Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mimicking black hole event horizons in atomic and solid-state systems


Holographic quantum matter exhibits an intriguing connection between quantum black holes and more conventional (albeit strongly interacting) quantum many-body systems. This connection is manifested in the study of their thermodynamics, statistical mechanics and many-body quantum chaos. In this Review, we discuss these connections, focusing on the most promising example of holographic quantum systems to date – the family of Sachdev–Ye–Kitaev (SYK) models. The SYK models are simple quantum mechanical models that have the potential to holographically realize quantum black holes. We examine various proposals for the experimental realizations of SYK models, including ultracold gases, graphene flakes, semiconductor quantum wires and 3D topological insulators. These approaches offer the exciting prospect of accessing black hole physics and thus addressing many important questions regarding quantum gravity in the laboratory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic representation of holographic duality.
Fig. 2: The Sachdev–Ye–Kitaev model.
Fig. 3: The complex Sachdev–Ye–Kitaev model realized for cold atoms.
Fig. 4: Schematic representation of a graphene device.
Fig. 5: The Sachdev–Ye–Kitaev model with quantum wires.
Fig. 6: Realization of the Sachdev–Ye–Kitaev model in the Fu–Kane superconductor.


  1. 1.

    Hawking, S. W. Breakdown of predictability in gravitational collapse. Phys. Rev. D. 14, 2460–2473 (1976).

    Article  Google Scholar 

  2. 2.

    Almheiri, A., Marolf, D., Polchinski, J. & Sully, J. Black holes: complementarity or firewalls?. J. High Energy Phys. 2013, 62 (2013).

    Article  Google Scholar 

  3. 3.

    Susskind, L. The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995).

    Article  Google Scholar 

  4. 4.

    Hooft, G. in Basics and Highlights in Fundamental Physics Vol. 37 (ed. Zichichi, A.) 72−100 (World Scientific, 2001).

  5. 5.

    Hartnoll, S. A., Lucas, A. & Sachdev, S. Holographic quantum matter. Preprint at (2016).

  6. 6.

    Sachdev, S. & Ye, J. Gapless spin-liquid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

    CAS  Article  Google Scholar 

  7. 7.

    Kitaev, A. A simple model of quantum holography. in KITP Strings Seminar and Entanglement 2015 Program (2015).

  8. 8.

    Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D. 94, 106002 (2016).

    Article  Google Scholar 

  9. 9.

    Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).[,167(1975)].

    Article  Google Scholar 

  10. 10.

    Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).

    Article  Google Scholar 

  11. 11.

    Bardeen, J. M. M., Carter, B. & Hawking, S. W. W. The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973).

    Article  Google Scholar 

  12. 12.

    Andrew Strominger, A. & Vafa, C. Microscopic origin of the Bekenstein — Hawking entropy. Phys. Lett. B 79, 99–104 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    Shenker, S. H. & Stanford, D. Black holes and the buttery effect. J. High Energy Phys. 2014, 6767 (2014).

  14. 14.

    Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).

    Article  Google Scholar 

  15. 15.

    Lieb, E. H. & Robinson, D. W. The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972).

    Article  Google Scholar 

  16. 16.

    Kovtun, P. Son D. T. & Starinets A. O. Viscosity in strongly interacting quantum field theories from black hole physics Phys. Rev. Lett. 94 111601 2005.

    CAS  Article  Google Scholar 

  17. 17.

    Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).

    Article  Google Scholar 

  18. 18.

    Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento 5, 171 (1937). Engl. Transl.: Soryushiron Kenkyu 63, 149 (1981).

    Google Scholar 

  19. 19.

    Wilczek, F. Majorana returns. Nat. Phys. 5, 614–618 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Alicea, J. New directions in the pursuit of majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  Google Scholar 

  21. 21.

    Beenakker, C. W. J. Search for majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Leijnse, M. & Flensberg, K. Introduction to topological superconductivity and majorana fermions. Semicond. Sci. Technol. 27, 124003 (2012).

    Article  Google Scholar 

  23. 23.

    Stanescu, T. D. & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment. J. Phys. Condens. Matter 25, 233201 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Elliott, S. R. & Franz, M. Colloquium: majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Mourik, V., Zuo, K., Frolov, S. M., Plissard, S. R., Bakkers, E. P. M. et al. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of majorana fermions. Nat. Phys. 8, 887 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Deng, M. T., Yu, C. L., Huang, G. Y., Larsson, M., Caroff, P. et al. Anomalous zero-bias conductance peak in a Nb–In–Sb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Rokhinson, L. P., Liu, X. & Furdyna, J. K. The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Finck, A. D. K., Van Harlingen, D. J., Mohseni, P. K., Jung, K. & Li, X. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. Phys. Rev. Lett. 110, 126406 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Hart, S., Ren, H., Wagner, T., Leubner, P., Mühlbauer, M. et al. Induced superconductivity in the quantum spin hall edge. Nat. Phys. 10, 638–643 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Nadj-Perge, S., Drozdov, I. K., Li, J., Chen, H., Jeon, S. et al. Observation of majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Xu, J.-P., Wang, M.-X., Liu, Z. L., Ge, J.-F., Yang, X. et al. Experimental detection of a majorana mode in the core of a magnetic vortex inside a topological insulator superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article  Google Scholar 

  33. 33.

    Sun, H.-H., Zhang, K.-W., Hu, L.-H., Li, C., Wang, G.-Y. et al. Majorana zero mode detected with spin selective Andreev reection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Article  Google Scholar 

  34. 34.

    French, J. B. & Wong, S. S. M. Validity of random matrix theories for many-particle systems. Phys. Lett. B 33, 449–452 (1970).

    CAS  Article  Google Scholar 

  35. 35.

    Bohigas, O. & Flores, J. Two-body random hamiltonian and level density. Phys. Lett. B 34, 261–263 (1971).

    Article  Google Scholar 

  36. 36.

    Bohigas, O. & Flores, J. Spacing and individual eigenvalue distributions of two-body random hamiltonians. Phys. Lett. B 35, 383–386 (1971).

    CAS  Article  Google Scholar 

  37. 37.

    You, Y.-Z., Ludwig, A. W. W. & Xu, C. Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry-protected topological states. Phys. Rev. B 95, 115150 (2017).

    Article  Google Scholar 

  38. 38.

    Polchinski, J. & Rosenhaus, V. The spectrum in the Sachdev-Ye-Kitaev model. J. High Energy Phys. 2016, 1 (2016).

    Article  Google Scholar 

  39. 39.

    García-García, A. M. & Verbaarschot, J. J. M. Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model. Phys. Rev. D. 94, 126010 (2016).

    Article  Google Scholar 

  40. 40.

    Fu, W., Gaiotto, D., Maldacena, J. & Sachdev, S. Supersymmetric Sachdev-Ye-Kitaev models. Phys. Rev. D. 95, 026009 (2017).

    Article  Google Scholar 

  41. 41.

    Banerjee, S. & Altman, E. Solvable model for a dynamical quantum phase transition from fast to slow scrambling. Phys. Rev. B 95, 134302 (2017).

    Article  Google Scholar 

  42. 42.

    Bi, Z., Jian, C.-M., You, Y.-Z., Pawlak, K. A. & Xu, C. Instability of the non-Fermi-liquid state of the Sachdev-Ye-Kitaev model. Phys. Rev. B 95, 205105 (2017).

    Article  Google Scholar 

  43. 43.

    Lantagne-Hurtubise, É., Li, C. & Franz, M. Family of Sachdev-Ye-Kitaev models motivated by experimental considerations. Phys. Rev. B 97, 235124 (2018).

    Article  Google Scholar 

  44. 44.

    Gu, Y., Qi, X.-L. & Stanford, D. Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models. J. High Energy Phys. 2017, 125 (2017).

    Article  Google Scholar 

  45. 45.

    Berkooz, M., Narayan, P., Rozali, M. & Simón, J. Higher dimensional generalizations of the syk model. J. High Energy Phys. 2017, 138 (2017).

    Article  Google Scholar 

  46. 46.

    Hosur, P., Qi, X.-L., Roberts, D. A. & Yoshida, B. Chaos in quantum channels. J. High Energy Phys. 2016, 4 (2016).

    Article  Google Scholar 

  47. 47.

    Liu, C., Chen, X. & Balents, L. Quantum entanglement of the Sachdev-Ye-Kitaev models. Preprint at (2017).

  48. 48.

    Huang, Y. & Gu, Y. Eigenstate entanglement in the Sachdev-Ye-Kitaev model. Preprint at (2017).

  49. 49.

    Gu, Y., Qi, X.-L. & Stanford, D. Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models. J. High Energy Phys. 2017, 125 (2017).

    Article  Google Scholar 

  50. 50.

    Davison, R. A., Fu, W., Georges, A., Gu, Y., Jensen, K. & Sachdev, S. Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography. Phys. Rev. B 95, 155131 (2017).

    Article  Google Scholar 

  51. 51.

    Song, X.-Y., Jian, C.-M. & Balents, L. Strongly correlated metal built from Sachdev-Ye-Kitaev models. Phys. Rev. Lett. 119, 216601 (2017).

    Article  Google Scholar 

  52. 52.

    Pengfei, Z. Dispersive Sachdev-Ye-Kitaev model: band structure and quantum chaos. Phys. Rev. B 96, 205138 (2017).

    Article  Google Scholar 

  53. 53.

    Patel, A. A., McGreevy, J., Arovas, D. P. & Sachdev, S. Magnetotransport in a model of a disordered strange metal. Phys. Rev. X 8, 021049 (2018).

    Google Scholar 

  54. 54.

    Chowdhury, D., Werman, Y., Berg, E. & Senthil, T. Translationally invariant non-fermi-liquid metals with critical fermi surfaces: solvable models. Phys. Rev. X 8, 031024 (2018).

    Google Scholar 

  55. 55.

    Patel, A. A., Lawler, M. J. & Kim, E. A coherent superconductivity with large gap ratio from incoherent metals. Preprint at (2018).

  56. 56.

    Wu, X., Chen, X., Jian, C.-M., You, Y.-Z. & Xu, C. A candidate theory for the "strange metal" phase at finite energy window. Preprint at (2018).

  57. 57.

    García-Álvarez, L., Egusquiza, I. L., Lamata, L., del Campo, A., Sonner, J. & Solano, E. Digital quantum simulation of minimal AdS/CFT. Phys. Rev. Lett. 119, 040501 (2017).

    Article  Google Scholar 

  58. 58.

    Luo, Z., You, Y.-Z., Li, J., Jian, C.-M. & Lu, D. et al. Observing fermion pair instability of the Sachdev-Ye-Kitaev model on a quatum spin simulator. Preprint at (2017).

  59. 59.

    Sachdev, S. Bekenstein-Hawking entropy and strange metals. Phys. Rev. X 5, 041025 (2015).

    Google Scholar 

  60. 60.

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superuid to a mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    CAS  Article  Google Scholar 

  61. 61.

    Jotzu, G., Messer, M., Desbuguois, R., Lebrat, M. & Uehlinger, T. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    Danshita, I., Hanada, M. & Tezuka, M. Creating and probing the sachdevyekitaev model with ultracold gases: Towards experimental studies of quantum gravity. Progress. Theor. Exp. Phys. 2017, 083I01 (2017).

    Article  Google Scholar 

  63. 63.

    Danshita, I., Hanada, M. & Tezuka, M. How to make a quantum black hole with ultra-cold gases. Preprint at (2017).

  64. 64.

    Gärttner, M., Bohnet, J. G. & Safavi-Naini, A., Wall, M. L., Bollinger, J. J. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped ion quantum magnet. Preprint at (2017).

  65. 65.

    Li, J., Fan, R., Wang, H., Ye, B., Zeng, B. & et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator. Phys. Rev. X 7, 031011 (2017).

    Google Scholar 

  66. 66.

    Chen, A., Ilan, R., de Juan, F., Pikulin, D. I. & Franz, M. Quantum holography in a graphene ake with an irregular boundary. Phys. Rev. Lett. 121, 036403 (2018).

    Article  Google Scholar 

  67. 67.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    CAS  Article  Google Scholar 

  68. 68.

    Laughlin, R. B. Anomalous quantum hall effect: An incompressible quantum uid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  Google Scholar 

  69. 69.

    Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article  Google Scholar 

  70. 70.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Article  Google Scholar 

  71. 71.

    Aharonov, Y. & Casher, A. Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field. Phys. Rev. A 19, 2461–2462 (1979).

    Article  Google Scholar 

  72. 72.

    Can, O., Nica, E. M. & Franz, M. Charge transport in graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev models. Preprint at (2018).

  73. 73.

    Oreg, Y., Refael, G. & Oppen, F. Helical liquids and majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  Google Scholar 

  74. 74.

    Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

  75. 75.

    Chew, A., Essin, A. & Alicea, J. Approximating the sachdev-ye-kitaev model with majorana wires. Phys. Rev. B 96, 121119 (2017).

    Article  Google Scholar 

  76. 76.

    Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  77. 77.

    Pikulin, D. I. & Franz, M. Black hole on a chip: proposal for a physical realization of the Sachdev-Ye-Kitaev model in a solid-state system. Phys. Rev. X 7, 031006 (2017).

    Google Scholar 

  78. 78.

    Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Article  Google Scholar 

  79. 79.

    Anderson, P. W. More is different. Science 177, 393–396 (1972).

    CAS  Article  Google Scholar 

  80. 80.

    Cotler, J. S. & Gur-Ari, G. & Hanada, M. & Polchinski, J. & Saad, P. et al. Black holes and random matrices. J. High Energy Phys. 2017, 118 (2017).

    Article  Google Scholar 

  81. 81.

    Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortsch. Phys. 65, 1700034 (2017).

    Article  Google Scholar 

  82. 82.

    Kourkoulou, I. & Maldacena, J. Pure states in the SYK model and nearly-AdS2 gravity. Preprint at (2017).

  83. 83.

    Maldacena, J. & Qi, X.-L. Eternal traversable wormhole. Preprint at (2018).

  84. 84.

    Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A 117, 610 (1928).

    Article  Google Scholar 

  85. 85.

    Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001).

    Article  Google Scholar 

  86. 86.

    Sherrington, D. & Kirkpatrick, S. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975).

    Article  Google Scholar 

  87. 87.

    Sachdev, S. Holographic metals and the fractionalized Fermi liquid. Phys. Rev. Lett. 105, 151602 (2010).

    Article  Google Scholar 

  88. 88.

    Nayak, P., Shukla, A., Soni, R. M., Trivedi, S. P. & Vishal, V. On the dynamics of near-extremal black holes. J. High Energy Phys. 2018, 48 (2018).

    Article  Google Scholar 

  89. 89.

    Maldacena, J., Stanford, D. & Yang, Z. Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space. Prog. Theor. Exp. Phys. 2016, 12C104 (2016).

    Article  Google Scholar 

Download references


The authors are indebted to many colleagues who helped shape their understanding of the subject. Of these, special thanks go to I. Affleck, E. Altman, J. Alicea, L. Balents, M. Berkooz, A. Chen, F. Haehl, A. Kitaev, C. Li, E. Lantagne-Hurtubise, P. Narayan, D. Pikulin, S. Sachdev, J. Simon and M. Tezuka.

Author information




Both authors contributed equally to this work.

Corresponding author

Correspondence to Marcel Franz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franz, M., Rozali, M. Mimicking black hole event horizons in atomic and solid-state systems. Nat Rev Mater 3, 491–501 (2018).

Download citation

Further reading


Quick links