Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dimensional tailoring of hybrid perovskites for photovoltaics

Abstract

Hybrid perovskites are currently one of the most active fields of research owing to their enormous potential for photovoltaics. The performance of 3D hybrid organic–inorganic perovskite solar cells has increased at an incredible rate, reaching power conversion efficiencies comparable to those of many established technologies. However, the commercial application of 3D hybrid perovskites is inhibited by their poor stability. Relative to 3D hybrid perovskites, low-dimensional — that is, 2D — hybrid perovskites have demonstrated higher moisture stability, offering new approaches to stabilizing perovskite-based photovoltaic devices. Furthermore, 2D hybrid perovskites have versatile structures, enabling the fine-tuning of their optoelectronic properties through compositional engineering. In this Review, we discuss the state of the art in 2D perovskites, providing an overview of structural and materials engineering aspects and optical and photophysical properties. Moreover, we discuss recent developments along with the main limitations of 3D perovskites and assess the advantages of 2D perovskites over their 3D parent structures in terms of stability. Finally, we review recent achievements in combining 3D and 2D perovskites as an approach to simultaneously boost device efficiency and stability, paving the way for mixed-dimensional perovskite solar cells for commercial applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structure of 3D and 2D perovskites.
Fig. 2: Energetics, structure and optical properties of 2D perovskites.
Fig. 3: Photophysical processes in 2D perovskites.
Fig. 4: Degradation of 3D perovskites and the latest improvements in the stability of 3D perovskite solar cells.
Fig. 5: Structures and performance of 2D and 2D/3D perovskite solar cells.
Fig. 6: High-stability 2D/3D mixed perovskite solar cells.
Fig. 7: 2D perovskites in the 3D bulk and lead-free 2D perovskites.
Fig. 8: Photophysics of 2D and 2D/3D perovskites.

References

  1. 1.

    Green, M. A. & Ho-Baillie, A. Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett. 2, 822–830 (2017).

    CAS  Google Scholar 

  2. 2.

    Grätzel, M. The rise of highly efficient and stable perovskite solar cells. Acc. Chem. Res. 50, 487–491 (2017).

    Google Scholar 

  3. 3.

    Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    CAS  Google Scholar 

  4. 4.

    Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    CAS  Google Scholar 

  5. 5.

    Kieslich, G., Sun, S. & Cheetham, A. K. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014).

    CAS  Google Scholar 

  6. 6.

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    CAS  Google Scholar 

  7. 7.

    D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    Google Scholar 

  8. 8.

    Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    CAS  Google Scholar 

  9. 9.

    Wang, D., Wright, M., Elumalai, N. K. & Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016).

    CAS  Google Scholar 

  10. 10.

    Slavney, A. H. et al. Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers. Inorg. Chem. 56, 46–55 (2017).

    CAS  Google Scholar 

  11. 11.

    Berhe, T. A. et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016).

    CAS  Google Scholar 

  12. 12.

    You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Google Scholar 

  13. 13.

    Bella, F. et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203–206 (2016).

    CAS  Google Scholar 

  14. 14.

    Li, X. et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015).

    CAS  Google Scholar 

  15. 15.

    Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014).

    CAS  Google Scholar 

  16. 16.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  Google Scholar 

  17. 17.

    Cao, D. H., Stoumpos, C. C., Farha, O. K., Hupp, J. T. & Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).

    CAS  Google Scholar 

  18. 18.

    Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS  Google Scholar 

  19. 19.

    Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    Google Scholar 

  20. 20.

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Google Scholar 

  21. 21.

    Du, K. et al. Two-dimensional lead(ii) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 56, 9291–9302 (2017).

    CAS  Google Scholar 

  22. 22.

    Braun, M., Tuffentsammer, W., Wachtel, H. & Wolf, H. C. Tailoring of energy levels in lead chloride based layered perovskites and energy transfer between the organic and inorganic planes. Chem. Phys. Lett. 303, 157–164 (1999).

    CAS  Google Scholar 

  23. 23.

    Mitzi, D. B. in Progress in Inorganic Chemistry Vol. 48 (ed. Karlin, K. D.) 1–121 (John Wiley & Sons, Inc., 1999).

  24. 24.

    Younts, R. et al. Efficient generation of long-lived triplet excitons in 2D hybrid perovskite. Adv. Mater. 29, 1604278 (2017).

    Google Scholar 

  25. 25.

    Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    CAS  Google Scholar 

  26. 26.

    Tanaka, K. et al. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. 71, 45312 (2005).

    Google Scholar 

  27. 27.

    Tanaka, K. et al. Two-dimensional Wannier excitons in a layered-perovskite-type crystal (C6H13NH3)2PbI4. Solid State Commun. 122, 249–252 (2002).

    CAS  Google Scholar 

  28. 28.

    Ishihara, T., Hong, X., Ding, J. & Nurmikko, A. V. Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surf. Sci. 267, 323–326 (1992).

    CAS  Google Scholar 

  29. 29.

    Dohner, E. R., Jaffe, A., Bradshaw, L. R. & Karunadasa, H. I. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 136, 13154–13157 (2014).

    CAS  Google Scholar 

  30. 30.

    Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    CAS  Google Scholar 

  31. 31.

    Era, M., Hattori, T., Taira, T. & Tsutsui, T. Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chem. Mater. 9, 8–10 (1997).

    CAS  Google Scholar 

  32. 32.

    Mitzi, D. B. A layered solution crystal growth technique and the crystal structure of (C6H5C2H4NH3)2PbCl4. J. Solid State Chem. 145, 694–704 (1999).

    CAS  Google Scholar 

  33. 33.

    Gan, X. et al. 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Sol. Energy Mater. Sol. Cells 162, 93–102 (2017).

    CAS  Google Scholar 

  34. 34.

    Cortecchia, D. et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. J. Am. Chem Soc. 139, 39–42 (2017).

    CAS  Google Scholar 

  35. 35.

    Knutson, J. L., Martin, J. D. & Mitzi, D. B. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44, 4699–4705 (2005).

    CAS  Google Scholar 

  36. 36.

    Venkatesan, N. R., Labram, J. G. & Chabinyc, M. L. Charge-carrier dynamics and crystalline texture of layered Ruddlesden–Popper hybrid lead iodide perovskite thin films. ACS Energy Lett. 3, 380–386 (2018).

    CAS  Google Scholar 

  37. 37.

    Misra, R. K., Cohen, B.-E., Iagher, L. & Etgar, L. Low-dimensional organic–inorganic halide perovskite: structure, properties, and applications. ChemSusChem 10, 3712–3721 (2017).

    CAS  Google Scholar 

  38. 38.

    Chen, A. Z. et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9, 1336 (2018).

    Google Scholar 

  39. 39.

    Tsai, H. et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018).

    Google Scholar 

  40. 40.

    Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    CAS  Google Scholar 

  41. 41.

    Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Google Scholar 

  42. 42.

    Peng, W. et al. Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17, 4759–4767 (2017).

    CAS  Google Scholar 

  43. 43.

    Wu, X., Trinh, M. T. & Zhu, X.-Y. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells. J. Phys. Chem. 119, 14714–14721 (2015).

    CAS  Google Scholar 

  44. 44.

    Trinh, M. T., Wu, X., Niesner, D. & Zhu, X.-Y. Many-body interactions in photo-excited lead iodide perovskite. J. Mater. Chem. A 3, 9285–9290 (2015).

    CAS  Google Scholar 

  45. 45.

    Grancini, G. et al. Role of microstructure in the electron–hole interaction of hybrid lead halide perovskites. Nat. Photonics 9, 695–701 (2015).

    CAS  Google Scholar 

  46. 46.

    Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (ii) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    CAS  Google Scholar 

  47. 47.

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    CAS  Google Scholar 

  48. 48.

    Peyghambarian, N. et al. Blue shift of the exciton resonance due to exciton–exciton interactions in a multiple-quantum-well structure. Phys. Rev. Lett. 53, 2433–2436 (1984).

    CAS  Google Scholar 

  49. 49.

    Hulin, D. et al. Well-size dependence of exciton blue shift in GaAs multiple-quantum-well structures. Phys. Rev. 33, 4389–4391 (1986).

    CAS  Google Scholar 

  50. 50.

    Cortecchia, D. et al. Polaron self-localization in white-light emitting hybrid perovskites. J. Mater. Chem. C 5, 2771–2780 (2017).

    CAS  Google Scholar 

  51. 51.

    Hu, T. et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 7, 2258–2263 (2016).

    CAS  Google Scholar 

  52. 52.

    Neogi, I. et al. Broadband-emitting 2D hybrid organic–inorganic perovskite based on cyclohexane-bis(methylamonium) cation. ChemSusChem 10, 3765–3772 (2017).

    CAS  Google Scholar 

  53. 53.

    Yangui, A. et al. Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4. J. Phys. Chem. 119, 23638–23647 (2015).

    CAS  Google Scholar 

  54. 54.

    Ohnishi, A., Tanaka, K. & Yoshinari, T. Exciton self-trapping in two-dimensional system of (C2H5NH3)2CdCl4 single crystal. J. Phys. Soc. Jpn 68, 288–290 (1999).

    CAS  Google Scholar 

  55. 55.

    Smith, D. et al. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem. Sci. 8, 4497–4504 (2017).

    CAS  Google Scholar 

  56. 56.

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    CAS  Google Scholar 

  57. 57.

    Dresselhaus, G., Kip, A. F. & Kittel, C. Spin-orbit interaction and the effective masses of holes in germanium. Phys. Rev. 95, 568–569 (1954).

    CAS  Google Scholar 

  58. 58.

    Zhai, Y. et al. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Google Scholar 

  59. 59.

    Aristidou, N. et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017).

    Google Scholar 

  60. 60.

    De Bastiani, M. et al. Ion migration and the role of preconditioning cycles in the stabilization of the JV characteristics of inverted hybrid perovskite solar cells. Adv. Energy Mater. 6, 1501453 (2016).

    Google Scholar 

  61. 61.

    Bi, E. et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat. Commun. 8, 15330 (2017).

    CAS  Google Scholar 

  62. 62.

    Gratia, P. et al. Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016).

    CAS  Google Scholar 

  63. 63.

    Leijtens, T. et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015).

    Google Scholar 

  64. 64.

    Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    CAS  Google Scholar 

  65. 65.

    Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).

    Google Scholar 

  66. 66.

    Lee, S.-W. et al. UV degradation and recovery of perovskite solar cells. Sci. Rep. 6, 38150 (2016).

    CAS  Google Scholar 

  67. 67.

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2014).

    Google Scholar 

  68. 68.

    Fang, H.-H. et al. Unravelling light-induced degradation of layered perovskite crystals and design of efficient encapsulation for improved photostability. Adv. Funct. Mater. 28, 1800305 (2018).

    Google Scholar 

  69. 69.

    Li, Y. et al. Light-induced degradation of CH3NH3PbI3 hybrid perovskite thin film. J. Phys. Chem. C 121, 3904–3910 (2017).

    CAS  Google Scholar 

  70. 70.

    Zu, F.-S. et al. Impact of white light illumination on the electronic and chemical structures of mixed halide and single crystal perovskites. Adv. Opt. Mater. 5, 1700139 (2017).

    Google Scholar 

  71. 71.

    Yang, Y. & You, J. Make perovskite solar cells stable. Nature 544, 155–156 (2017).

    CAS  Google Scholar 

  72. 72.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    CAS  Google Scholar 

  73. 73.

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    CAS  Google Scholar 

  74. 74.

    Zhang, Y., Grancini, G., Feng, Y., Asiri, A. M. & Nazeeruddin, M. K. Optimization of stable quasi-cubic FAxMA1−xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2, 802–806 (2017).

    CAS  Google Scholar 

  75. 75.

    Jodlowski, A. D. et al. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2, 972–979 (2017).

    CAS  Google Scholar 

  76. 76.

    Soe, C. M. M. et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017).

    CAS  Google Scholar 

  77. 77.

    Guarnera, S. et al. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432–437 (2015).

    CAS  Google Scholar 

  78. 78.

    Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    CAS  Google Scholar 

  79. 79.

    Taek Cho, K. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11, 952–959 (2018).

    Google Scholar 

  80. 80.

    Mei, A. et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    CAS  Google Scholar 

  81. 81.

    Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy 3, 68–74 (2018).

    CAS  Google Scholar 

  82. 82.

    Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017).

    CAS  Google Scholar 

  83. 83.

    Pathak, S. K. et al. Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 24, 6046–6055 (2014).

    CAS  Google Scholar 

  84. 84.

    Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).

    CAS  Google Scholar 

  85. 85.

    Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).

    CAS  Google Scholar 

  86. 86.

    Xu, R.-P. et al. In situ observation of light illumination-induced degradation in organometal mixed-halide perovskite films. ACS Appl. Mater. Interfaces 10, 6737–6746 (2018).

    CAS  Google Scholar 

  87. 87.

    Pedesseau, L. et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016).

    CAS  Google Scholar 

  88. 88.

    Wang, Z. et al. Efficient ambient-air-stable solar cells with 2D−3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    CAS  Google Scholar 

  89. 89.

    Chen, Y. et al. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7, 1700162 (2017).

    Google Scholar 

  90. 90.

    Iagher, L. & Etgar, L. Effect of Cs on the stability and photovoltaic performance of 2D/3D perovskite-based solar cells. ACS Energy Lett. 3, 366–372 (2018).

    CAS  Google Scholar 

  91. 91.

    Jiang, W. et al. A new layered nano hybrid perovskite film with enhanced resistance to moisture-induced degradation. Chem. Phys. Lett. 658, 71–75 (2016).

    CAS  Google Scholar 

  92. 92.

    Yao, K., Wang, X., Li, F. & Zhou, L. Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells. Chem. Commun. 51, 15430–15433 (2015).

    CAS  Google Scholar 

  93. 93.

    Yao, K., Wang, X., Xu, Y., Li, F. & Zhou, L. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem. Mater. 28, 3131–3138 (2016).

    CAS  Google Scholar 

  94. 94.

    Koh, T. M. et al. Nanostructuring mixed-dimensional perovskites: a route toward tunable, efficient photovoltaics. Adv. Mater. 28, 3653–3661 (2016).

    CAS  Google Scholar 

  95. 95.

    Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    CAS  Google Scholar 

  96. 96.

    Cohen, B.-E., Wierzbowska, M. & Etgar, L. High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustain. Energy Fuels 1, 1935–1943 (2017).

    CAS  Google Scholar 

  97. 97.

    Cohen, B.-E., Wierzbowska, M. & Etgar, L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv. Funct. Mater. 27, 1604733 (2016).

    Google Scholar 

  98. 98.

    Ma, C. et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8, 18309–18314 (2016).

    CAS  Google Scholar 

  99. 99.

    Lin, Y. et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654–658 (2018).

    CAS  Google Scholar 

  100. 100.

    Chen, J., Seo, J.-Y. & Park, N.-G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface. Adv. Energy Mater. 8, 1702714 (2018).

    Google Scholar 

  101. 101.

    Cho, K. T. et al. Water-repellent low-dimensional fluorous perovskite as interfacial coating for 20% efficient solar cells. Nano Lett. 18, 5467–5474 (2018).

    CAS  Google Scholar 

  102. 102.

    Chen, J., Lee, D. & Park, N.-G. Stabilizing the Ag electrode and reducing JV hysteresis through suppression of iodide migration in perovskite solar cells. ACS Appl. Mater. Interfaces 9, 36338–36349 (2017).

    CAS  Google Scholar 

  103. 103.

    Lee, D. S. et al. Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells. ACS Energy Lett. 3, 647–654 (2018).

    CAS  Google Scholar 

  104. 104.

    Koh, T. M. et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. J. Mater. Chem. A 6, 2122–2128 (2018).

    CAS  Google Scholar 

  105. 105.

    Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).

    CAS  Google Scholar 

  106. 106.

    Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).

    CAS  Google Scholar 

  107. 107.

    Ran, C. et al. Bilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cells. ACS Energy Lett. 3, 713–721 (2018).

    CAS  Google Scholar 

  108. 108.

    Cao, D. H. et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites. ACS Energy Lett. 2, 982–990 (2017).

    Google Scholar 

  109. 109.

    Mao, L. et al. Role of organic counterion in lead- and tin-based two-dimensional semiconducting iodide perovskites and application in planar solar cells. Chem. Mater. 28, 7781–7792 (2016).

    CAS  Google Scholar 

  110. 110.

    Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Google Scholar 

  111. 111.

    Zheng, K. et al. Inter-phase charge and energy transfer in Ruddlesden–Popper 2D perovskites: critical role of the spacing cations. J. Mater. Chem. A 6, 6244–6250 (2018).

    CAS  Google Scholar 

  112. 112.

    Quintero-Bermudez, R. et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 17, 900–907 (2018).

    CAS  Google Scholar 

  113. 113.

    Liao, Y. et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017).

    CAS  Google Scholar 

  114. 114.

    Shang, Q. et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett. 8, 4431–4438 (2017).

    CAS  Google Scholar 

  115. 115.

    Liu, J., Leng, J., Wu, K., Zhang, J. & Jin, S. Observation of internal photoinduced electron and hole separation in hybrid two-dimensional perovskite films. J. Am. Chem. Soc. 139, 1432–1435 (2017).

    CAS  Google Scholar 

  116. 116.

    Gélvez-Rueda, M. C. et al. Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites. J. Phys. Chem. C 121, 26566–26574 (2017).

    Google Scholar 

  117. 117.

    Yuan, Z. et al. One-dimensional lead halide perovskites with bluish white-light emission. Nat. Commun. 8, 14051 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Swiss National Science Foundation (SNSF) for financial support of National Research Programme 70 (project no. 407040_154056 and ‘Tailored design and in-depth understanding of perovskite solar materials using in-house developed 3D/4D nanoscale ion-beam analysis’, project no. 200020L_1729/1, CTI 25590.1PFNM-NM, Solaronix, Aubonne). G.G. acknowledges the SNSF for funding through the Ambizione Energy project HYPER (grant no. PZENP2_173641). The authors thank V. Queloz and S. Aghazada for reading the manuscript and for useful discussions.

Author information

Affiliations

Authors

Contributions

G.G. researched data for the article. Both authors contributed to the discussion of content, writing and editing of the manuscript prior to submission.

Corresponding authors

Correspondence to Giulia Grancini or Mohammad Khaja Nazeeruddin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grancini, G., Nazeeruddin, M.K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater 4, 4–22 (2019). https://doi.org/10.1038/s41578-018-0065-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing