks show liquid crystal elastomer behaviour, including soft-mode elasticity. Nat. Phys. 3, 354–360 (2007).

    CAS  Google Scholar 

  188. Stricker, J., Falzone, T. & Gardel, M. L. Mechanics of the F-actin cytoskeleton. J. Biomech. 43, 9–14 (2010).

    Google Scholar 

  189. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    CAS  Google Scholar 

  190. Janmey, P. A., Hvidt, S., Lamb, J. & Stossel, T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345, 89–92 (1990).

    CAS  Google Scholar 

  191. MacKintosh, F. C., Käs, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425 (1995).

    CAS  Google Scholar 

  192. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    CAS  Google Scholar 

  193. Kang, H. et al. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J. Phys. Chem. B 113, 3799–3805 (2009).

    CAS  Google Scholar 

  194. Vader, D., Kabla, A., Weitz, D. & Mahadevan, L. Strain-induced alignment in collagen gels. PLOS ONE 4, e5902 (2009).

    Google Scholar 

  195. Žagar, G., Onck, P. R. & van der Giessen, E. Two fundamental mechanisms govern the stiffening of cross-linked networks. Biophys. J. 108, 1470–1479 (2015).

    Google Scholar 

  196. Koenderink, G. H. et al. An active biopolymer network controlled by molecular motors. Proc. Natl Acad. Sci. USA 106, 15192–15197 (2009).

    CAS  Google Scholar 

  197. Kim, T., Gardel, M. L. & Munro, E. D. Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks. Biophys. J. 106, 526–534 (2014).

    CAS  Google Scholar 

  198. Wilson, C. A. et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465, 373–377 (2010).

    CAS  Google Scholar 

  199. Banerjee, D. S., Munjal, A., Lecuit, T. & Rao, M. Actomyosin pulsation and flows in an active elastomer with turnover and network remodeling. Nat. Commun. 8, 1121 (2017).

    Google Scholar 

  200. van der Gucht, J., Paluch, E., Plastino, J. & Sykes, C. Stress release drives symmetry breaking for actin-based movement. Proc. Natl Acad. Sci. USA 102, 7847–7852 (2005).

    Google Scholar 

  201. Köhler, S., Schaller, V. & Bausch, A. R. Structure formation in active networks. Nat. Mater. 10, 462–468 (2011).

    Google Scholar 

  202. Schuppler, M., Keber, F. C., Kröger, M. & Bausch, A. R. Boundaries steer the contraction of active gels. Nat. Commun. 7, 13120 (2016).

    CAS  Google Scholar 

  203. Alvarado, J., Sheinman, M., Sharma, A., MacKintosh, F. C. & Koenderink, G. H. Molecular motors robustly drive active gels to a critically connected state. Nat. Phys. 9, 591–597 (2013).

    CAS  Google Scholar 

  204. Weirich, K. L. et al. Liquid behavior of cross-linked actin bundles. Proc. Natl Acad. Sci. USA 114, 2131–2136 (2017).

    CAS  Google Scholar 

  205. Furukawa, R., Kundra, R. & Fechheimer, M. Formation of liquid crystals from actin filaments. Biochemistry 32, 12346–12352 (1993).

    CAS  Google Scholar 

  206. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Google Scholar 

  207. Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell. Biol. 18, 758–770 (2017).

    CAS  Google Scholar 

  208. Ege, N. et al. Quantitative analysis reveals that actin and Src-family kinases regulate nuclear YAP1 and its export. Cell Syst. 6, 692–708 (2018).

    CAS  Google Scholar 

  209. Kim, N.-G. & Gumbiner, B. M. Adhesion to fibronectin regulates Hippo signaling via the FAK–Src–PI3K pathway. J. Cell Biol. 210, 503–515 (2015).

    CAS  Google Scholar 

  210. Kim, N.-G., Koh, E., Chen, X. & Gumbiner, B. M. E-Cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl Acad. Sci. USA 108, 11930–11935 (2011).

    CAS  Google Scholar 

  211. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    CAS  Google Scholar 

  212. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    CAS  Google Scholar 

  213. van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    Google Scholar 

  214. Steinhart, Z. & Angers, S. Wnt signaling in development and tissue homeostasis. Development 145, 1477–9129 (2018).

    Google Scholar 

  215. Orsulic, S., Huber, O., Aberle, H., Arnold, S. & Kemler, R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J. Cell Sci. 112, 1237–1245 (1999).

    CAS  Google Scholar 

  216. Wang, Q., Sun, Z.-X., Allgayer, H. & Yang, H.-S. Downregulation of E-cadherin is an essential event in activating β-catenin/Tcf-dependent transcription and expression of its target genes in Pdcd4 knockdown cells. Oncogene 29, 128–138 (2009).

    Google Scholar 

  217. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).

    CAS  Google Scholar 

  218. Trepat, X. et al. Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am. J. Physiol. Cell. Mol. Physiol. 287, L1025–L1034 (2004).

    CAS  Google Scholar 

  219. Fernández, P., Pullarkat, P. A. & Ott, A. A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys. J. 90, 3796–3805 (2006).

    Google Scholar 

  220. Berret, J.-F. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nat. Commun. 7, 10134 (2016).

    CAS  Google Scholar 

  221. Martens, J. C. & Radmacher, M. Softening of the actin cytoskeleton by inhibition of myosin II. Pflügers Arch. J. Physiol. 456, 95–100 (2008).

    CAS  Google Scholar 

  222. Kollmannsberger, P., Mierke, C. T. & Fabry, B. Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension. Soft Matter 7, 3127–3132 (2011).

    CAS  Google Scholar 

  223. Gullekson, C., Walker, M., Harden, J. L. & Pelling, A. E. Measuring mechanodynamics in an unsupported epithelial monolayer grown at an air–water interface. Mol. Biol. Cell 28, 111–119 (2017).

    CAS  Google Scholar 

  224. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    CAS  Google Scholar 

  225. Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Google Scholar 

  226. Ciobanasu, C., Faivre, B. & Le Clainche, C. Actomyosin-dependent formation of the mechanosensitive talin–vinculin complex reinforces actin anchoring. Nat. Commun. 5, 3095 (2014).

    Google Scholar 

  227. Humphries, J. D. et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179, 1043–1057 (2007).

    CAS  Google Scholar 

  228. Elosegui-Artola, A., Trepat, X. & Roca-Cusachs, P. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol. 28, 356–367 (2018).

    CAS  Google Scholar 

  229. Bangasser, B. L. et al. Shifting the optimal stiffness for cell migration. Nat. Commun. 8, 15313 (2017).

    CAS  Google Scholar 

  230. Bangasser, B. L., Rosenfeld, S. S. & Odde, D. J. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys. J. 105, 581–592 (2013).

    CAS  Google Scholar 

  231. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    CAS  Google Scholar 

  232. De, R. & Safran, S. A. Dynamical theory of active cellular response to external stress. Phys. Rev. E 78, 31923 (2008).

    Google Scholar 

  233. Hoffman, L. M., Jensen, C. C., Chaturvedi, A., Yoshigi, M. & Beckerle, M. C. Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol. Biol. Cell 23, 1846–1859 (2012).

    CAS  Google Scholar 

  234. Nishikawa, S. Cytoskeleton, intercellular junctions, planar cell polarity, and cell movement in amelogenesis. J. Oral Biosci. 59, 197–204 (2017).

    Google Scholar 

  235. Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell. Biol. 15, 397–410 (2014).

    CAS  Google Scholar 

  236. Harris, T. J. C. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    CAS  Google Scholar 

  237. Manning, M. L., Foty, R. A., Steinberg, M. S. & Schoetz, E.-M. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl Acad. Sci. USA 107, 12517–12522 (2010).

    CAS  Google Scholar 

  238. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. Energy barriers and cell migration in densely packed tissues. Soft Matter 10, 1885–1890 (2014).

    CAS  Google Scholar 

  239. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    CAS  Google Scholar 

  240. Dickinson, D. J., Nelson, W. J. & Weis, W. I. A. Polarized epithelium organized by β- and α-catenin predates cadherin and metazoan origins. Science 331, 1336–1339 (2011).

    CAS  Google Scholar 

  241. Gao, X. et al. Cell-Based Micorarrays (eds Ertl, P. & Rothbauer, M.) 55–66 (Humana Press, New York, NY, 2018).

  242. Van Liedekerke, P., Palm, M. M., Jagiella, N. & Drasdo, D. Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput. Part. Mech. 2, 401–444 (2015).

    Google Scholar 

  243. Hakim, V. & Silberzan, P. Collective cell migration: a physics perspective. Rep. Prog. Phys. 80, 76601 (2017).

    Google Scholar 

  244. Camley, B. A. & Rappel, W.-J. Physical models of collective cell motility: from cell to tissue. J. Phys. D. Appl. Phys. 50, 113002 (2017).

    Google Scholar 

  245. Honda, H. Description of cellular patterns by Dirichlet domains: the two-dimensional case. J. Theor. Biol. 72, 523–543 (1978).

    CAS  Google Scholar 

  246. Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992).

    CAS  Google Scholar 

  247. Kabla, A. J. Collective cell migration: leadership, invasion and segregation. J. R. Soc. Interface 9, 3268–3278 (2012).

    Google Scholar 

  248. Coburn, L. et al. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury. Phys. Biol. 15, 24001 (2018).

    Google Scholar 

  249. Kopf, M. H. & Pismen, L. M. A continuum model of epithelial spreading. Soft Matter 9, 3727–3734 (2013).

    Google Scholar 

  250. Blanch-Mercader, C. & Casademunt, J. Hydrodynamic instabilities, waves and turbulence in spreading epithelia. Soft Matter 13, 6913–6928 (2017).

    CAS  Google Scholar 

  251. Voss-Böhme, A. Multi-scale modeling in morphogenesis: a critical analysis of the cellular Potts model. PLOS ONE 7, e42852 (2012).

    Google Scholar 

  252. Fletcher, A. G., Osterfield, M., Baker, R. E. & Shvartsman, S. Y. Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014).

    CAS  Google Scholar 

  253. Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 21011 (2016).

    Google Scholar 

  254. Giavazzi, F. et al. Flocking transitions in confluent tissues. Soft Matter 14, 3471–3477 (2018).

    CAS  Google Scholar 

  255. Szabó, C. A. et al. Collective cell motion in endothelial monolayers. Phys. Biol. 7, 46007 (2010).

    Google Scholar 

  256. Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

    CAS  Google Scholar 

  257. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013).

    CAS  Google Scholar 

  258. Thampi, S. P., Golestanian, R. & Yeomans, J. M. Instabilities and topological defects in active nematics. Europhys. Lett. 105, 18001 (2014).

    Google Scholar 

  259. Thampi, S. P., Golestanian, R. & Yeomans, J. M. Vorticity, defects and correlations in active turbulence. Phil. Trans. R. Soc. A 372, 20130366 (2014).

    Google Scholar 

  260. Kawaguchi, K., Kageyama, R. & Sano, M. Topological defects control collective dynamics in neural progenitor cell cultures. Nature 545, 327–331 (2017).

    CAS  Google Scholar 

  261. Duclos, G., Erlenkämper, C., Joanny, J.-F. & Silberzan, P. Topological defects in confined populations of spindle-shaped cells. Nat. Phys. 13, 58–62 (2017).

    CAS  Google Scholar 

  262. Stirbat, T. V. et al. Multicellular aggregates: a model system for tissue rheology. Eur. Phys. J. E 36, 84 (2013).

    Google Scholar 

  263. Casares, L. et al. Hydraulic fracture during epithelial stretching. Nat. Mater. 14, 343–351 (2015).

    CAS  Google Scholar 

  264. Etournay, R. et al. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 4, e07090 (2015).

    Google Scholar 

  265. Kong, D., Wolf, F. & Großhans, J. Forces directing germ-band extension in Drosophila embryos. Mech. Dev. 144, 11–22 (2017).

    CAS  Google Scholar 

  266. Wyatt, T. P. J. et al. Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. Proc. Natl Acad. Sci. USA 112, 5726–5731 (2015).

    CAS  Google Scholar 

  267. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Oxford Univ. Press, 1993).

  268. Yamaguchi, N., Mizutani, T., Kawabata, K. & Haga, H. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci. Rep. 5, 7656 (2015).

    CAS  Google Scholar 

  269. Reffay, M. et al. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 16, 217–223 (2014).

    CAS  Google Scholar 

  270. Bahri, S. et al. The leading edge during dorsal closure as a model for epithelial plasticity: Pak is required for recruitment of the Scribble complex and septate junction formation. Development 137, 2023–2032 (2010).

    CAS  Google Scholar 

  271. Hayer, A. et al. Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells. Nat. Cell Biol. 18, 1311–1323 (2016).

    CAS  Google Scholar 

  272. Rausch, S. et al. Polarizing cytoskeletal tension to induce leader cell formation during collective cell migration. Biointerphases 8, 32 (2013).

    Google Scholar 

  273. Tlili, S. et al. Collective cell migration without proliferation: density determines cell velocity and wave velocity. R. Soc. Open Sci. 5, 172421 (2018).

    Google Scholar 

  274. Vincent, R. et al. Active tensile modulus of an epithelial monolayer. Phys. Rev. Lett. 115, 248103 (2015).

    Google Scholar 

  275. Kocgozlu, L. et al. Epithelial cell packing induces distinct modes of cell extrusions. Curr. Biol. 26, 2942–2950 (2016).

    CAS  Google Scholar 

  276. Deforet, M., Hakim, V., Yevick, H. G., Duclos, G. & Silberzan, P. Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nat. Commun. 5, 3747 (2014).

    CAS  Google Scholar 

  277. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    CAS  Google Scholar 

  278. Atia, L. et al. Geometric constraints during epithelial jamming. Nat. Phys. 14, 613–620 (2018).

    CAS  Google Scholar 

  279. Wilk, G., Iwasa, M., Fuller, P. E., Kandere-Grzybowska, K. & Grzybowski, B. A. Universal area distributions in the monolayers of confluent mammalian cells. Phys. Rev. Lett. 112, 138104 (2014).

    Google Scholar 

  280. Rossen, N. S., Tarp, J. M., Mathiesen, J., Jensen, M. H. & Oddershede, L. B. Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun. 5, 5720 (2014).

    CAS  Google Scholar 

  281. Doostmohammadi, A. et al. Cell division: a source of active stress in cellular monolayers. Soft Matter 11, 7328–7336 (2015).

    CAS  Google Scholar 

  282. Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).

    CAS  Google Scholar 

  283. de la Loza, M. C. D. et al. Laminin levels regulate tissue migration and anterior-posterior polarity during egg morphogenesis in Drosophila. Cell Rep. 20, 211–223 (2017).

    Google Scholar 

  284. Gopal, S. et al. Fibronectin-guided migration of carcinoma collectives. Nat. Commun. 8, 14105 (2017).

    CAS  Google Scholar 

  285. Carey, S. P., Martin, K. E. & Reinhart-King, C. A. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci. Rep. 7, 42088 (2017).

    CAS  Google Scholar 

  286. Thuenauer, R., Rodriguez-Boulan, E. & Römer, W. Microfluidic approaches for epithelial cell layer culture and characterisation. Analyst 139, 3206–3218 (2014).

    CAS  Google Scholar 

  287. Beenakker, J.-W. M., Ashcroft, B. A., Lindeman, J. H. N. & Oosterkamp, T. H. Mechanical properties of the extracellular matrix of the aorta studied by enzymatic treatments. Biophys. J. 102, 1731–1737 (2012).

    CAS  Google Scholar 

  288. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  289. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Google Scholar 

  290. Van De Water, L., Varney, S. & Tomasek, J. J. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Adv. Wound Care 2, 122–141 (2013).

    Google Scholar 

  291. Harland, B., Walcott, S. & Sun, S. X. Adhesion dynamics and durotaxis in migrating cells. Phys. Biol. 8, 015011 (2011).

    Google Scholar 

  292. Novikova, E. A., Raab, M., Discher, D. E. & Storm, C. Persistence-driven durotaxis: generic, directed motility in rigidity gradients. Phys. Rev. Lett. 118, 78103 (2017).

    Google Scholar 

  293. Yu, G., Feng, J., Man, H. & Levine, H. Phenomenological modeling of durotaxis. Phys. Rev. E 96, 010402 (2017).

    Google Scholar 

  294. Ng, M. R., Besser, A., Danuser, G. & Brugge, J. S. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199, 545–563 (2012).

    CAS  Google Scholar 

  295. Martinez, J. S., Schlenoff, J. B. & Keller, T. C. S. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance. Exp. Cell Res. 346, 17–29 (2016).

    CAS  Google Scholar 

  296. Escribano, J. et al. A hybrid computational model for collective cell durotaxis. Biomech. Model. Mechanobiol. 17, 1037–1052 (2018).

    Google Scholar 

  297. Nasrollahi, S. et al. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Biomaterials 146, 146–155 (2017).

    CAS  Google Scholar 

  298. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    CAS  Google Scholar 

  299. Matsuzaki, S., Darcha, C., Pouly, J.-L. & Canis, M. Effects of matrix stiffness on epithelial to mesenchymal transition-like processes of endometrial epithelial cells: implications for the pathogenesis of endometriosis. Sci. Rep. 7, 44616 (2017).

    CAS  Google Scholar 

  300. Wei, S. C. et al. Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    CAS  Google Scholar 

  301. Alexander, N. R. et al. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of twist1. Cancer Res. 66, 3365–3369 (2006).

    CAS  Google Scholar 

  302. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  Google Scholar 

  303. Swaminathan, V. et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011).

    CAS  Google Scholar 

  304. Style, R. W. et al. Patterning droplets with durotaxis. Proc. Natl Acad. Sci. USA 110, 12541–12544 (2013).

    CAS  Google Scholar 

  305. Siedlik, M. J., Manivannan, S., Kevrekidis, I. G. & Nelson, C. M. Cell division induces and wwitches coherent angular motion within bounded cellular collectives. Biophys. J. 112, 2419–2427 (2017).

    CAS  Google Scholar 

  306. Tanner, K., Mori, H., Mroue, R., Bruni-Cardoso, A. & Bissell, M. J. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc. Natl Acad. Sci. USA 109, 1973–1978 (2012).

    CAS  Google Scholar 

  307. Boghaert, E. et al. Host epithelial geometry regulates breast cancer cell invasiveness. Proc. Natl Acad. Sci. USA 109, 19632–19637 (2012).

    CAS  Google Scholar 

  308. Labernadie, A. et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol. 19, 224–237 (2017).

    CAS  Google Scholar 

  309. Haga, H., Irahara, C., Kobayashi, R., Nakagaki, T. & Kawabata, K. Collective movement of epithelial cells on a collagen gel substrate. Biophys. J. 88, 2250–2256 (2005).

    CAS  Google Scholar 

  310. Londono, C. et al. Nonautonomous contact guidance signaling during collective cell migration. Proc. Natl Acad. Sci. USA 111, 1807–1812 (2014).

    CAS  Google Scholar 

  311. Uttayarat, P., Toworfe, G. K., Dietrich, F., Lelkes, P. I. & Composto, R. J. Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J. Biomed. Mater. Res. A 75, 668–680 (2005).

    Google Scholar 

  312. Attieh, Y. et al. Cancer-associated fibroblasts lead tumor invasion through integrin-β3–dependent fibronectin assembly. J. Cell Biol. 216, 3509–3520 (2017).

    CAS  Google Scholar 

  313. Weigelin, B., Bakker, G.-J. & Friedl, P. Intravital third harmonic generation microscopy of collective melanoma cell invasion. Intravital 1, 32–43 (2012).

    Google Scholar 

  314. Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840, 2386–2395 (2014).

    CAS  Google Scholar 

  315. Dukes, J. D., Whitley, P. & Chalmers, A. D. The MDCK variety pack: choosing the right strain. BMC Cell Biol. 12, 43 (2011).

    CAS  Google Scholar 

  316. Rodríguez-Fraticelli, A. E., Auzan, M., Alonso, M. A., Bornens, M. & Martín-Belmonte, F. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. J. Cell Biol. 198, 1011–1023 (2012).

    Google Scholar 

  317. Imai, M., Furusawa, K., Mizutani, T., Kawabata, K. & Haga, H. Three-dimensional morphogenesis of MDCK cells induced by cellular contractile forces on a viscous substrate. Sci. Rep. 5, 14208 (2015).

    Google Scholar 

  318. Martín-Belmonte, F. et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr. Biol. 18, 507–513 (2008).

    Google Scholar 

  319. Jaffe, A. B., Kaji, N., Durgan, J. & Hall, A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J. Cell Biol. 183, 625–633 (2008).

    CAS  Google Scholar 

  320. Dasgupta, S., Gupta, K., Zhang, Y., Viasnoff, V. & Prost, J. Physics of lumen growth. Proc. Natl Acad. Sci. USA 115, E4751–E4757 (2018).

    CAS  Google Scholar 

  321. Sugahara, K., Caldwell, J. H. & Mason, R. J. Electrical currents flow out of domes formed by cultured epithelial cells. J. Cell Biol. 99, 1541–1544 (1984).

    CAS  Google Scholar 

  322. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A. & Sabatini, D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77, 853–880 (1978).

    CAS  Google Scholar 

  323. Hannezo, E., Prost, J. & Joanny, J.-F. Theory of epithelial sheet morphology in three dimensions. Proc. Natl Acad. Sci. USA 111, 27–32 (2014).

    CAS  Google Scholar 

  324. Hannezo, E., Prost, J. & Joanny, J.-F. Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys. Rev. Lett. 107, 78104 (2011).

    CAS  Google Scholar 

  325. Levina, E. M., Domnina, L. V., Rovensky, Y. A. & Vasiliev, J. M. Cylindrical substratum induces different patterns of actin microfilament bundles in nontransformed and in ras-transformed epitheliocytes. Exp. Cell Res. 229, 159–165 (1996).

    CAS  Google Scholar 

  326. Svitkina, T. M., Rovensky, Y. A., Bershadsky, A. D. & Vasiliev, J. M. Transverse pattern of microfilament bundles induced in epitheliocytes by cylindrical substrata. J. Cell Sci. 108, 735–745 (1995).

    CAS  Google Scholar 

  327. Yu, S.-M. et al. Substrate curvature affects the shape, orientation, and polarization of renal epithelial cells. Acta Biomater. 77, 311–321 (2018).

    Google Scholar 

  328. Biton, Y. Y. & Safran, S. A. The cellular response to curvature-induced stress. Phys. Biol. 6, 46010 (2009).

    CAS  Google Scholar 

  329. Sun, B., Xie, K., Chen, T.-H. & Lam, R. H. W. Preferred cell alignment along concave microgrooves. RSC Adv. 7, 6788–6794 (2017).

    CAS  Google Scholar 

  330. Park, J. Y., Lee, D. H., Lee, E. J. & Lee, S.-H. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes. Lab. Chip 9, 2043–2049 (2009).

    CAS  Google Scholar 

  331. Werner, M. et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv. Sci. 4, 1600347 (2017).

    Google Scholar 

  332. Qian, J., Wang, J., Lin, Y. & Gao, H. Lifetime and strength of periodic bond clusters between elastic media under inclined loading. Biophys. J. 97, 2438–2445 (2009).

    CAS  Google Scholar 

  333. Gao, H., Qian, J. & Chen, B. Probing mechanical principles of focal contacts in cell–matrix adhesion with a coupled stochastic–elastic modelling framework. J. R. Soc. Interface 8, 1217–1232 (2011).

    CAS  Google Scholar 

  334. Bade, N. D., Kamien, R. D., Assoian, R. K. & Stebe, K. J. Curvature and Rho activation differentially control the alignment of cells and stress fibers. Sci. Adv. 3, e1700150 (2017).

    Google Scholar 

  335. Napoli, G. & Vergori, L. Extrinsic curvature effects on nematic shells. Phys. Rev. Lett. 108, 207803 (2012).

    Google Scholar 

  336. Solon, J., Kaya-Çopur, A., Colombelli, J. & Brunner, D. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137, 1331–1342 (2009).

    Google Scholar 

  337. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).

    CAS  Google Scholar 

  338. Deforet, M. et al. Automated velocity mapping of migrating cell populations (AVeMap). Nat. Methods 9, 1081–1083 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank group members from Mechanobiology Institute (MBI), Singapore, and Institut Jacques Monod (IJM), Paris, for helpful discussions. The authors thank R.M. Mège from IJM for help improving Fig. 1 and the text in the “Cell signalling and mechanical forces” section. W.X. received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. PCOFUND-GA-2013-609102, through the PRESTIGE programme coordinated by Campus France. Financial support from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC grant agreement no. 617233 (B.L.), Agence Nationale de la Recherche (ANR) “POLCAM” (ANR-17-CE13-0013), The Groupama Foundation — Research for Rare Diseases (D.D.), NUS-USPC programme, The LABEX “Who am I?” and MBI, Singapore, is gratefully acknowledged. C.T.L. and D.D. recognize support from the Human Frontier Science Program (RGP0038/2018). T.B.S. acknowledges support from the Lee Kuan Yew (LKY) Postdoctoral fellowship and Tier 1 grant from the Ministry of Education (MOE), Singapore.

Author information

Authors and Affiliations

Authors

Contributions

W.X., T.B.S., C.T.L. and B.L. conceived of the manuscript; W.X., T.B.S. and B.L. wrote the manuscript; W.X., T.B.S. and B.L. designed the figures; all authors edited the manuscript.

Corresponding authors

Correspondence to Wang Xi, Chwee Teck Lim or Benoit Ladoux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Open Source Computer Vision Library: http://www.openCV.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, W., Saw, T.B., Delacour, D. et al. Material approaches to active tissue mechanics. Nat Rev Mater 4, 23–44 (2019). https://doi.org/10.1038/s41578-018-0066-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0066-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing