Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks

Abstract

The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Terminology for crystalline and amorphous states.
Fig. 2: Examples of CPs and MOFs that form liquids and glasses.
Fig. 3: Routes to the fabrication of CP and/or MOF glasses.
Fig. 4: Amorphization of UiO-66.

References

  1. 1.

    Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuiZnii(CN)4] and Cui[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4xC6H5NO2. J. Am. Chem. Soc. 112, 1546–1554 (1990).

    CAS  Google Scholar 

  2. 2.

    Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    CAS  Google Scholar 

  3. 3.

    Ma, S. & Zhou, H. C. Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46, 44–53 (2010).

    CAS  Google Scholar 

  4. 4.

    Schoedel, A., Ji, Z. & Yaghi, O. M. The role of metal–organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1, 16034 (2016).

    CAS  Google Scholar 

  5. 5.

    Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    CAS  Google Scholar 

  6. 6.

    [No authors listed]. Frameworks for commercial success. Nat. Chem. 8, 987 (2016).

    Google Scholar 

  7. 7.

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    CAS  Google Scholar 

  8. 8.

    Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2017).

    CAS  Google Scholar 

  9. 9.

    Keskin, S., van Heest, T. M. & Sholl, D. S. Can metal–organic framework materials play a useful role in large-scale carbon dioxide separations. ChemSusChem 3, 879–891 (2010).

    CAS  Google Scholar 

  10. 10.

    Denny, M. S., Moreton, J. C., Benz, L. & Cohen, S. M. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    CAS  Google Scholar 

  11. 11.

    Mondloch, J. E. et al. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 14, 512–516 (2015).

    CAS  Google Scholar 

  12. 12.

    Bobbitt, N. S. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017).

    Google Scholar 

  13. 13.

    DeCoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemicals. Chem. Soc. Rev. 114, 5695–5727 (2014).

    CAS  Google Scholar 

  14. 14.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 974–986 (2013).

    CAS  Google Scholar 

  15. 15.

    Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    CAS  Google Scholar 

  16. 16.

    Horcajada, P. et al. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).

    CAS  Google Scholar 

  17. 17.

    Farrusseng, D., Aguado, S. & Pinel, C. Metal-organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48, 7502–7513 (2009).

    CAS  Google Scholar 

  18. 18.

    Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44, 6804–6849 (2015).

    CAS  Google Scholar 

  19. 19.

    Rogge, S. M. J. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 46, 3134–3184 (2017).

    CAS  Google Scholar 

  20. 20.

    Martin, R. L. & Haranczyk, M. Exploring frontiers of high surface area metal–organic frameworks. Chem. Sci. 4, 1781–1785 (2013).

    CAS  Google Scholar 

  21. 21.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    CAS  Google Scholar 

  22. 22.

    Rogge, S. M. J., Waroquier, M. & Van Speybroeck, V. Reliably modeling the mechanical stability of rigid and flexible metal−organic frameworks. Acc. Chem. Res. 51, 138–148 (2018).

    CAS  Google Scholar 

  23. 23.

    Thornton, A. W., Babarao, R., Jain, A., Trousselet, F. & Coudert, F. X. Defects in metal-organic frameworks: a compromise between adsorption and stability? Dalton Trans. 45, 4352–4359 (2016).

    CAS  Google Scholar 

  24. 24.

    Ren, J., Langmi, H. W., North, B. C. & Mathe, M. Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39, 607–620 (2015).

    CAS  Google Scholar 

  25. 25.

    Bazer-Bachi, D., Assié, L., Lecocq, V., Harbuzaru, B. & Falk, V. Towards industrial use of metal-organic framework: impact of shaping on the MOF properties. Powder Technol. 255, 52–59 (2014).

    CAS  Google Scholar 

  26. 26.

    Sumida, K. et al. Sol–gel processing of metal–organic frameworks. Chem. Mater. 29, 2626–2645 (2017).

    CAS  Google Scholar 

  27. 27.

    Valekar, A. H. et al. Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder. RSC Adv. 7, 55767–55777 (2017).

    CAS  Google Scholar 

  28. 28.

    Chen, Y. et al. Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams. J. Am. Chem. Soc. 138, 10810–10813 (2016).

    CAS  Google Scholar 

  29. 29.

    Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal–organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).

    CAS  Google Scholar 

  30. 30.

    Ramaswamy, R., Wong, N. E. & Shimizu, G. K. H. MOFs as proton conductors — challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014).

    CAS  Google Scholar 

  31. 31.

    Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    CAS  Google Scholar 

  32. 32.

    Sun, L., Campbell, M. G. & Dinca, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    CAS  Google Scholar 

  33. 33.

    Medishetty, R., Zaręba, J. K., Mayer, D., Samoć, M. & Fischer, R. A. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem. Soc. Rev. 46, 4976–5004 (2017).

    CAS  Google Scholar 

  34. 34.

    Quah, H. S. et al. Multiphoton harvesting metal–organic frameworks. Nat. Commun. 6, 7954 (2015).

    CAS  Google Scholar 

  35. 35.

    Morozana, A. & Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 5, 9269–9290 (2012).

    Google Scholar 

  36. 36.

    Ricco, R., Malfatti, L., Takahashi, M., Hill, A. J. & Falcaro, P. Applications of magnetic metal–organic framework composites. J. Mater. Chem. A 1, 13033–13045 (2013).

    CAS  Google Scholar 

  37. 37.

    Fang, Z. L., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    CAS  Google Scholar 

  38. 38.

    Sholl, D. S. & Lively, R. P. Defects in metal–organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

    CAS  Google Scholar 

  39. 39.

    Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    CAS  Google Scholar 

  40. 40.

    Coudert, F. X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    CAS  Google Scholar 

  41. 41.

    Yadav, R., Swain, D., Bhat, H. L. & Elizabeth, S. Order-disorder phase transition and multiferroic behaviour in a metal organic framework compound (CH3)2NH2Co(HCOO)3. J. Appl. Phys. 119, 064103 (2016).

    Google Scholar 

  42. 42.

    Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F. X. Interplay between defects, disorder and flexibility in metal–organic frameworks. Nat. Chem. 9, 11–16 (2017).

    CAS  Google Scholar 

  43. 43.

    Lohe, M. R., Rose, M. & Kaskel, S. Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 0, 6056–6058 (2009).

    CAS  Google Scholar 

  44. 44.

    Bueken, B. et al. Gel-based morphological design of zirconium metal–organic frameworks. Chem. Sci. 8, 3939–3948 (2017).

    CAS  Google Scholar 

  45. 45.

    Moghadam, P. Z. et al. Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017).

    CAS  Google Scholar 

  46. 46.

    Lau, D. et al. PLUXter: rapid discovery of metal-organic framework structures using PCA and HCA of high throughput synchrotron powder diffraction data. Comb. Chem. High Throughput Screening 14, 28–35 (2011).

    CAS  Google Scholar 

  47. 47.

    Bennett, T. D. & Cheetham, A. K. Amorphous metal–organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014).

    CAS  Google Scholar 

  48. 48.

    Lin, I. J. B. & Vasam, C. S. Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J. Organomet. Chem. 690, 3498–3512 (2005).

    CAS  Google Scholar 

  49. 49.

    Andersson, M., Hansson, Ö., Öhrstrom, L., Idström, A. & Nydén, M. Vinylimidazole copolymers: coordination chemistry, solubility, and cross-linking as function of Cu2+ and Zn2+ complexation. Colloid Polym. Sci. 289, 1361–1372 (2011).

    CAS  Google Scholar 

  50. 50.

    Pachfule, P., Shinde, D., Majumder, M. & Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718–724 (2016).

    CAS  Google Scholar 

  51. 51.

    Yang, F., Li, W. & Tang, B. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 733, 8–14 (2018).

    CAS  Google Scholar 

  52. 52.

    Zhou, Y. & Liu, C. J. Amorphization of metal-organic framework MOF-5 by electrical discharge. Plasma Chem. Plasma Process. 31, 499–506 (2011).

    CAS  Google Scholar 

  53. 53.

    Andrzejewski, M., Casati, N. & Katrusiak, A. Reversible pressure pre-amorphization of a piezochromic metal–organic framework. Dalton Trans. 46, 14795–14803 (2017).

    CAS  Google Scholar 

  54. 54.

    Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    CAS  Google Scholar 

  55. 55.

    Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    CAS  Google Scholar 

  56. 56.

    James, J. B. & Lin, Y. S. Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments. J. Phys. Chem. C 120, 14015–14026 (2016).

    CAS  Google Scholar 

  57. 57.

    Spielberg, E. T., Edengeiser, E., Mallick, B., Havenith, M. & Mudring, A. V. (1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid. Chem. Eur. J. 20, 5338–5345 (2014).

    CAS  Google Scholar 

  58. 58.

    Moriya, M., Kato, D., Sakamoto, W. & Yogo, T. Structural design of ionic conduction paths in molecular crystals for selective and enhanced lithium ion conduction. Chem. Eur. J. 19, 13554–13560 (2013).

    CAS  Google Scholar 

  59. 59.

    Hirai, Y. et al. Luminescent coordination glass: remarkable morphological strategy for assembled Eu(iii) complexes. Inorg. Chem. 54, 4364–4370 (2015).

    CAS  Google Scholar 

  60. 60.

    Depuydt, D. et al. Silver-containing ionic liquids with alkylamine ligands. ChemPlusChem 78, 578–588 (2013).

    CAS  Google Scholar 

  61. 61.

    Su, Y. J. et al. Copper(i) 2-isopropylimidazolate: supramolecular isomerism, isomerization, and luminescent properties. Cryst. Growth Des. 15, 1735–1739 (2015).

    CAS  Google Scholar 

  62. 62.

    Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

    CAS  Google Scholar 

  63. 63.

    Poirer, J. P. Introduction to the Physics of the Earth’s Interior Ch. 5 (Cambridge Univ. Press, 2000).

  64. 64.

    Umeyama, D. et al. Glass formation via structural fragmentation of a 2D coordination network. Chem. Commun. 51, 12728–12731 (2015).

    CAS  Google Scholar 

  65. 65.

    Bennett, T. D. et al. Hybrid glasses from strong and fragile metal–organic framework liquids. Nat. Commun. 6, 8079 (2015).

    CAS  Google Scholar 

  66. 66.

    Bennett, T. D. et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

    CAS  Google Scholar 

  67. 67.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Google Scholar 

  68. 68.

    Lewis, D. W. et al. Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm 11, 2272–2276 (2009).

    CAS  Google Scholar 

  69. 69.

    Bennett, T. D. et al. Thermal amorphization of zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 50, 3067–3071 (2011).

    CAS  Google Scholar 

  70. 70.

    Öhrstrom, L. Let’s talk about MOFs — topology and terminology of metal–organic frameworks and why we need them. Crystals 5, 154–162 (2015).

    Google Scholar 

  71. 71.

    Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017).

    CAS  Google Scholar 

  72. 72.

    Adhikari, P. et al. Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (a-ZIF). J. Phys. Chem. C 120, 15362–15368 (2016).

    CAS  Google Scholar 

  73. 73.

    Beldon, P. J. et al. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew. Chem. Int. Ed. 49, 9640–9643 (2010).

    CAS  Google Scholar 

  74. 74.

    Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015).

    CAS  Google Scholar 

  75. 75.

    Calvin, J. J. et al. Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)2. J. Chem. Thermodyn. 116, 341–351 (2018).

    CAS  Google Scholar 

  76. 76.

    Friscic, T. et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem 5, 66–73 (2013).

    CAS  Google Scholar 

  77. 77.

    Bennett, T. D. et al. Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. J. Am. Chem. Soc. 133, 14546–14549 (2011).

    CAS  Google Scholar 

  78. 78.

    Chen, W. Q. et al. Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility. Angew. Chem. Int. Ed. 55, 5195–5200 (2016).

    CAS  Google Scholar 

  79. 79.

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Google Scholar 

  80. 80.

    Valenzano, L. et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011).

    CAS  Google Scholar 

  81. 81.

    Bennett, T. D. et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study. Phys. Chem. Chem. Phys. 18, 2192–2201 (2016).

    CAS  Google Scholar 

  82. 82.

    Guillerm, V. et al. A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks. Angew. Chem. Int. Ed. 51, 9267–9271 (2012).

    CAS  Google Scholar 

  83. 83.

    Su, Z., Miao, Y. R., Zhang, G., Miller, J. T. & Suslick, K. S. Bond breakage under pressure in a metal organic framework. Chem. Sci. 8, 8004–8011 (2017).

    CAS  Google Scholar 

  84. 84.

    Chapman, K. W., Sava, D. F., Halder, G. J., Chupas, P. J. & Nenoff, T. M. Trapping guests within a nanoporous metal–organic framework through pressure-induced amorphization. J. Am. Chem. Soc. 133, 18583–18585 (2011).

    CAS  Google Scholar 

  85. 85.

    Chapman, K. W., Halder, G. J. & Chupas, P. J. Pressure-induced amorphization and porosity modification in a metal–organic framework. J. Am. Chem. Soc. 131, 17546–17547 (2009).

    CAS  Google Scholar 

  86. 86.

    Su, Z. et al. Shock wave chemistry in a metal–organic framework. J. Am. Chem. Soc. 139, 4619–4622 (2017).

    CAS  Google Scholar 

  87. 87.

    Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F. X. Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening. J. Phys. Chem. Lett. 4, 1861–1865 (2013).

    CAS  Google Scholar 

  88. 88.

    Kitagawa, S. & Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds. Bull. Chem. Soc. Jpn 71, 1739–1753 (1998).

    CAS  Google Scholar 

  89. 89.

    Uemura, K. et al. Novel flexible frameworks of porous cobalt(iii) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups. Chem. Eur. J. 8, 3586–3600 (2002).

    CAS  Google Scholar 

  90. 90.

    Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nat. Chem. 1, 289–294 (2009).

    CAS  Google Scholar 

  91. 91.

    Allan, P. K. et al. Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal-organic framework. Chem. Sci. 3, 2559–2564 (2012).

    CAS  Google Scholar 

  92. 92.

    Xin, Z. F., Chen, X. S., Wang, Q., Chen, Q. & Zhang, Q. F. Nanopolyhedrons and mesoporous supra-structures of zeolitic imidazolate framework with high adsorption performance. Microporous Mesoporous Mater. 169, 218–221 (2013).

    CAS  Google Scholar 

  93. 93.

    Orellana-Tavra, C. et al. Amorphous metal–organic frameworks for drug delivery. Chem. Commun. 51, 13878–13881 (2015).

    CAS  Google Scholar 

  94. 94.

    McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS  Google Scholar 

  95. 95.

    Morishige, K. Hysteresis critical point of nitrogen in porous glass: occurrence of sample spanning transition in capillary condensation. Langmuir 25, 6221–6226 (2009).

    CAS  Google Scholar 

  96. 96.

    Rozes, L. & Sanchez, C. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev. 40, 1006–1030 (2011).

    CAS  Google Scholar 

  97. 97.

    Zhao, Y., Lee, S.-Y., Becknell, N., Yaghi, O. M. & Angell, C. A. Nanoporous transparent MOF glasses with accessible internal surface. J. Am. Chem. Soc. 138, 10818–10821 (2016).

    CAS  Google Scholar 

  98. 98.

    Enke, D., Janowski, F. & Schwieger, W. Porous glasses in the 21st century — a short review. Microporous Mesoporous Mater. 60, 19–30 (2003).

    CAS  Google Scholar 

  99. 99.

    Jeong, W. S. et al. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. Proc. Natl Acad. Sci. USA 114, 7923–7928 (2017).

    CAS  Google Scholar 

  100. 100.

    Kertik, A. et al. Highly selective gas separation membrane using in situ amorphised metal-organic frameworks. Energy Environ. Sci 10, 2342–2351 (2017).

    CAS  Google Scholar 

  101. 101.

    Sherman, J. D. Synthetic zeolites and other microporous oxide molecular sieves. Proc. Natl Acad. Sci. USA 96, 3471–3478 (1999).

    CAS  Google Scholar 

  102. 102.

    Bennett, T. D., Saines, P. J., Keen, D. A., Tan, J. C. & Cheetham, A. K. Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chem. Eur. J. 19, 7049–7055 (2013).

    CAS  Google Scholar 

  103. 103.

    Minami, T. Fast ion conducting glasses. J. Non-Cryst. Solids 73, 273–284 (1985).

    CAS  Google Scholar 

  104. 104.

    Nagarkar, S. S. et al. Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal. Angew. Chem. Int. Ed. 56, 4976–4981 (2017).

    CAS  Google Scholar 

  105. 105.

    Horike, S. et al. Order-to-disorder structural transformation of a coordination polymer and its influence on proton conduction. Chem. Commun. 50, 10241–10243 (2014).

    CAS  Google Scholar 

  106. 106.

    Funasako, Y., Mori, S. & Mochida, T. Reversible transformation between ionic liquids and coordination polymers by application of light and heat. Chem. Commun. 52, 6277–6279 (2016).

    CAS  Google Scholar 

  107. 107.

    Lavenn, C. et al. A luminescent double helical gold(i)-thiophenolate coordination polymer obtained by hydrothermal synthesis or by thermal solid-state amorphous-to-crystalline isomerization. J. Mater. Chem. C 3, 4115–4125 (2015).

    CAS  Google Scholar 

  108. 108.

    Xiu, J. W. et al. Electrical bistability in a metal–organic framework modulated by reversible crystalline-to-amorphous transformations. Chem. Commun. 53, 2479–2482 (2017).

    CAS  Google Scholar 

  109. 109.

    Ohara, Y. et al. Formation of coordination polymer glass by mechanical milling: dependence on metal ions and molecular doping for H+ conductivity. Chem. Commun. 54, 6859–6862 (2018).

    CAS  Google Scholar 

  110. 110.

    MacFarlane, D. R. et al. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).

    CAS  Google Scholar 

  111. 111.

    Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    CAS  Google Scholar 

  112. 112.

    O’Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

    Google Scholar 

  113. 113.

    Mannstadt, W. Computational materials science aided design of glass ceramics and crystal properties. J. Phys. Condens. Mater. 20, 064233 (2008).

    Google Scholar 

  114. 114.

    Qiu, S., Xue, M. & Zhu, G. Metal–organic framework membranes: from synthesis to separation application. Chem. Commun. 43, 6116–6140 (2014).

    CAS  Google Scholar 

  115. 115.

    Seoane, B. et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

    CAS  Google Scholar 

  116. 116.

    Batten, S. R. et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013).

    CAS  Google Scholar 

  117. 117.

    Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

T.D.B. thanks the Royal Society for a University Research Fellowship (UF150021) and for their continued support.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Thomas D. Bennett or Satoshi Horike.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bennett, T.D., Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat Rev Mater 3, 431–440 (2018). https://doi.org/10.1038/s41578-018-0054-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing