Abstract

Acoustic metasurfaces derive their characteristics from the interaction between acoustic waves and specifically designed materials. The field is driven by the desire to control acoustic wave propagation using compact devices and is governed by fundamental and physical principles that provide the design rules and the functionality of a wave. Acoustic metasurfaces have added value and unusual functionalities compared with their predecessor in materials science, namely, acoustic metamaterials. These rationally designed 2D materials of subwavelength thickness provide a new route for sound wave manipulation. In this Review, we delineate the fundamental physics of metasurfaces, describe their different concepts and design strategies, and discuss their functionalities for controllable reflection, transmission and extraordinary absorption. In particular, we outline the main designs of acoustic metasurfaces, including those based on coiling-up space, Helmholtz-resonator-like and membrane-type structures, and discuss their applications, such as beam focusing, asymmetrical transmission and self-bending beams. We conclude with an outlook of the future directions in this emerging field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). This paper derives the generalized Snell’s law, which provides the theoretical framework for many types of acoustic metasurfaces.

  2. 2.

    Li, Y., Liang, B., Gu, Z. M., Zou, X. Y. & Cheng, J. C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013). This is the first study to propose the concept of an acoustic metasurface by using a subwavelength planar structure to manipulate reflective waves.

  3. 3.

    Li, Y., Jiang, X., Liang, B., Cheng, J. C. & Zhang, L. Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 4, 024003 (2015). A highly efficient acoustic metasurface for controlling sound transmission is made from unit cells consisting of four Helmholtz resonators and a pipe.

  4. 4.

    Li, Y. & Assouar, M. B. Three-dimensional collimated self-accelerating beam through acoustic metascreen. Sci. Rep. 5, 17612 (2015).

  5. 5.

    Xie, Y. et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 5553 (2014). By using the coiling-up space structure, this study provides a set of experimental results for transmissive acoustic metasurfaces.

  6. 6.

    Mei, J. & Wu, Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J. Phys. 16, 123007 (2014). This study shows that both the control of the transmitted wave and the surface mode excitation can be interpreted by the mode-coupling theory.

  7. 7.

    Ma, G. C., Yang, M., Xiao, S. W., Yang, Z. Y. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014). This study demonstrates that an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound, leading to near-perfect sound absorption.

  8. 8.

    Zhu, Y., Fan, X., Liang, B., Cheng, J. C. & Jing, Y. Ultrathin acoustic metasurface-based Schroeder diffuser. Phys. Rev. X 7, 021034 (2017).

  9. 9.

    Li, Y. & Assouar, M. B. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016). This study reports a metasurface-based sound absorber with near-perfect absorption at a frequency whose wavelength is over 200 times greater than the thickness of the absorber.

  10. 10.

    Li, Y. et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014).

  11. 11.

    Qi, S., Li, Y. & Assouar, M. B. Acoustic focusing and energy confinement based on multilateral metasurfaces. Phys. Rev. Appl. 7, 054006 (2017).

  12. 12.

    Cheng, Y., Zhou, C., Yuan, B. G., Wu, D. J. & Liu, X. J. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat. Mater. 14, 1013–1019 (2015). This paper demonstrates a metasurface with unit cells that exhibit intense artificial Mie resonances for low-frequency airborne sound.

  13. 13.

    Li, Y., Qi, S. & Assouar, M. B. Theory of metascreen-based acoustic passive phased array. New. J. Phys. 18, 043024 (2016).

  14. 14.

    Xie, B. et al. Coding acoustic metasurfaces. Adv. Mater. 29, 1603507 (2017). By using a phase difference of precisely π, coding acoustic metasurfaces are experimentally demonstrated.

  15. 15.

    Bok, E. et al. Metasurface for water-to-air sound transmission. Phys. Rev. Lett. 120, 044302 (2018).

  16. 16.

    Zuo, S.-Y., Tian, Y., Wei, Q., Cheng, Y. & Liu, X.-J. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude. J. Appl. Phys. 123, 091704 (2018).

  17. 17.

    Dubois, M., Shi, C., Wang, Y. & Zhang, X. A thin and conformal metasurface for illusion acoustics of rapidly changing profiles. Appl. Phys. Lett. 110, 151902 (2017).

  18. 18.

    Mei, J., Zhang, X. & Wu, Y. Ultrathin metasurface with high absorptance for waterborne sound. J. Appl. Phys. 123, 091710 (2018).

  19. 19.

    Jin, Y. et al. Pillar-type acoustic metasurface. Phys. Rev. B 96, 104311 (2017).

  20. 20.

    Lan, J., Li, Y., Xu, Y. & Liu, X.-J. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz resonators. Sci. Rep. 7, 10587 (2017).

  21. 21.

    Zhou, J., Zhang, X. & Fang, Y. Analytical modelling for predicting the sound field of planar acoustic metasurface. J. Appl. Phys. 123, 033106 (2018).

  22. 22.

    Liu, T., Liang, S., Chen, F. & Zhu, J. Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface. J. Appl. Phys. 123, 091702 (2018).

  23. 23.

    Jiang, X. et al. Acoustic one-way metasurfaces: asymmetric phase modulation of sound by subwavelength layer. Sci. Rep. 6, 28023 (2016).

  24. 24.

    Memoli, G. et al. Metamaterial bricks and quantization of meta-surfaces. Nat. Commun. 8, 14608 (2017).

  25. 25.

    Xu, Y., Fu, Y. & Chen, H. Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).

  26. 26.

    Hussein, M. I., Leamy, M. J. & Ruzzene, M. Dynamics of phononic materials and structures: historical origins, recent progress and future outlook. Appl. Mech. Rev. 66, 040802 (2013).

  27. 27.

    Shen, C., Xie, Y., Li, J., Cummer, S. A. & Jing, Y. Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett. 108, 223502 (2016).

  28. 28.

    Ye, L. et al. Making sound vortices by metasurfaces. AIP Adv. 6, 085007 (2016).

  29. 29.

    Jiang, X., Li, Y., Liang, B., Cheng, J. C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016).

  30. 30.

    Durnin, J., Miceli, Jr, J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499 (1987).

  31. 31.

    Jiménez, N., Cox, T. J., Romero-Garcia, V. & Groby, J.-P. Metadiffusers: deep-subwavelength sound diffusers. Sci. Rep. 7, 5389 (2017).

  32. 32.

    Li, Y. et al. Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. 119, 035501 (2017). This study shows that robust and tunable acoustic asymmetric transmission can be achieved through GIMs by harnessing intrinsic losses.

  33. 33.

    Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).

  34. 34.

    Yang, M., Chen, S., Fu, X. & Sheng, P. Optimal sound-absorbing structures. Mater. Horizons 4, 673 (2017).

  35. 35.

    Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

  36. 36.

    Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, 150159 (2016).

  37. 37.

    Oudich, M., Li, Y., Assouar, M. B. & Hou, Z. A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 12, 083049 (2010).

  38. 38.

    Huang, T. Y., Shen, C. & Jing, Y. Membrane and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 139, 3240 (2016).

  39. 39.

    Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

  40. 40.

    Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

  41. 41.

    Cox, T. J. & Lam, Y. Prediction and evaluation of the scattering from quadratic residue diffusers. J. Ac. Soc. Am. 95, 297 (1994).

  42. 42.

    Cox, T. J. The optimization of profiled diffusers. J. Ac. Soc. Am. 97, 2928 (1995).

  43. 43.

    D’Antonio, P. & Cox, T. J. Diffusor application in rooms. Appl. Ac. 60, 113 (2000).

  44. 44.

    Schroeder, M. R. Diffuse sound reflection by maximum-length sequences. J. Ac. Soc. Am. 57, 149 (1975).

  45. 45.

    Schroeder, M. R. Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion. J. Ac. Soc. Am. 65, 958 (1979).

  46. 46.

    Rana, R. & Soong, T. T. Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20, 193 (1998).

  47. 47.

    Igusa, T. & Xu, K. Vibration control using multiple tuned mass dampers. J. Sound Vib. 175, 491 (1994).

  48. 48.

    Lee, L., Lee, E. W. M. & Ng, C. F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. J. Sound Vib. 287, 227 (2005).

  49. 49.

    Field, C. D. & Fricke, F. R. Theory and applications of quarter-wave resonators: a prelude to their use for attenuating noise entering buildings through ventilation openings. Appl. Ac. 53, 117 (1998).

  50. 50.

    Kim, S. R. & Kim, Y.-H. A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array. J. Ac. Soc. Am. 119, 1933 (2006).

  51. 51.

    Wu, T., Cox, T. J. & Lam, Y. A profiled structure with improved low frequency absorption. J. Ac. Soc. Am. 110, 3064 (2001).

  52. 52.

    Maynard, J. D., Williams, E. G. & Lee, Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J. Ac. Soc. Am. 78, 1395 (1985).

  53. 53.

    Lane, R. Absorption mechanisms for waterborne sound in Alberich anechoic layers. Ultrasonics 19, 28 (1981).

  54. 54.

    Pors, A., Nielsen, M. G., Eriksen, R. L. & Bozhevolnyi, S. I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

  55. 55.

    Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

  56. 56.

    Ward, G. P. et al. Boundary-layer effects on acoustic transmission through narrow slit cavities. Phys. Rev. Lett. 115, 044302 (2015).

  57. 57.

    Henríquez, V. C., García-Chocano, V. M. & Sánchez-Dehesa, J. Viscothermal losses in double-negative acoustic metamaterials. Phys. Rev. Appl. 8, 014029 (2017).

  58. 58.

    Jiang, X., Li, Y. & Zhang, L. Thermoviscous effects on sound transmission through a metasurface of hybrid resonances. J. Acoust. Soc. Am. 141, EL363 (2017).

  59. 59.

    Gerard, N. J. R. K., Li, Y. & Jing, Y. Investigation of acoustic metasurfaces with constituent material properties considered. J. Appl. Phys. 123, 124905 (2018).

  60. 60.

    Li, Y. et al. Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep. 4, 6830 (2014).

  61. 61.

    Yang, M. & Sheng, P. Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 47, 83 (2017).

  62. 62.

    Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 9, 1632 (2018).

  63. 63.

    Liang, Z. & Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

  64. 64.

    Li, Y. et al. Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012).

  65. 65.

    Xie, Y., Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

  66. 66.

    Frenzel, T. et al. Three-dimensional labyrinthine acoustic metamaterials. Appl. Phys. Lett. 103, 061907 (2013).

  67. 67.

    Liang, Z. et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

  68. 68.

    Li, Y., Liang, B., Gu, Z. M., Zou, X. Y. & Cheng, J. C. Unidirectional acoustic transmission through a prism with near-zero refractive index. Appl. Phys. Lett. 103, 053505 (2013).

  69. 69.

    Li, Y., Liang, B., Zou, X. Y. & Cheng, J. C. Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Appl. Phys. Lett. 103, 063509 (2013).

  70. 70.

    Xie, Y. B., Konneker, A., Popa, B. I. & Cummer, S. A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

  71. 71.

    Zhao, J., Li, B., Chen, Z. & Qiu, C. W. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. Sci. Rep. 3, 2537 (2013).

  72. 72.

    Zhao, J., Li, B., Chen, Z. N. & Qiu, C. W. Redirection of sound waves using acoustic metasurface. Appl. Phys. Lett. 103, 151604 (2013).

  73. 73.

    Qi, S. & Assouar, B. Acoustic energy harvesting based on multilateral metasurfaces. Appl. Phys. Lett. 111, 243506 (2017).

  74. 74.

    Wang, X., Mao, D. & Li, Y. Broadband acoustic skin cloak based on spiral metasurfaces. Sci. Rep. 7, 11604 (2017).

  75. 75.

    Liu, B., Zhao, W. & Jiang, Y. Full-angle negative reflection realized by a gradient acoustic metasurface. AIP Adv. 6, 115110 (2016).

  76. 76.

    Liu, B., Zhao, W. & Jiang, Y. Apparent negative reflection with the gradient acoustic metasurface by integrating supercell periodicity into the generalized law of reflection. Sci. Rep. 6, 38314 (2016).

  77. 77.

    Liu, B., Zhao, J., Xu, X., Zhao, W. & Jiang, Y. All-angle negative reflection with an ultrathin acoustic gradient metasurface: Floquet-Bloch modes perspective and experimental verification. Sci. Rep. 7, 13852 (2017).

  78. 78.

    Zhu, Y. F. et al. Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface. Sci. Rep. 5, 10966 (2015).

  79. 79.

    Tang, K. et al. Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci. Rep. 4, 6517 (2014).

  80. 80.

    Molerón, M., Serra-Garcia, M. & Daraio, C. Acoustic Fresnel lenses with extraordinary transmission. Appl. Phys. Lett. 105, 114109 (2014).

  81. 81.

    Jahdali, R. A. & Wu, Y. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Appl. Phys. Lett. 108, 031902 (2016).

  82. 82.

    Peng, P., Xiao, B. & Wu, Y. Flat acoustic lens by acoustic grating with curled slits. Phys. Lett. A 378, 3389 (2014).

  83. 83.

    Xie, Y., Konneker, A., Popa, B.-I. & Cummer, S. A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

  84. 84.

    Tian, Y., Wei, Q., Cheng, Y. & Liu, X. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude. Appl. Phys. Lett. 110, 191901 (2017).

  85. 85.

    Ding, Y., Statharas, E. C., Yao, K. & Hong, M. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl. Phys. Lett. 110, 241903 (2017).

  86. 86.

    Fleury, R., Sounas, D. L., Haberman, M. R. & Alù, A. Nonreciprocal Acoustics. Acoust. Today 11, 14 (2015).

  87. 87.

    Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516 (2014).

  88. 88.

    Xie, B. et al. Multiband asymmetric transmission of airborne sound by coded metasurfaces. Phys. Rev. Appl. 7, 024010 (2017).

  89. 89.

    Popa, B.-I. & Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014).

  90. 90.

    Zhu, Y.-F., Zou, X.-Y., Liang, B. & Cheng, J.-C. Acoustic one-way open tunnel by using metasurface. Appl. Phys. Lett. 107, 113501 (2015).

  91. 91.

    Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

  92. 92.

    Xie, Y. et al. Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array. Sci. Rep. 6, 35437 (2016).

  93. 93.

    Jing, Y., Meral, F. C. & Clement, G. T. Time-reversal transcranial ultrasound beam focusing using a k-space method. Phys. Med. Biol. 57, 901 (2012).

  94. 94.

    Ghaffarivardavagh, R., Nikolajczyk, J., Holt, R. G., Anderson, S. & Zhang, X. Horn-like space-coiling metamaterials toward simultaneous phase and amplitude modulation. Nat. Commun. 9, 1349 (2018).

  95. 95.

    Jiang, X. et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Appl. Phys. Lett. 108, 203501 (2016).

  96. 96.

    Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Phys. Rev. B 95, 024312 (2017).

  97. 97.

    Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Appl. Phys. Lett. 108, 223503 (2016).

  98. 98.

    Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl Acad. Sci. USA 114, 7250 (2017).

  99. 99.

    Hong, Z. Y. et al. Dynamics of levitated objects in acoustic vortex fields. Sci. Rep. 7, 7093 (2017).

  100. 100.

    Hong, Z. Y., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).

  101. 101.

    Jiang, X., Liang, B., Cheng, J. C. & Qiu, C. W. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Adv. Mat. 30, 1800257 (2018).

  102. 102.

    Arenas, J. P. & Crocker, M. J. Recent trends in porous sound-absorbing materials. Sound Vib. 44, 12 (2010).

  103. 103.

    Jiang, X. et al. Ultra-broadband absorption by acoustic metamaterials. Appl. Phys. Lett. 105, 243505 (2014).

  104. 104.

    Maa, D. Y. Theory and design of microperforated panel sound-absorbing constructions. Sci. Sin. 18, 55 (1975).

  105. 105.

    Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C. & Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010).

  106. 106.

    Naify, C. J., Chang, C. M., McKnight, G., Scheulen, F. & Nutt, S. Membrane-type metamaterials: transmission loss of multi-celled arrays. J. Appl. Phys. 109, 104902 (2011).

  107. 107.

    Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

  108. 108.

    Assouar, M. B., Senesi, M., Oudich, M., Ruzzene, M. & Hou, Z. Broadband plate-type acoustic metamaterials for low-frequency sound attenuation. Appl. Phys. Lett. 101, 173505 (2011).

  109. 109.

    Oudich, M. et al. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys. Rev. B 84, 165136 (2011).

  110. 110.

    Oudich, M., Zhou, X. & Assouar, M. B. General analytical approach for sound transmission loss analysis through a thick metamaterial plate. J. Appl. Phys. 116, 193509 (2014).

  111. 111.

    Jiménez, N., Huang, W., Romeo-Garcia, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109, 121902 (2016).

  112. 112.

    Romero-García, V., Jiménez, N., Pagneux, V. & Groby, J.-P. Perfect and broadband acoustic absorption in deep sub-wavelength structures for the reflection and transmission problems. J. Acoust. Soc. Am. 141, 3641 (2017).

  113. 113.

    Assouar, M. B., Oudich, M. & Zhou, X. Acoustic metamaterials for sound mitigation. C. R. Phys. 17, 524–532 (2016).

  114. 114.

    Song, G. Y., Cheng, Q., Cui, T. J. & Jing, Y. Acoustic planar surface retroreflector. Phys. Rev. Mater. 2, 065201 (2018).

  115. 115.

    Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Tunable active acoustic metamaterials. Phys. Rev. B 88, 024303 (2013).

  116. 116.

    Hou, Z. & Assouar, B. Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials. J. Appl. Phys. 123, 085101 (2018).

  117. 117.

    Wu, Y., Yang, M. & Sheng, P. Perspective: acoustic metamaterials in transition. J. Appl. Phys. 123, 090901 (2018).

  118. 118.

    Baz, A. The structure of an active acoustic metamaterial with tunable effective density. New J. Phys. 11, 123010 (2009).

  119. 119.

    Lissek, H., Rivet, E., Laurence, T. & Fleury, R. Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators. J. Appl. Phys. 123, 091714 (2018).

  120. 120.

    Zheng, X. et al. Multi-scale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

  121. 121.

    Zheng, X. et al. Ultralight ultrastiff mechanical metamaterials. Science 344, 1373 (2014).

  122. 122.

    Monticone, F., Valagiannopoulos, C. A. & Alù, A. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X 6, 041018 (2016).

  123. 123.

    Muhlestein, M. B., Sieck, C. F., Wilson, P. S. & Haberman, M. R. Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017).

  124. 124.

    Li, J., Shen, C., Díaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1342 (2018).

  125. 125.

    Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13, 352–355 (2014).

  126. 126.

    Shen, C., Xu, J., Fang, N. X. & Jing, Y. Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys. Rev. X 4, 041033 (2014).

  127. 127.

    Shen, C. et al. Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 113, 254301 (2015).

  128. 128.

    Qi, S., Oudich, M., Li, Y. & Assouar, B. Acoustic energy harvesting based on a planar acoustic metamaterial. Appl. Phys. Lett. 108, 263501 (2016).

  129. 129.

    Ingard, U. On the theory and design of acoustic resonators. J. Ac. Soc. Am. 25, 1037 (1953).

Download references

Acknowledgements

B.A. acknowledges support from the Institut Carnot ICEEL and from la Région Grand Est. B.L., J.-C.C. and Y.L. acknowledge support from the National Natural Science Foundation of China (Grants No. 11634006 and No. 11704284). Y.W. acknowledges partial support from the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2016-CRG5-2950 and KAUST Baseline Research Fund BAS/1/1626-01-01.

Author information

Affiliations

  1. Institut Jean Lamour, CNRS, Université de Lorraine, Nancy, France

    • Badreddine Assouar
  2. Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, Institute of Acoustics, School of Physics, Nanjing University, Nanjing, China

    • Bin Liang
    •  & Jian-Chun Cheng
  3. King Abdullah University of Science and Technology (KAUST), Division of Computer, Electrical and Mathematical Science and Engineering (CEMSE), Thuwal, Saudi Arabia

    • Ying Wu
  4. Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, China

    • Yong Li
  5. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

    • Yun Jing

Authors

  1. Search for Badreddine Assouar in:

  2. Search for Bin Liang in:

  3. Search for Ying Wu in:

  4. Search for Yong Li in:

  5. Search for Jian-Chun Cheng in:

  6. Search for Yun Jing in:

Contributions

All authors contributed equally to the preparation of this manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Badreddine Assouar or Bin Liang or Yun Jing.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41578-018-0061-4