Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inorganic semiconductor biointerfaces

Abstract

Biological systems respond to and communicate through biophysical cues, such as electrical, thermal, mechanical and topographical signals. However, precise tools for introducing localized physical stimuli and/or for sensing biological responses to biophysical signals with high spatiotemporal resolution are limited. Inorganic semiconductors display many relevant electrical and optical properties, and they can be fabricated into a broad spectrum of electronic and photonic devices. Inorganic semiconductor devices enable the formation of functional interfaces with biological material, ranging from proteins to whole organs. In this Review, we discuss fundamental semiconductor physics and operation principles, with a focus on their behaviour in physiological conditions, and highlight the advantages of inorganic semiconductors for the establishment of biointerfaces. We examine semiconductor device design and synthesis and discuss typical signal transduction mechanisms at bioelectronic and biophotonic interfaces for electronic and optoelectronic sensing, optoelectronic and photothermal stimulation and photoluminescent in vivo imaging of cells and tissues. Finally, we evaluate cytotoxicity and highlight possible new material components and biological targets of inorganic semiconductor devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones of inorganic semiconductor devices for biological studies.
Fig. 2: Material physics at the semiconductor–saline interface.
Fig. 3: Operation principles of inorganic semiconductor devices.
Fig. 4: Semiconductor geometries and possible modes for biointerfaces.
Fig. 5: Biophysical mechanisms of signal transduction at semiconductor biointerfaces.

Similar content being viewed by others

References

  1. Zhang, A. Q. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    CAS  Google Scholar 

  2. Ning, C. Z., Dou, L. T. & Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017).

    CAS  Google Scholar 

  3. Zhang, Y. H. et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2, 17019 (2017).

    CAS  Google Scholar 

  4. Reiss, P., Carriere, M., Lincheneau, C., Vaure, L. & Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731–10819 (2016).

    CAS  Google Scholar 

  5. Yu, X. G., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016).

    CAS  Google Scholar 

  6. Lutz, J., Schlangenotto, H., Scheuermann, U. & DeDoncker, R. Semiconductor Power Devices: Physics, Characteristics, Reliability (Springer-Verlag Berlin Heidelberg, 2011).

  7. Pierret, R. F. Semiconductor Device Fundamentals (Addison Wesley, 1996).

  8. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley-Interscience, 1996).

  9. Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    Google Scholar 

  10. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    CAS  Google Scholar 

  11. Bardeen, J. & Brattain, W. H. The transistor, a semiconductor triode. Phys. Rev. 74, 230–231 (1948).

    Google Scholar 

  12. Khambata, A. J. Introduction to Integrated Semiconductor Circuits (John Wiley and Sons, Inc., 1963).

  13. Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 17, 70–71 (1970).

    CAS  Google Scholar 

  14. Hafeman, D. G., Parce, J. W. & McConnell, H. M. Light-addressable potentiometric sensor for biochemical systems. Science 240, 1182–1185 (1988).

    CAS  Google Scholar 

  15. Canham, L. T. Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033–1037 (1995).

    CAS  Google Scholar 

  16. Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    CAS  Google Scholar 

  17. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    CAS  Google Scholar 

  18. Chan, W. C. W. & Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  Google Scholar 

  19. Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).This pioneering work provides a general strategy for the design and fabrication of high-performance Si circuits with reversible stretchability and deformability, applicable to brittle and fragile materials.

    CAS  Google Scholar 

  20. Fromherz, P., Offenhausser, A., Vetter, T. & Weis, J. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252, 1290–1293 (1991).

    CAS  Google Scholar 

  21. Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006).

    CAS  Google Scholar 

  22. Tian, B. Z. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).This study is the first attempt to bridge bioelectronics with tissue engineering, using 3D, macroporous Si nanoelectronic scaffolds integrated with living cells for the real-time monitoring of local electrical and chemical environments.

    CAS  Google Scholar 

  23. Chow, A. Y. Electrical-stimulation of the rabbit retina with subretinal electrodes and high-density microphotodiode array implants. Invest. Ophthalmol. Vis. Sci. 34, 835–835 (1993).

    Google Scholar 

  24. Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).This study is the first report of miniaturized optoelectronic devices for brain interfaces, using injected, wirelessly controlled inorganic microLED arrays to deliver optical stimuli for the control of animal behaviour.

    CAS  Google Scholar 

  25. Tian, B. Z. & Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013).

    CAS  Google Scholar 

  26. Parameswaran, R. & Tian, B. Z. Rational design of semiconductor nanostructures for functional subcellular interfaces. Acc. Chem. Res. 51, 1014–1022 (2018).

    CAS  Google Scholar 

  27. Sakimoto, K. K., Wong, A. B. & Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    CAS  Google Scholar 

  28. Liu, C. et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    CAS  Google Scholar 

  29. Jiang, Y. W. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    CAS  Google Scholar 

  30. Jiang, Y. W. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).This study proposes a biology-guided rational design principle for Si structures for optically controlled biointerfaces to modulate biological activities, including the first demonstration of the non-genetic manipulation of animal motion with light.

    Google Scholar 

  31. Tian, B. Z. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).This paper is the first to describe the design of Si-based 3D flexible electronics that can penetrate the cell and enable robust intracellular recordings of single cell action potentials.

    CAS  Google Scholar 

  32. Amit, I. et al. Voices of biotech. Nat. Biotechnol. 34, 270–275 (2016).

    CAS  Google Scholar 

  33. Tian, B. Z. et al. Roadmap on semiconductor-cell biointerfaces. Phys. Biol. 15, 031002 (2018).

    Google Scholar 

  34. Lee, J., Ozden, I., Song, Y. K. & Nurmikko, A. V. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording. Nat. Methods 12, 1157–1162 (2015).

    CAS  Google Scholar 

  35. Roder, P. B., Smith, B. E., Davis, E. J. & Pauzauskie, P. J. Photothermal heating of nanowires. J. Phys. Chem. C 118, 1407–1416 (2014).

    CAS  Google Scholar 

  36. Chen, H. & Diebold, G. Chemical generation of acoustic waves: a giant photoacoustic effect. Science 270, 963–966 (1995).

    CAS  Google Scholar 

  37. Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).

    CAS  Google Scholar 

  38. Bard, A. J., Stratmann, M. & Licht, S. Semiconductor Electrodes and Photoelectrochemistry Vol. 6 (Wiley-VCH, 2002).

  39. Zhang, Z. & Yates, J. T. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520–5551 (2012).

    CAS  Google Scholar 

  40. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).This comprehensive review illustrates the fundamental principles underlying semiconductor-based photoelectrochemical devices and possible electron transfer mechanisms at semiconductor/electrolyte junctions.

    CAS  Google Scholar 

  41. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006).

    CAS  Google Scholar 

  42. Plonsey, R. & Barr, R. C. Bioelectricity: A Quantitative Approach (Springer-Verlag US, 2007).

  43. Santoro, F. et al. Revealing the cell-material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11, 8320–8328 (2017).This paper describes a high-resolution imaging technique for probing the cell–material interface, revealing that the cleft width between the cell membrane and a substrate is strongly influenced by the surface topographical curvatures.

    CAS  Google Scholar 

  44. Shoorideh, K. & Chui, C. O. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Natl Acad. Sci. USA 111, 5111–5116 (2014).

    CAS  Google Scholar 

  45. Zhao, W. et al. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750–756 (2017).

    CAS  Google Scholar 

  46. Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

    CAS  Google Scholar 

  47. Stern, E. et al. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007).

    CAS  Google Scholar 

  48. Nakatsuka, N. et al. Aptamer-field-effect transistors overcome debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    CAS  Google Scholar 

  49. Kulkarni, G. S. & Zhong, Z. Detection beyond the debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett. 12, 719–723 (2012).

    CAS  Google Scholar 

  50. Lin, T. W. et al. Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc. Natl Acad. Sci. USA 107, 1047–1052 (2010).

    CAS  Google Scholar 

  51. Stern, E. et al. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138–142 (2010).

    CAS  Google Scholar 

  52. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    CAS  Google Scholar 

  53. Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    CAS  Google Scholar 

  54. Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    CAS  Google Scholar 

  55. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Google Scholar 

  56. Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    CAS  Google Scholar 

  57. Savtchenko, L. P., Poo, M. M. & Rusakov, D. A. Electrodiffusion phenomena in neuroscience: a neglected companion. Nat. Rev. Neurosci. 18, 598–612 (2017).

    CAS  Google Scholar 

  58. Yao, J., Yan, H. & Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8, 329–335 (2013).

    CAS  Google Scholar 

  59. Dragas, J. et al. In vitro multi-functional microelectrode array featuring 59760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels. IEEE J. Solid-State Circuits 52, 1576–1590 (2017).

    Google Scholar 

  60. Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).

    CAS  Google Scholar 

  61. Abbott, J., Ye, T. Y., Ham, D. & Park, H. Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc. Chem. Res. 51, 600–608 (2018).

    CAS  Google Scholar 

  62. Graham, A. H. D., Robbins, J., Bowen, C. R. & Taylor, J. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors. Sensors 11, 4943–4971 (2011).

    Google Scholar 

  63. Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl Med. 2, 24ra22 (2010).

    Google Scholar 

  64. Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8, 1802 (2017).

    Google Scholar 

  65. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS  Google Scholar 

  66. Loudin, J. D., Cogan, S. F., Mathieson, K., Sher, A. & Palanker, D. V. Photodiode circuits for retinal prostheses. IEEE Trans. Biomed. Circuits Syst. 5, 468–480 (2011).

    CAS  Google Scholar 

  67. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).This study reports a system design of Si-based photovoltaic devices for retinal prosthetics, demonstrating high-resolution electrical stimulation of retinal responses through wireless actuation of multiplexed photodiode arrays.

    CAS  Google Scholar 

  68. Strukov, D. B. & Likharev, K. K. Defect-tolerant architectures for nanoelectronic crossbar memories. J. Nanosci. Nanotechnol. 7, 151–167 (2007).

    CAS  Google Scholar 

  69. Narvaez, J., Vasquez-Sancho, F. & Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 538, 219–221 (2016).

    CAS  Google Scholar 

  70. Yang, M. M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    CAS  Google Scholar 

  71. Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).

    CAS  Google Scholar 

  72. Zhang, H. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2, e1501382 (2016).

    Google Scholar 

  73. Milo, R. & Phillips, R. Cell Biology by the Numbers (Garland Science, Taylor & Francis Group, 2016).In this book, key numbers relevant to common cellular structures and events are discussed, serving as an important guidance for the rational design of biointerfaces.

  74. Phillips, R. & Quake, S. R. The biological frontier of physics. Phys. Today 59, 38–43 (2006).

    CAS  Google Scholar 

  75. Hong, G., Yang, X., Zhou, T. & Lieber, C. M. Mesh electronics: a new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol. 50, 33–41 (2018).

    CAS  Google Scholar 

  76. Zhou, W. et al. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 14, 1614–1619 (2014).

    CAS  Google Scholar 

  77. Mehlenbacher, R. D., Kolbl, R., Lay, A. & Dionne, J. A. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 3, 17080 (2018).

    CAS  Google Scholar 

  78. Duan, X. J., Fu, T. M., Liu, J. & Lieber, C. M. Nanoelectronics-biology frontier: from nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 8, 351–373 (2013).

    CAS  Google Scholar 

  79. Hong, G. et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18, 1841–1846 (2012).

    CAS  Google Scholar 

  80. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

    CAS  Google Scholar 

  81. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    CAS  Google Scholar 

  82. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    Google Scholar 

  83. Liu, C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016).

    CAS  Google Scholar 

  84. Parker, S. G. et al. A photoelectrochemical platform for the capture and release of rare single cells. Nat. Commun. 9, 2288 (2018).

    Google Scholar 

  85. Luo, Z. Q. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science 348, 1451–1455 (2015).

    CAS  Google Scholar 

  86. Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).

    CAS  Google Scholar 

  87. Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

    CAS  Google Scholar 

  88. Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    CAS  Google Scholar 

  89. Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4, 1980 (2013).

    Google Scholar 

  90. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    CAS  Google Scholar 

  91. Dai, X. C., Hong, G. S., Gao, T. & Lieber, C. M. Mesh nanoelectronics: seamless integration of electronics with tissues. Acc. Chem. Res. 51, 309–318 (2018).

    CAS  Google Scholar 

  92. Yan, Z. et al. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl Acad. Sci. USA 114, E9455–E9464 (2017).

    CAS  Google Scholar 

  93. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    CAS  Google Scholar 

  94. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    CAS  Google Scholar 

  95. No, Y. S. et al. Encoding active device elements at nanowire tips. Nano Lett. 16, 4713–4719 (2016).

    CAS  Google Scholar 

  96. Mankin, M. N. et al. Facet-selective epitaxy of compound semiconductors on faceted silicon nanowires. Nano Lett. 15, 4776–4782 (2015).

    CAS  Google Scholar 

  97. Kang, D. et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 115, 12839–12887 (2015).

    CAS  Google Scholar 

  98. Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater 8, 331–336 (2009).This study is the first report combining the tunable biodegradable and photoluminescent properties of porous Si for targeted drug delivery and imaging without causing toxic effects in vivo.

    CAS  Google Scholar 

  99. Orosco, M. M., Pacholski, C. & Sailor, M. J. Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat. Nanotechnol. 4, 255–258 (2009).

    CAS  Google Scholar 

  100. Hochbaum, A. I., Gargas, D., Hwang, Y. J. & Yang, P. Single crystalline mesoporous silicon nanowires. Nano Lett. 9, 3550–3554 (2009).

    CAS  Google Scholar 

  101. Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015).

    CAS  Google Scholar 

  102. Mirsky, Y. et al. Optical biosensing of bacteria and cells using porous silicon based, photonic lamellar gratings. Appl. Phys. Lett. 103, 033702 (2013).

    Google Scholar 

  103. Salonen, J. & Makila, E. Thermally carbonized porous silicon and its recent applications. Adv. Mater. 30, e1703819 (2018).

    Google Scholar 

  104. Chiappini, C. et al. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano 9, 5500–5509 (2015).

    CAS  Google Scholar 

  105. Gu, L. et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 4, 2326 (2013).

    Google Scholar 

  106. Joo, J. et al. Gated luminescence imaging of silicon nanoparticles. ACS Nano 9, 6233–6241 (2015).

    CAS  Google Scholar 

  107. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    CAS  Google Scholar 

  108. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  109. Erathodiyil, N. & Ying, J. Y. Functionalization of inorganic nanoparticles for bioimaging applications. Acc. Chem. Res. 44, 925–935 (2011).

    CAS  Google Scholar 

  110. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  Google Scholar 

  111. Lee, J. H., Zhang, A. Q., You, S. S. & Lieber, C. M. Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons. Nano Lett. 16, 1509–1513 (2016).

    CAS  Google Scholar 

  112. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).

    CAS  Google Scholar 

  113. Lynch, I. & Dawson, K. A. Protein-nanoparticle interactions. Nano Today 3, 40–47 (2008).

    CAS  Google Scholar 

  114. Mahmoudi, M. et al. Protein-nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637 (2011).

    CAS  Google Scholar 

  115. Hwang, S. W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    CAS  Google Scholar 

  116. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3, 151–157 (2008).

    CAS  Google Scholar 

  117. Hwang, S. W. et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv. Func. Mater. 23, 4087–4093 (2013).

    CAS  Google Scholar 

  118. Li, R. et al. An analytical model of reactive diffusion for transient electronics. Adv. Func. Mater. 23, 3106–3114 (2013).

    CAS  Google Scholar 

  119. Hwang, S. W. et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 8, 5843–5851 (2014).

    CAS  Google Scholar 

  120. Tzur-Balter, A., Shatsberg, Z., Beckerman, M., Segal, E. & Artzi, N. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues. Nat. Commun. 6, 6208 (2015).

    CAS  Google Scholar 

  121. Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).

    Google Scholar 

  122. Kenney, M. J. et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836–840 (2013).

    CAS  Google Scholar 

  123. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    CAS  Google Scholar 

  124. Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).This study describes a versatile surface treatment method enabling efficient and stable operation of Si-based photoelectrochemical devices through the decoupling of surface reactions from the underlying photovoltaic substrates.

    CAS  Google Scholar 

  125. Ji, L. et al. Localized dielectric breakdown and antireflection coating in metal-oxide-semiconductor photoelectrodes. Nat. Mater. 16, 127–131 (2017).

    CAS  Google Scholar 

  126. Ji, L. et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 10, 84–90 (2015).

    CAS  Google Scholar 

  127. Zimmerman, J. F. et al. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Sci. Adv. 2, e1601039 (2016).

    Google Scholar 

  128. Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).

    CAS  Google Scholar 

  129. Dipalo, M. et al. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018).

    CAS  Google Scholar 

  130. Gomez-Martinez, R. et al. Silicon chips detect intracellular pressure changes in living cells. Nat. Nanotechnol. 8, 517–521 (2013).

    CAS  Google Scholar 

  131. Zahid, M. U., Ma, L., Lim, S. J. & Smith, A. M. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state. Nat. Commun. 9, 1830 (2018).

    Google Scholar 

  132. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16, 961–966 (2004).

    CAS  Google Scholar 

  133. Qing, Q. et al. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014).

    CAS  Google Scholar 

  134. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

    CAS  Google Scholar 

  135. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

    CAS  Google Scholar 

  136. Lambacher, A. et al. Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA). Appl. Phys. A 102, 1–11 (2011).

    CAS  Google Scholar 

  137. Hu, Y., Xiang, J., Liang, G., Yan, H. & Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 8, 925–930 (2008).

    CAS  Google Scholar 

  138. Kotov, N. A. et al. Nanomaterials for neural interfaces. Adv. Mater. 21, 3970–4004 (2009).

    CAS  Google Scholar 

  139. Duan, X. J. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012).

    CAS  Google Scholar 

  140. Gao, R. X. et al. Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012).

    CAS  Google Scholar 

  141. Jiang, Z., Qing, Q., Xie, P., Gao, R. X. & Lieber, C. M. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 12, 1711–1716 (2012).

    CAS  Google Scholar 

  142. Wrobel, G. et al. Transmission electron microscopy study of the cell-sensor interface. J. R. Soc. Interface 5, 213–222 (2008).

    Google Scholar 

  143. Braun, D. & Fromherz, P. Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye. Biophys. J. 87, 1351–1359 (2004).

    CAS  Google Scholar 

  144. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).This study describes the first prototype of an ingestible optoelectronic device for remote sensing of the gastrointestinal microenvironment by detecting and transmitting engineered bacterial bioluminescence signals to report local bleeding and biomolecular dynamics.

    CAS  Google Scholar 

  145. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417–418 (2000).

    CAS  Google Scholar 

  146. Lu, L. Y. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl Acad. Sci. USA 115, E1374–E1383 (2018).

    CAS  Google Scholar 

  147. Wang, L. L. et al. Photovoltaic retinal prosthesis: implant fabrication and performance. J. Neural Eng. 9, 046014 (2012).

    Google Scholar 

  148. Ghezzi, D. et al. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011).

    Google Scholar 

  149. Savchenko, A. et al. Graphene biointerfaces for optical stimulation of cells. Sci. Adv. 4, eaat0351 (2018).

    Google Scholar 

  150. Rand, D. et al. Direct electrical neurostimulation with organic pigment photocapacitors. Adv. Mater. 30, e1707292 (2018).

    Google Scholar 

  151. Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260–266 (2018).

    CAS  Google Scholar 

  152. Tang, J. et al. Nanowire arrays restore vision in blind mice. Nat. Commun. 9, 786 (2018).

  153. Brown, K. A. et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016).

    CAS  Google Scholar 

  154. Clarke, S. J. et al. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat. Mater. 5, 409–417 (2006).

    CAS  Google Scholar 

  155. Claassens, N. J., Sousa, D. Z., dos Santos, V., de Vos, W. M. & van der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    CAS  Google Scholar 

  156. Courtney, C. M. et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 15, 529–534 (2016).

    CAS  Google Scholar 

  157. Bossio, C. et al. Photocatalytic activity of polymer nanoparticles modulates intracellular calcium dynamics and reactive oxygen species in HEK-293 cells. Front. Bioeng. Biotechnol. 6, 114 (2018).

    Google Scholar 

  158. Siuda, E. R. et al. Optodynamic simulation of beta-adrenergic receptor signalling. Nat. Commun. 6, 8480 (2015).

    CAS  Google Scholar 

  159. Ding, H. et al. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc. Natl Acad. Sci. USA 115, 6632–6637 (2018).

    CAS  Google Scholar 

  160. Hussain, S. et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2, 95–103 (2018).

    Google Scholar 

  161. Kim, B. et al. Immunogene therapy with fusogenic nanoparticles modulates macrophage response to staphylococcus aureus. Nat. Commun. 9, 1969 (2018).

    Google Scholar 

  162. Sytnyk, M. et al. Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals. Nat. Commun. 8, 91 (2017).

    Google Scholar 

  163. Martino, N. et al. Photothermal cellular stimulation in functional bio-polymer interfaces. Sci. Rep. 5, 8911 (2015).

    CAS  Google Scholar 

  164. Efros, A. L. et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 13, 278–288 (2018).

    CAS  Google Scholar 

  165. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Google Scholar 

  166. Xu, R. et al. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol. 34, 414–418 (2016).

    CAS  Google Scholar 

  167. Bimbo, L. M. et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4, 3023–3032 (2010).

    CAS  Google Scholar 

  168. Vilensky, R., Bercovici, M. & Segal, E. Oxidized porous silicon nanostructures enabling electrokinetic transport for enhanced DNA detection. Adv. Func. Mater. 25, 6725–6732 (2015).

    CAS  Google Scholar 

  169. Jane, A., Dronov, R., Hodges, A. & Voelcker, N. H. Porous silicon biosensors on the advance. Trends Biotechnol. 27, 230–239 (2009).

    CAS  Google Scholar 

  170. Yu, J. H. et al. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater. 12, 359–366 (2013).

    CAS  Google Scholar 

  171. Montalti, M., Cantelli, A. & Battistelli, G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015).

    CAS  Google Scholar 

  172. Bercowy, G. M., Vo, H. & Rieders, F. Silicon analysis in biological specimens by direct-current plasma-atomic emission-spectroscopy. J. Anal. Toxicol. 18, 46–48 (1994).

    CAS  Google Scholar 

  173. Pennington, J. A. T. Silicon in foods and diets. Food Addit. Contam. 8, 97–118 (1991).

    CAS  Google Scholar 

  174. Srivastava, V., Gusain, D. & Sharma, Y. C. Critical review on the toxicity of some widely used engineered nanoparticles. Ind. Eng. Chem. Res. 54, 6209–6233 (2015).

    CAS  Google Scholar 

  175. Wu, Y. L. et al. Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc. Chem. Res. 46, 782–791 (2013).

    CAS  Google Scholar 

  176. Gautam, V. et al. Engineering highly interconnected neuronal networks on nanowire scaffolds. Nano Lett. 17, 3369–3375 (2017).

    CAS  Google Scholar 

  177. Hallstrom, W. et al. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett. 7, 2960–2965 (2007).

    Google Scholar 

  178. Piret, G., Perez, M. T. & Prinz, C. N. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 34, 875–887 (2013).

    CAS  Google Scholar 

  179. Oh, E. et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol. 11, 479–486 (2016).

    CAS  Google Scholar 

  180. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    CAS  Google Scholar 

  181. Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Google Scholar 

  182. Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    CAS  Google Scholar 

  183. Hill, J. C., Landers, A. T. & Switzer, J. A. An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. Nat. Mater. 14, 1150–1155 (2015).

    CAS  Google Scholar 

  184. Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401–408 (2017).In this Review, the structural and electronic properties at photoelectrochemical device interfaces and first-principles-based approaches for predicting interfacial properties are discussed.

    CAS  Google Scholar 

  185. Yang, Y. et al. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science 350, 1061–1065 (2015).

    CAS  Google Scholar 

  186. Liu, T. L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, 284–284 (2018).

    CAS  Google Scholar 

  187. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    CAS  Google Scholar 

  188. Mann, S. et al. Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261, 1286–1292 (1993).

    CAS  Google Scholar 

  189. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    CAS  Google Scholar 

  190. Shtukenberg, A. G., Ward, M. D. & Kahr, B. Crystal growth with macromolecular additives. Chem. Rev. 117, 14042–14090 (2017).

    CAS  Google Scholar 

  191. Hildebrand, M. Diatoms, biomineralization processes, and genomics. Chem. Rev. 108, 4855–4874 (2008).

    CAS  Google Scholar 

  192. Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9, 193–197 (2014).

    CAS  Google Scholar 

  193. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    CAS  Google Scholar 

  194. Niu, J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9, 537–545 (2017).

    CAS  Google Scholar 

  195. Ozel, T. et al. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett. 17, 4502–4507 (2017).

    CAS  Google Scholar 

  196. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

    CAS  Google Scholar 

  197. Holtus, T. et al. Shape-preserving transformation of carbonate minerals into lead halide perovskite semiconductors based on ion exchange/insertion reactions. Nat. Chem. 10, 740–745 (2018).

    CAS  Google Scholar 

  198. Bao, Z. H. et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172–175 (2007).

    CAS  Google Scholar 

  199. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    CAS  Google Scholar 

  200. Kim, D. Y., Stefanoski, S., Kurakevych, O. O. & Strobel, T. A. Synthesis of an open-framework allotrope of silicon. Nat. Mater. 14, 169–173 (2015).

    CAS  Google Scholar 

  201. Bezanilla, F. How membrane proteins sense voltage. Nat. Rev. Mol. Cell. Biol. 9, 323–332 (2008).In this Review, the basic principles of how membrane proteins sense transmembrane voltage and how such responses transmit into cellular function are discussed.

    CAS  Google Scholar 

  202. Swartz, K. J. Sensing voltage across lipid membranes. Nature 456, 891–897 (2008).

    CAS  Google Scholar 

  203. Hoffman, B. M., Lukoyanov, D., Dean, D. R. & Seefeldt, L. C. Nitrogenase: a draft mechanism. Acc. Chem. Res. 46, 587–595 (2013).

    CAS  Google Scholar 

  204. Lee, S. C., Lo, W. & Holm, R. H. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron-sulfur clusters. Chem. Rev. 114, 3579–3600 (2014).

    CAS  Google Scholar 

  205. Simmons, T. R., Berggren, G., Bacchi, M., Fontecave, M. & Artero, V. Mimicking hydrogenases: from biomimetics to artificial enzymes. Coordin. Chem. Rev. 270, 127–150 (2014).

    Google Scholar 

  206. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Google Scholar 

  207. Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    CAS  Google Scholar 

  208. Goldenring, J. R. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat. Rev. Cancer 13, 813–820 (2013).

    CAS  Google Scholar 

  209. Nirschl, J. J., Ghiretti, A. E. & Holzbaur, E. L. F. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat. Rev. Neurosci. 18, 585–597 (2017).

    CAS  Google Scholar 

  210. Havelka, D., Cifra, M., Kucera, O., Pokorny, J. & Vrba, J. High-frequency electric field and radiation characteristics of cellular microtubule network. J. Theor. Biol. 286, 31–40 (2011).

    CAS  Google Scholar 

  211. Humphries, J. et al. Species-independent attraction to biofilms through electrical signaling. Cell 168, 200–209 (2017).

    CAS  Google Scholar 

  212. Liu, J. et al. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523, 550–554 (2015).

    CAS  Google Scholar 

  213. Prindle, A. et al. Ion channels enable electrical communication in bacterial communities. Nature 527, 59–63 (2015).This article is the first to report K + -ion-channel-mediated long-range electrical signalling within bacterial biofilms, marking the beginning of bioelectric studies of microbial communities.

    CAS  Google Scholar 

  214. Pai, V. P. et al. HCN2 rescues brain defects by enforcing endogenous voltage pre-patterns. Nat. Commun. 9, 998 (2018).

    Google Scholar 

  215. Lobikin, M. et al. Serotonergic regulation of melanocyte conversion: a bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Sci. Signal. 8, ra99 (2015).

    Google Scholar 

  216. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    CAS  Google Scholar 

  217. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    CAS  Google Scholar 

  218. Walsh, A. et al. Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. Phys. Rev. Lett. 100, 167402 (2008).

    Google Scholar 

  219. Kormányos, A. et al. Solution combustion synthesis, characterization, and photoelectrochemistry of CuNb2O6 and ZnNb2O6 nanoparticles. J. Phys. Chem. C 120, 16024–16034 (2016).

    Google Scholar 

  220. Fuechsle, M. et al. Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol. 5, 502–505 (2010).

    CAS  Google Scholar 

  221. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).

    CAS  Google Scholar 

  222. Fang, Y. et al. Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies. Nat. Commun. 8, 2014 (2017).

    Google Scholar 

  223. Guan, L., Suenaga, K. & Iijima, S. Smallest carbon nanotube assigned with atomic resolution accuracy. Nano Lett. 8, 459–462 (2008).

    CAS  Google Scholar 

  224. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Google Scholar 

  225. Sudhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012).

    CAS  Google Scholar 

  226. Lee, Y. K. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 11, 12562–12572 (2017).

    CAS  Google Scholar 

  227. Hamamatsu Photonics. Technical note: ORCA-Flash4.0 V3: digital CMOS camera. Hamamatsu https://www.hamamatsu.com/resources/pdf/sys/SCAS0134E_C13440-20CU_tec.pdf (2018).

  228. Jenssen, S., Gracely, E. J. & Sperling, M. R. How long do most seizures last? A systematic comparison of seizures recorded in the epilepsy monitoring unit. Epilepsia 47, 1499–1503 (2006).

    Google Scholar 

  229. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    CAS  Google Scholar 

  230. Levin, M. & Stevenson, C. G. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu. Rev. Biomed. Eng. 14, 295–323 (2012).

    CAS  Google Scholar 

  231. Reimann, M. W. et al. A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79, 375–390 (2013).

    CAS  Google Scholar 

  232. Gittes, F. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    CAS  Google Scholar 

  233. Wen, Q. & Janmey, P. A. Polymer physics of the cytoskeleton. Curr. Opin. Solid State Mater. Sci. 15, 177–182 (2011).

    CAS  Google Scholar 

  234. Allendorf, M. D., Melius, C. F., Ho, P. & Zachariah, M. R. Theoretical study of the thermochemistry of molecules in the Si-O-H system. J. Phys. Chem. 99, 15285–15293 (1995).

    CAS  Google Scholar 

  235. Feldbauer, K. et al. Channelrhodopsin-2 is a leaky proton pump. Proc. Natl Acad. Sci. USA 106, 12317–12322 (2009).

    CAS  Google Scholar 

  236. Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Institutes of Health (NIH NS101488), US Air Force Office of Scientific Research (AFOSR FA9550-18-1-0503), US Army Research Office (W911NF-18-1-0042) and US Office of Naval Research (ONR YIP, N000141612530; PECASE, N000141612958).

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and B.T. wrote the paper.

Corresponding author

Correspondence to Bozhi Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Tian, B. Inorganic semiconductor biointerfaces. Nat Rev Mater 3, 473–490 (2018). https://doi.org/10.1038/s41578-018-0062-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0062-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing