Acoustic metasurfaces

Abstract

Acoustic metasurfaces derive their characteristics from the interaction between acoustic waves and specifically designed materials. The field is driven by the desire to control acoustic wave propagation using compact devices and is governed by fundamental and physical principles that provide the design rules and the functionality of a wave. Acoustic metasurfaces have added value and unusual functionalities compared with their predecessor in materials science, namely, acoustic metamaterials. These rationally designed 2D materials of subwavelength thickness provide a new route for sound wave manipulation. In this Review, we delineate the fundamental physics of metasurfaces, describe their different concepts and design strategies, and discuss their functionalities for controllable reflection, transmission and extraordinary absorption. In particular, we outline the main designs of acoustic metasurfaces, including those based on coiling-up space, Helmholtz-resonator-like and membrane-type structures, and discuss their applications, such as beam focusing, asymmetrical transmission and self-bending beams. We conclude with an outlook of the future directions in this emerging field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematics of the generalized Snell’s law and acoustic metasurface.
Fig. 2: Acoustic-reflection-type metasurface.
Fig. 3: A metasurface-based Schroeder diffuser.
Fig. 4: Transmissive metasurfaces.
Fig. 5: Applications of transmissive metasurfaces.
Fig. 6: Absorbing metasurfaces.

References

  1. 1.

    Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). This paper derives the generalized Snell’s law, which provides the theoretical framework for many types of acoustic metasurfaces.

    CAS  Google Scholar 

  2. 2.

    Li, Y., Liang, B., Gu, Z. M., Zou, X. Y. & Cheng, J. C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013). This is the first study to propose the concept of an acoustic metasurface by using a subwavelength planar structure to manipulate reflective waves.

    Google Scholar 

  3. 3.

    Li, Y., Jiang, X., Liang, B., Cheng, J. C. & Zhang, L. Metascreen-based acoustic passive phased array. Phys. Rev. Appl. 4, 024003 (2015). A highly efficient acoustic metasurface for controlling sound transmission is made from unit cells consisting of four Helmholtz resonators and a pipe.

    Google Scholar 

  4. 4.

    Li, Y. & Assouar, M. B. Three-dimensional collimated self-accelerating beam through acoustic metascreen. Sci. Rep. 5, 17612 (2015).

    CAS  Google Scholar 

  5. 5.

    Xie, Y. et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5, 5553 (2014). By using the coiling-up space structure, this study provides a set of experimental results for transmissive acoustic metasurfaces.

    CAS  Google Scholar 

  6. 6.

    Mei, J. & Wu, Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J. Phys. 16, 123007 (2014). This study shows that both the control of the transmitted wave and the surface mode excitation can be interpreted by the mode-coupling theory.

    Google Scholar 

  7. 7.

    Ma, G. C., Yang, M., Xiao, S. W., Yang, Z. Y. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014). This study demonstrates that an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound, leading to near-perfect sound absorption.

    CAS  Google Scholar 

  8. 8.

    Zhu, Y., Fan, X., Liang, B., Cheng, J. C. & Jing, Y. Ultrathin acoustic metasurface-based Schroeder diffuser. Phys. Rev. X 7, 021034 (2017).

    Google Scholar 

  9. 9.

    Li, Y. & Assouar, M. B. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016). This study reports a metasurface-based sound absorber with near-perfect absorption at a frequency whose wavelength is over 200 times greater than the thickness of the absorber.

    Google Scholar 

  10. 10.

    Li, Y. et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys. Rev. Appl. 2, 064002 (2014).

    Google Scholar 

  11. 11.

    Qi, S., Li, Y. & Assouar, M. B. Acoustic focusing and energy confinement based on multilateral metasurfaces. Phys. Rev. Appl. 7, 054006 (2017).

    Google Scholar 

  12. 12.

    Cheng, Y., Zhou, C., Yuan, B. G., Wu, D. J. & Liu, X. J. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat. Mater. 14, 1013–1019 (2015). This paper demonstrates a metasurface with unit cells that exhibit intense artificial Mie resonances for low-frequency airborne sound.

    CAS  Google Scholar 

  13. 13.

    Li, Y., Qi, S. & Assouar, M. B. Theory of metascreen-based acoustic passive phased array. New. J. Phys. 18, 043024 (2016).

    Google Scholar 

  14. 14.

    Xie, B. et al. Coding acoustic metasurfaces. Adv. Mater. 29, 1603507 (2017). By using a phase difference of precisely π, coding acoustic metasurfaces are experimentally demonstrated.

    Google Scholar 

  15. 15.

    Bok, E. et al. Metasurface for water-to-air sound transmission. Phys. Rev. Lett. 120, 044302 (2018).

    Google Scholar 

  16. 16.

    Zuo, S.-Y., Tian, Y., Wei, Q., Cheng, Y. & Liu, X.-J. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude. J. Appl. Phys. 123, 091704 (2018).

    Google Scholar 

  17. 17.

    Dubois, M., Shi, C., Wang, Y. & Zhang, X. A thin and conformal metasurface for illusion acoustics of rapidly changing profiles. Appl. Phys. Lett. 110, 151902 (2017).

    Google Scholar 

  18. 18.

    Mei, J., Zhang, X. & Wu, Y. Ultrathin metasurface with high absorptance for waterborne sound. J. Appl. Phys. 123, 091710 (2018).

    Google Scholar 

  19. 19.

    Jin, Y. et al. Pillar-type acoustic metasurface. Phys. Rev. B 96, 104311 (2017).

    Google Scholar 

  20. 20.

    Lan, J., Li, Y., Xu, Y. & Liu, X.-J. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz resonators. Sci. Rep. 7, 10587 (2017).

    Google Scholar 

  21. 21.

    Zhou, J., Zhang, X. & Fang, Y. Analytical modelling for predicting the sound field of planar acoustic metasurface. J. Appl. Phys. 123, 033106 (2018).

    Google Scholar 

  22. 22.

    Liu, T., Liang, S., Chen, F. & Zhu, J. Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface. J. Appl. Phys. 123, 091702 (2018).

    Google Scholar 

  23. 23.

    Jiang, X. et al. Acoustic one-way metasurfaces: asymmetric phase modulation of sound by subwavelength layer. Sci. Rep. 6, 28023 (2016).

    CAS  Google Scholar 

  24. 24.

    Memoli, G. et al. Metamaterial bricks and quantization of meta-surfaces. Nat. Commun. 8, 14608 (2017).

    CAS  Google Scholar 

  25. 25.

    Xu, Y., Fu, Y. & Chen, H. Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).

    CAS  Google Scholar 

  26. 26.

    Hussein, M. I., Leamy, M. J. & Ruzzene, M. Dynamics of phononic materials and structures: historical origins, recent progress and future outlook. Appl. Mech. Rev. 66, 040802 (2013).

    Google Scholar 

  27. 27.

    Shen, C., Xie, Y., Li, J., Cummer, S. A. & Jing, Y. Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett. 108, 223502 (2016).

    Google Scholar 

  28. 28.

    Ye, L. et al. Making sound vortices by metasurfaces. AIP Adv. 6, 085007 (2016).

    Google Scholar 

  29. 29.

    Jiang, X., Li, Y., Liang, B., Cheng, J. C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016).

    Google Scholar 

  30. 30.

    Durnin, J., Miceli, Jr, J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499 (1987).

    CAS  Google Scholar 

  31. 31.

    Jiménez, N., Cox, T. J., Romero-Garcia, V. & Groby, J.-P. Metadiffusers: deep-subwavelength sound diffusers. Sci. Rep. 7, 5389 (2017).

    Google Scholar 

  32. 32.

    Li, Y. et al. Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. 119, 035501 (2017). This study shows that robust and tunable acoustic asymmetric transmission can be achieved through GIMs by harnessing intrinsic losses.

    Google Scholar 

  33. 33.

    Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).

    Google Scholar 

  34. 34.

    Yang, M., Chen, S., Fu, X. & Sheng, P. Optimal sound-absorbing structures. Mater. Horizons 4, 673 (2017).

    CAS  Google Scholar 

  35. 35.

    Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Google Scholar 

  36. 36.

    Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, 150159 (2016).

    Google Scholar 

  37. 37.

    Oudich, M., Li, Y., Assouar, M. B. & Hou, Z. A sonic band gap based on the locally resonant phononic plates with stubs. New J. Phys. 12, 083049 (2010).

    Google Scholar 

  38. 38.

    Huang, T. Y., Shen, C. & Jing, Y. Membrane and plate-type acoustic metamaterials. J. Acoust. Soc. Am. 139, 3240 (2016).

    CAS  Google Scholar 

  39. 39.

    Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    CAS  Google Scholar 

  40. 40.

    Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    CAS  Google Scholar 

  41. 41.

    Cox, T. J. & Lam, Y. Prediction and evaluation of the scattering from quadratic residue diffusers. J. Ac. Soc. Am. 95, 297 (1994).

    Google Scholar 

  42. 42.

    Cox, T. J. The optimization of profiled diffusers. J. Ac. Soc. Am. 97, 2928 (1995).

    Google Scholar 

  43. 43.

    D’Antonio, P. & Cox, T. J. Diffusor application in rooms. Appl. Ac. 60, 113 (2000).

    Google Scholar 

  44. 44.

    Schroeder, M. R. Diffuse sound reflection by maximum-length sequences. J. Ac. Soc. Am. 57, 149 (1975).

    Google Scholar 

  45. 45.

    Schroeder, M. R. Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion. J. Ac. Soc. Am. 65, 958 (1979).

    Google Scholar 

  46. 46.

    Rana, R. & Soong, T. T. Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20, 193 (1998).

    Google Scholar 

  47. 47.

    Igusa, T. & Xu, K. Vibration control using multiple tuned mass dampers. J. Sound Vib. 175, 491 (1994).

    Google Scholar 

  48. 48.

    Lee, L., Lee, E. W. M. & Ng, C. F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. J. Sound Vib. 287, 227 (2005).

    Google Scholar 

  49. 49.

    Field, C. D. & Fricke, F. R. Theory and applications of quarter-wave resonators: a prelude to their use for attenuating noise entering buildings through ventilation openings. Appl. Ac. 53, 117 (1998).

    Google Scholar 

  50. 50.

    Kim, S. R. & Kim, Y.-H. A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array. J. Ac. Soc. Am. 119, 1933 (2006).

    Google Scholar 

  51. 51.

    Wu, T., Cox, T. J. & Lam, Y. A profiled structure with improved low frequency absorption. J. Ac. Soc. Am. 110, 3064 (2001).

    Google Scholar 

  52. 52.

    Maynard, J. D., Williams, E. G. & Lee, Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J. Ac. Soc. Am. 78, 1395 (1985).

    Google Scholar 

  53. 53.

    Lane, R. Absorption mechanisms for waterborne sound in Alberich anechoic layers. Ultrasonics 19, 28 (1981).

    Google Scholar 

  54. 54.

    Pors, A., Nielsen, M. G., Eriksen, R. L. & Bozhevolnyi, S. I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

    CAS  Google Scholar 

  55. 55.

    Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

    Google Scholar 

  56. 56.

    Ward, G. P. et al. Boundary-layer effects on acoustic transmission through narrow slit cavities. Phys. Rev. Lett. 115, 044302 (2015).

    CAS  Google Scholar 

  57. 57.

    Henríquez, V. C., García-Chocano, V. M. & Sánchez-Dehesa, J. Viscothermal losses in double-negative acoustic metamaterials. Phys. Rev. Appl. 8, 014029 (2017).

    Google Scholar 

  58. 58.

    Jiang, X., Li, Y. & Zhang, L. Thermoviscous effects on sound transmission through a metasurface of hybrid resonances. J. Acoust. Soc. Am. 141, EL363 (2017).

    Google Scholar 

  59. 59.

    Gerard, N. J. R. K., Li, Y. & Jing, Y. Investigation of acoustic metasurfaces with constituent material properties considered. J. Appl. Phys. 123, 124905 (2018).

    Google Scholar 

  60. 60.

    Li, Y. et al. Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep. 4, 6830 (2014).

    CAS  Google Scholar 

  61. 61.

    Yang, M. & Sheng, P. Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 47, 83 (2017).

    CAS  Google Scholar 

  62. 62.

    Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 9, 1632 (2018).

    Google Scholar 

  63. 63.

    Liang, Z. & Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

    Google Scholar 

  64. 64.

    Li, Y. et al. Acoustic focusing by coiling up space. Appl. Phys. Lett. 101, 233508 (2012).

    Google Scholar 

  65. 65.

    Xie, Y., Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

    Google Scholar 

  66. 66.

    Frenzel, T. et al. Three-dimensional labyrinthine acoustic metamaterials. Appl. Phys. Lett. 103, 061907 (2013).

    Google Scholar 

  67. 67.

    Liang, Z. et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

    CAS  Google Scholar 

  68. 68.

    Li, Y., Liang, B., Gu, Z. M., Zou, X. Y. & Cheng, J. C. Unidirectional acoustic transmission through a prism with near-zero refractive index. Appl. Phys. Lett. 103, 053505 (2013).

    Google Scholar 

  69. 69.

    Li, Y., Liang, B., Zou, X. Y. & Cheng, J. C. Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space. Appl. Phys. Lett. 103, 063509 (2013).

    Google Scholar 

  70. 70.

    Xie, Y. B., Konneker, A., Popa, B. I. & Cummer, S. A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

    Google Scholar 

  71. 71.

    Zhao, J., Li, B., Chen, Z. & Qiu, C. W. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. Sci. Rep. 3, 2537 (2013).

    Google Scholar 

  72. 72.

    Zhao, J., Li, B., Chen, Z. N. & Qiu, C. W. Redirection of sound waves using acoustic metasurface. Appl. Phys. Lett. 103, 151604 (2013).

    Google Scholar 

  73. 73.

    Qi, S. & Assouar, B. Acoustic energy harvesting based on multilateral metasurfaces. Appl. Phys. Lett. 111, 243506 (2017).

    Google Scholar 

  74. 74.

    Wang, X., Mao, D. & Li, Y. Broadband acoustic skin cloak based on spiral metasurfaces. Sci. Rep. 7, 11604 (2017).

    Google Scholar 

  75. 75.

    Liu, B., Zhao, W. & Jiang, Y. Full-angle negative reflection realized by a gradient acoustic metasurface. AIP Adv. 6, 115110 (2016).

    Google Scholar 

  76. 76.

    Liu, B., Zhao, W. & Jiang, Y. Apparent negative reflection with the gradient acoustic metasurface by integrating supercell periodicity into the generalized law of reflection. Sci. Rep. 6, 38314 (2016).

    CAS  Google Scholar 

  77. 77.

    Liu, B., Zhao, J., Xu, X., Zhao, W. & Jiang, Y. All-angle negative reflection with an ultrathin acoustic gradient metasurface: Floquet-Bloch modes perspective and experimental verification. Sci. Rep. 7, 13852 (2017).

    Google Scholar 

  78. 78.

    Zhu, Y. F. et al. Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface. Sci. Rep. 5, 10966 (2015).

    CAS  Google Scholar 

  79. 79.

    Tang, K. et al. Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci. Rep. 4, 6517 (2014).

    CAS  Google Scholar 

  80. 80.

    Molerón, M., Serra-Garcia, M. & Daraio, C. Acoustic Fresnel lenses with extraordinary transmission. Appl. Phys. Lett. 105, 114109 (2014).

    Google Scholar 

  81. 81.

    Jahdali, R. A. & Wu, Y. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Appl. Phys. Lett. 108, 031902 (2016).

    Google Scholar 

  82. 82.

    Peng, P., Xiao, B. & Wu, Y. Flat acoustic lens by acoustic grating with curled slits. Phys. Lett. A 378, 3389 (2014).

    CAS  Google Scholar 

  83. 83.

    Xie, Y., Konneker, A., Popa, B.-I. & Cummer, S. A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

    Google Scholar 

  84. 84.

    Tian, Y., Wei, Q., Cheng, Y. & Liu, X. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude. Appl. Phys. Lett. 110, 191901 (2017).

    Google Scholar 

  85. 85.

    Ding, Y., Statharas, E. C., Yao, K. & Hong, M. A broadband acoustic metamaterial with impedance matching layer of gradient index. Appl. Phys. Lett. 110, 241903 (2017).

    Google Scholar 

  86. 86.

    Fleury, R., Sounas, D. L., Haberman, M. R. & Alù, A. Nonreciprocal Acoustics. Acoust. Today 11, 14 (2015).

    Google Scholar 

  87. 87.

    Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516 (2014).

    CAS  Google Scholar 

  88. 88.

    Xie, B. et al. Multiband asymmetric transmission of airborne sound by coded metasurfaces. Phys. Rev. Appl. 7, 024010 (2017).

    Google Scholar 

  89. 89.

    Popa, B.-I. & Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014).

    Google Scholar 

  90. 90.

    Zhu, Y.-F., Zou, X.-Y., Liang, B. & Cheng, J.-C. Acoustic one-way open tunnel by using metasurface. Appl. Phys. Lett. 107, 113501 (2015).

    Google Scholar 

  91. 91.

    Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

    CAS  Google Scholar 

  92. 92.

    Xie, Y. et al. Acoustic holographic rendering with two-dimensional metamaterial-based passive phased array. Sci. Rep. 6, 35437 (2016).

    CAS  Google Scholar 

  93. 93.

    Jing, Y., Meral, F. C. & Clement, G. T. Time-reversal transcranial ultrasound beam focusing using a k-space method. Phys. Med. Biol. 57, 901 (2012).

    Google Scholar 

  94. 94.

    Ghaffarivardavagh, R., Nikolajczyk, J., Holt, R. G., Anderson, S. & Zhang, X. Horn-like space-coiling metamaterials toward simultaneous phase and amplitude modulation. Nat. Commun. 9, 1349 (2018).

    Google Scholar 

  95. 95.

    Jiang, X. et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Appl. Phys. Lett. 108, 203501 (2016).

    Google Scholar 

  96. 96.

    Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Phys. Rev. B 95, 024312 (2017).

    Google Scholar 

  97. 97.

    Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Appl. Phys. Lett. 108, 223503 (2016).

    Google Scholar 

  98. 98.

    Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl Acad. Sci. USA 114, 7250 (2017).

    CAS  Google Scholar 

  99. 99.

    Hong, Z. Y. et al. Dynamics of levitated objects in acoustic vortex fields. Sci. Rep. 7, 7093 (2017).

    CAS  Google Scholar 

  100. 100.

    Hong, Z. Y., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).

    Google Scholar 

  101. 101.

    Jiang, X., Liang, B., Cheng, J. C. & Qiu, C. W. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Adv. Mat. 30, 1800257 (2018).

    Google Scholar 

  102. 102.

    Arenas, J. P. & Crocker, M. J. Recent trends in porous sound-absorbing materials. Sound Vib. 44, 12 (2010).

    Google Scholar 

  103. 103.

    Jiang, X. et al. Ultra-broadband absorption by acoustic metamaterials. Appl. Phys. Lett. 105, 243505 (2014).

    Google Scholar 

  104. 104.

    Maa, D. Y. Theory and design of microperforated panel sound-absorbing constructions. Sci. Sin. 18, 55 (1975).

    Google Scholar 

  105. 105.

    Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C. & Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010).

    Google Scholar 

  106. 106.

    Naify, C. J., Chang, C. M., McKnight, G., Scheulen, F. & Nutt, S. Membrane-type metamaterials: transmission loss of multi-celled arrays. J. Appl. Phys. 109, 104902 (2011).

    Google Scholar 

  107. 107.

    Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

    CAS  Google Scholar 

  108. 108.

    Assouar, M. B., Senesi, M., Oudich, M., Ruzzene, M. & Hou, Z. Broadband plate-type acoustic metamaterials for low-frequency sound attenuation. Appl. Phys. Lett. 101, 173505 (2011).

    Google Scholar 

  109. 109.

    Oudich, M. et al. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates. Phys. Rev. B 84, 165136 (2011).

    Google Scholar 

  110. 110.

    Oudich, M., Zhou, X. & Assouar, M. B. General analytical approach for sound transmission loss analysis through a thick metamaterial plate. J. Appl. Phys. 116, 193509 (2014).

    Google Scholar 

  111. 111.

    Jiménez, N., Huang, W., Romeo-Garcia, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Appl. Phys. Lett. 109, 121902 (2016).

    Google Scholar 

  112. 112.

    Romero-García, V., Jiménez, N., Pagneux, V. & Groby, J.-P. Perfect and broadband acoustic absorption in deep sub-wavelength structures for the reflection and transmission problems. J. Acoust. Soc. Am. 141, 3641 (2017).

    Google Scholar 

  113. 113.

    Assouar, M. B., Oudich, M. & Zhou, X. Acoustic metamaterials for sound mitigation. C. R. Phys. 17, 524–532 (2016).

    CAS  Google Scholar 

  114. 114.

    Song, G. Y., Cheng, Q., Cui, T. J. & Jing, Y. Acoustic planar surface retroreflector. Phys. Rev. Mater. 2, 065201 (2018).

    Google Scholar 

  115. 115.

    Popa, B.-I., Zigoneanu, L. & Cummer, S. A. Tunable active acoustic metamaterials. Phys. Rev. B 88, 024303 (2013).

    Google Scholar 

  116. 116.

    Hou, Z. & Assouar, B. Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials. J. Appl. Phys. 123, 085101 (2018).

    Google Scholar 

  117. 117.

    Wu, Y., Yang, M. & Sheng, P. Perspective: acoustic metamaterials in transition. J. Appl. Phys. 123, 090901 (2018).

    Google Scholar 

  118. 118.

    Baz, A. The structure of an active acoustic metamaterial with tunable effective density. New J. Phys. 11, 123010 (2009).

    Google Scholar 

  119. 119.

    Lissek, H., Rivet, E., Laurence, T. & Fleury, R. Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators. J. Appl. Phys. 123, 091714 (2018).

    Google Scholar 

  120. 120.

    Zheng, X. et al. Multi-scale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

    CAS  Google Scholar 

  121. 121.

    Zheng, X. et al. Ultralight ultrastiff mechanical metamaterials. Science 344, 1373 (2014).

    CAS  Google Scholar 

  122. 122.

    Monticone, F., Valagiannopoulos, C. A. & Alù, A. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X 6, 041018 (2016).

    Google Scholar 

  123. 123.

    Muhlestein, M. B., Sieck, C. F., Wilson, P. S. & Haberman, M. R. Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017).

    CAS  Google Scholar 

  124. 124.

    Li, J., Shen, C., Díaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1342 (2018).

    Google Scholar 

  125. 125.

    Zigoneanu, L., Popa, B.-I. & Cummer, S. A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13, 352–355 (2014).

    CAS  Google Scholar 

  126. 126.

    Shen, C., Xu, J., Fang, N. X. & Jing, Y. Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys. Rev. X 4, 041033 (2014).

    Google Scholar 

  127. 127.

    Shen, C. et al. Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 113, 254301 (2015).

    Google Scholar 

  128. 128.

    Qi, S., Oudich, M., Li, Y. & Assouar, B. Acoustic energy harvesting based on a planar acoustic metamaterial. Appl. Phys. Lett. 108, 263501 (2016).

    Google Scholar 

  129. 129.

    Ingard, U. On the theory and design of acoustic resonators. J. Ac. Soc. Am. 25, 1037 (1953).

    Google Scholar 

Download references

Acknowledgements

B.A. acknowledges support from the Institut Carnot ICEEL and from la Région Grand Est. B.L., J.-C.C. and Y.L. acknowledge support from the National Natural Science Foundation of China (Grants No. 11634006 and No. 11704284). Y.W. acknowledges partial support from the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2016-CRG5-2950 and KAUST Baseline Research Fund BAS/1/1626-01-01.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Badreddine Assouar or Bin Liang or Yun Jing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Assouar, B., Liang, B., Wu, Y. et al. Acoustic metasurfaces. Nat Rev Mater 3, 460–472 (2018). https://doi.org/10.1038/s41578-018-0061-4

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing