Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks

Abstract

The field of coordination polymers and metal–organic frameworks has to date focused on the crystalline state. More than 60,000 crystalline metal–organic framework structures, formed from highly ordered arrays of metal nodes connected by organic ligands in at least one dimension, have been identified. However, interest in non-crystalline systems is growing, with amorphous solids, glasses and liquids identified as possessing similar metal–ligand bonding motifs to their crystalline cousins. In this Review, we provide an overview of the structural design, properties and potential applications of non-crystalline coordination polymers and metal–organic frameworks. In particular, we highlight recent reports of glasses that result from the melt quenching of the liquid states of these topical classes of materials. Finally, we provide a perspective on the future of the non-crystalline domain of coordination polymers and metal–organic frameworks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Terminology for crystalline and amorphous states.
Fig. 2: Examples of CPs and MOFs that form liquids and glasses.
Fig. 3: Routes to the fabrication of CP and/or MOF glasses.
Fig. 4: Amorphization of UiO-66.

References

  1. 1.

    Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuiZnii(CN)4] and Cui[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4xC6H5NO2. J. Am. Chem. Soc. 112, 1546–1554 (1990).

  2. 2.

    Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

  3. 3.

    Ma, S. & Zhou, H. C. Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46, 44–53 (2010).

  4. 4.

    Schoedel, A., Ji, Z. & Yaghi, O. M. The role of metal–organic frameworks in a carbon-neutral energy cycle. Nat. Energy 1, 16034 (2016).

  5. 5.

    Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

  6. 6.

    [No authors listed]. Frameworks for commercial success. Nat. Chem. 8, 987 (2016).

  7. 7.

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

  8. 8.

    Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2017).

  9. 9.

    Keskin, S., van Heest, T. M. & Sholl, D. S. Can metal–organic framework materials play a useful role in large-scale carbon dioxide separations. ChemSusChem 3, 879–891 (2010).

  10. 10.

    Denny, M. S., Moreton, J. C., Benz, L. & Cohen, S. M. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

  11. 11.

    Mondloch, J. E. et al. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 14, 512–516 (2015).

  12. 12.

    Bobbitt, N. S. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017).

  13. 13.

    DeCoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemicals. Chem. Soc. Rev. 114, 5695–5727 (2014).

  14. 14.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 974–986 (2013).

  15. 15.

    Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

  16. 16.

    Horcajada, P. et al. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).

  17. 17.

    Farrusseng, D., Aguado, S. & Pinel, C. Metal-organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48, 7502–7513 (2009).

  18. 18.

    Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A. & Verpoort, F. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44, 6804–6849 (2015).

  19. 19.

    Rogge, S. M. J. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 46, 3134–3184 (2017).

  20. 20.

    Martin, R. L. & Haranczyk, M. Exploring frontiers of high surface area metal–organic frameworks. Chem. Sci. 4, 1781–1785 (2013).

  21. 21.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

  22. 22.

    Rogge, S. M. J., Waroquier, M. & Van Speybroeck, V. Reliably modeling the mechanical stability of rigid and flexible metal−organic frameworks. Acc. Chem. Res. 51, 138–148 (2018).

  23. 23.

    Thornton, A. W., Babarao, R., Jain, A., Trousselet, F. & Coudert, F. X. Defects in metal-organic frameworks: a compromise between adsorption and stability? Dalton Trans. 45, 4352–4359 (2016).

  24. 24.

    Ren, J., Langmi, H. W., North, B. C. & Mathe, M. Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39, 607–620 (2015).

  25. 25.

    Bazer-Bachi, D., Assié, L., Lecocq, V., Harbuzaru, B. & Falk, V. Towards industrial use of metal-organic framework: impact of shaping on the MOF properties. Powder Technol. 255, 52–59 (2014).

  26. 26.

    Sumida, K. et al. Sol–gel processing of metal–organic frameworks. Chem. Mater. 29, 2626–2645 (2017).

  27. 27.

    Valekar, A. H. et al. Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder. RSC Adv. 7, 55767–55777 (2017).

  28. 28.

    Chen, Y. et al. Shaping of metal–organic frameworks: from fluid to shaped bodies and robust foams. J. Am. Chem. Soc. 138, 10810–10813 (2016).

  29. 29.

    Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal–organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).

  30. 30.

    Ramaswamy, R., Wong, N. E. & Shimizu, G. K. H. MOFs as proton conductors — challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014).

  31. 31.

    Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

  32. 32.

    Sun, L., Campbell, M. G. & Dinca, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

  33. 33.

    Medishetty, R., Zaręba, J. K., Mayer, D., Samoć, M. & Fischer, R. A. Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chem. Soc. Rev. 46, 4976–5004 (2017).

  34. 34.

    Quah, H. S. et al. Multiphoton harvesting metal–organic frameworks. Nat. Commun. 6, 7954 (2015).

  35. 35.

    Morozana, A. & Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 5, 9269–9290 (2012).

  36. 36.

    Ricco, R., Malfatti, L., Takahashi, M., Hill, A. J. & Falcaro, P. Applications of magnetic metal–organic framework composites. J. Mater. Chem. A 1, 13033–13045 (2013).

  37. 37.

    Fang, Z. L., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

  38. 38.

    Sholl, D. S. & Lively, R. P. Defects in metal–organic frameworks: challenge or opportunity? J. Phys. Chem. Lett. 6, 3437–3444 (2015).

  39. 39.

    Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

  40. 40.

    Coudert, F. X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

  41. 41.

    Yadav, R., Swain, D., Bhat, H. L. & Elizabeth, S. Order-disorder phase transition and multiferroic behaviour in a metal organic framework compound (CH3)2NH2Co(HCOO)3. J. Appl. Phys. 119, 064103 (2016).

  42. 42.

    Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F. X. Interplay between defects, disorder and flexibility in metal–organic frameworks. Nat. Chem. 9, 11–16 (2017).

  43. 43.

    Lohe, M. R., Rose, M. & Kaskel, S. Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 0, 6056–6058 (2009).

  44. 44.

    Bueken, B. et al. Gel-based morphological design of zirconium metal–organic frameworks. Chem. Sci. 8, 3939–3948 (2017).

  45. 45.

    Moghadam, P. Z. et al. Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017).

  46. 46.

    Lau, D. et al. PLUXter: rapid discovery of metal-organic framework structures using PCA and HCA of high throughput synchrotron powder diffraction data. Comb. Chem. High Throughput Screening 14, 28–35 (2011).

  47. 47.

    Bennett, T. D. & Cheetham, A. K. Amorphous metal–organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014).

  48. 48.

    Lin, I. J. B. & Vasam, C. S. Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J. Organomet. Chem. 690, 3498–3512 (2005).

  49. 49.

    Andersson, M., Hansson, Ö., Öhrstrom, L., Idström, A. & Nydén, M. Vinylimidazole copolymers: coordination chemistry, solubility, and cross-linking as function of Cu2+ and Zn2+ complexation. Colloid Polym. Sci. 289, 1361–1372 (2011).

  50. 50.

    Pachfule, P., Shinde, D., Majumder, M. & Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718–724 (2016).

  51. 51.

    Yang, F., Li, W. & Tang, B. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 733, 8–14 (2018).

  52. 52.

    Zhou, Y. & Liu, C. J. Amorphization of metal-organic framework MOF-5 by electrical discharge. Plasma Chem. Plasma Process. 31, 499–506 (2011).

  53. 53.

    Andrzejewski, M., Casati, N. & Katrusiak, A. Reversible pressure pre-amorphization of a piezochromic metal–organic framework. Dalton Trans. 46, 14795–14803 (2017).

  54. 54.

    Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

  55. 55.

    Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

  56. 56.

    James, J. B. & Lin, Y. S. Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments. J. Phys. Chem. C 120, 14015–14026 (2016).

  57. 57.

    Spielberg, E. T., Edengeiser, E., Mallick, B., Havenith, M. & Mudring, A. V. (1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid. Chem. Eur. J. 20, 5338–5345 (2014).

  58. 58.

    Moriya, M., Kato, D., Sakamoto, W. & Yogo, T. Structural design of ionic conduction paths in molecular crystals for selective and enhanced lithium ion conduction. Chem. Eur. J. 19, 13554–13560 (2013).

  59. 59.

    Hirai, Y. et al. Luminescent coordination glass: remarkable morphological strategy for assembled Eu(iii) complexes. Inorg. Chem. 54, 4364–4370 (2015).

  60. 60.

    Depuydt, D. et al. Silver-containing ionic liquids with alkylamine ligands. ChemPlusChem 78, 578–588 (2013).

  61. 61.

    Su, Y. J. et al. Copper(i) 2-isopropylimidazolate: supramolecular isomerism, isomerization, and luminescent properties. Cryst. Growth Des. 15, 1735–1739 (2015).

  62. 62.

    Umeyama, D., Horike, S., Inukai, M., Itakura, T. & Kitagawa, S. Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

  63. 63.

    Poirer, J. P. Introduction to the Physics of the Earth’s Interior Ch. 5 (Cambridge Univ. Press, 2000).

  64. 64.

    Umeyama, D. et al. Glass formation via structural fragmentation of a 2D coordination network. Chem. Commun. 51, 12728–12731 (2015).

  65. 65.

    Bennett, T. D. et al. Hybrid glasses from strong and fragile metal–organic framework liquids. Nat. Commun. 6, 8079 (2015).

  66. 66.

    Bennett, T. D. et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

  67. 67.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

  68. 68.

    Lewis, D. W. et al. Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm 11, 2272–2276 (2009).

  69. 69.

    Bennett, T. D. et al. Thermal amorphization of zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 50, 3067–3071 (2011).

  70. 70.

    Öhrstrom, L. Let’s talk about MOFs — topology and terminology of metal–organic frameworks and why we need them. Crystals 5, 154–162 (2015).

  71. 71.

    Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017).

  72. 72.

    Adhikari, P. et al. Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (a-ZIF). J. Phys. Chem. C 120, 15362–15368 (2016).

  73. 73.

    Beldon, P. J. et al. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew. Chem. Int. Ed. 49, 9640–9643 (2010).

  74. 74.

    Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015).

  75. 75.

    Calvin, J. J. et al. Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)2. J. Chem. Thermodyn. 116, 341–351 (2018).

  76. 76.

    Friscic, T. et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem 5, 66–73 (2013).

  77. 77.

    Bennett, T. D. et al. Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. J. Am. Chem. Soc. 133, 14546–14549 (2011).

  78. 78.

    Chen, W. Q. et al. Glass formation of a coordination polymer crystal for enhanced proton conductivity and material flexibility. Angew. Chem. Int. Ed. 55, 5195–5200 (2016).

  79. 79.

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

  80. 80.

    Valenzano, L. et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011).

  81. 81.

    Bennett, T. D. et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: a combined experimental and computational study. Phys. Chem. Chem. Phys. 18, 2192–2201 (2016).

  82. 82.

    Guillerm, V. et al. A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks. Angew. Chem. Int. Ed. 51, 9267–9271 (2012).

  83. 83.

    Su, Z., Miao, Y. R., Zhang, G., Miller, J. T. & Suslick, K. S. Bond breakage under pressure in a metal organic framework. Chem. Sci. 8, 8004–8011 (2017).

  84. 84.

    Chapman, K. W., Sava, D. F., Halder, G. J., Chupas, P. J. & Nenoff, T. M. Trapping guests within a nanoporous metal–organic framework through pressure-induced amorphization. J. Am. Chem. Soc. 133, 18583–18585 (2011).

  85. 85.

    Chapman, K. W., Halder, G. J. & Chupas, P. J. Pressure-induced amorphization and porosity modification in a metal–organic framework. J. Am. Chem. Soc. 131, 17546–17547 (2009).

  86. 86.

    Su, Z. et al. Shock wave chemistry in a metal–organic framework. J. Am. Chem. Soc. 139, 4619–4622 (2017).

  87. 87.

    Ortiz, A. U., Boutin, A., Fuchs, A. H. & Coudert, F. X. Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening. J. Phys. Chem. Lett. 4, 1861–1865 (2013).

  88. 88.

    Kitagawa, S. & Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds. Bull. Chem. Soc. Jpn 71, 1739–1753 (1998).

  89. 89.

    Uemura, K. et al. Novel flexible frameworks of porous cobalt(iii) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups. Chem. Eur. J. 8, 3586–3600 (2002).

  90. 90.

    Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nat. Chem. 1, 289–294 (2009).

  91. 91.

    Allan, P. K. et al. Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal-organic framework. Chem. Sci. 3, 2559–2564 (2012).

  92. 92.

    Xin, Z. F., Chen, X. S., Wang, Q., Chen, Q. & Zhang, Q. F. Nanopolyhedrons and mesoporous supra-structures of zeolitic imidazolate framework with high adsorption performance. Microporous Mesoporous Mater. 169, 218–221 (2013).

  93. 93.

    Orellana-Tavra, C. et al. Amorphous metal–organic frameworks for drug delivery. Chem. Commun. 51, 13878–13881 (2015).

  94. 94.

    McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

  95. 95.

    Morishige, K. Hysteresis critical point of nitrogen in porous glass: occurrence of sample spanning transition in capillary condensation. Langmuir 25, 6221–6226 (2009).

  96. 96.

    Rozes, L. & Sanchez, C. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials. Chem. Soc. Rev. 40, 1006–1030 (2011).

  97. 97.

    Zhao, Y., Lee, S.-Y., Becknell, N., Yaghi, O. M. & Angell, C. A. Nanoporous transparent MOF glasses with accessible internal surface. J. Am. Chem. Soc. 138, 10818–10821 (2016).

  98. 98.

    Enke, D., Janowski, F. & Schwieger, W. Porous glasses in the 21st century — a short review. Microporous Mesoporous Mater. 60, 19–30 (2003).

  99. 99.

    Jeong, W. S. et al. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map. Proc. Natl Acad. Sci. USA 114, 7923–7928 (2017).

  100. 100.

    Kertik, A. et al. Highly selective gas separation membrane using in situ amorphised metal-organic frameworks. Energy Environ. Sci 10, 2342–2351 (2017).

  101. 101.

    Sherman, J. D. Synthetic zeolites and other microporous oxide molecular sieves. Proc. Natl Acad. Sci. USA 96, 3471–3478 (1999).

  102. 102.

    Bennett, T. D., Saines, P. J., Keen, D. A., Tan, J. C. & Cheetham, A. K. Ball-milling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chem. Eur. J. 19, 7049–7055 (2013).

  103. 103.

    Minami, T. Fast ion conducting glasses. J. Non-Cryst. Solids 73, 273–284 (1985).

  104. 104.

    Nagarkar, S. S. et al. Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal. Angew. Chem. Int. Ed. 56, 4976–4981 (2017).

  105. 105.

    Horike, S. et al. Order-to-disorder structural transformation of a coordination polymer and its influence on proton conduction. Chem. Commun. 50, 10241–10243 (2014).

  106. 106.

    Funasako, Y., Mori, S. & Mochida, T. Reversible transformation between ionic liquids and coordination polymers by application of light and heat. Chem. Commun. 52, 6277–6279 (2016).

  107. 107.

    Lavenn, C. et al. A luminescent double helical gold(i)-thiophenolate coordination polymer obtained by hydrothermal synthesis or by thermal solid-state amorphous-to-crystalline isomerization. J. Mater. Chem. C 3, 4115–4125 (2015).

  108. 108.

    Xiu, J. W. et al. Electrical bistability in a metal–organic framework modulated by reversible crystalline-to-amorphous transformations. Chem. Commun. 53, 2479–2482 (2017).

  109. 109.

    Ohara, Y. et al. Formation of coordination polymer glass by mechanical milling: dependence on metal ions and molecular doping for H+ conductivity. Chem. Commun. 54, 6859–6862 (2018).

  110. 110.

    MacFarlane, D. R. et al. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).

  111. 111.

    Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

  112. 112.

    O’Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

  113. 113.

    Mannstadt, W. Computational materials science aided design of glass ceramics and crystal properties. J. Phys. Condens. Mater. 20, 064233 (2008).

  114. 114.

    Qiu, S., Xue, M. & Zhu, G. Metal–organic framework membranes: from synthesis to separation application. Chem. Commun. 43, 6116–6140 (2014).

  115. 115.

    Seoane, B. et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

  116. 116.

    Batten, S. R. et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013).

  117. 117.

    Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

Download references

Acknowledgements

T.D.B. thanks the Royal Society for a University Research Fellowship (UF150021) and for their continued support.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Thomas D. Bennett or Satoshi Horike.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bennett, T.D., Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat Rev Mater 3, 431–440 (2018). https://doi.org/10.1038/s41578-018-0054-3

Download citation

Further reading